Polycyclic Aromatic Hydrocarbon Carcinogenesis - ACS Symposium

Jul 23, 2009 - It also traces the key steps involved in the discovery that polycyclic ... tars and the more recent discovery that bay region dihydrodi...
1 downloads 0 Views 1MB Size
1 Polycyclic Aromatic Hydrocarbon Carcinogenesis An Introduction

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

ANTHONY DIPPLE LBI-Basic Research Program, Chemical and Physical Carcinogenesis Laboratory, National Cancer Institute, Frederick Cancer Research Facility, Frederick, MD 21701

Since polycyclic aromatic hydrocarbons are widely distributed throughout the atmosphere and water sources of the world, it i s essentially impossible to avoid exposure to nanogram quantities of these substances on a daily basis. It i s particularly important, therefore, that the mechanism of action of these carcinogens be understood. This introduc­ tion provides a general background on experimental carcinogenesis and structure-activity relationships for hydrocarbons. It also traces the key steps involved i n the discovery that polycyclic aromatic hydrocarbons are the carcinogenic components of complex mixtures such as soots and tars and the more recent discovery that bay region dihydrodiol epoxides are probably the metabolites of hydrocar­ bons that initiate the carcinogenic process. Although there are earlier reports of lifestyle-associated can­ cers in the scientific literature, the 1775 observation of Percival Pott, surgeon to St. Bartholomew's Hospital i n London, that scrotal cancer in chimney sweepers originates from their occupational exposure to soot (1) represents the key historical development i n the fields of chemical carcinogenesis in general and polycyclic aromatic hydrocarbon carcinogenesis in particular. This observa­ tion was followed a century later by von Volkmann's reports of occupational skin cancers i n workers i n the coal tar industry i n Germany (_2), and by the early 1900 s it was widely recognized that soot [produced by the inefficient combustion of coal and containing up to 40% coal tar (3)], coal tar [produced by the destructive d i s t i l l a t i o n of coal], and pitch [the residue after d i s t i l l i n g coal tar] are a l l carcinogenic for man. At that time,itwas conceivable that a single carcinogenic substance might be respon­ sible for a l l the known occupational cancers (j4), but attempts to characterize the carcinogens in these complex combustion and pyrolysis products had to await the development of an experimental system for determining carcinogenic activity. It was not u n t i l f

0097-6156/85/ 0283-0001 $06.00/0 © 1985 American Chemical Society

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

2

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

1915 t h a t such a system was developed by Yamagiwa and Ichikawa (5) who succeeded i n p r o d u c i n g m a l i g n a n t s k i n tumors i n r a b b i t s by the p e r s i s t e n t t o p i c a l a p p l i c a t i o n of c o a l t a r . Three y e a r s l a t e r T s u t s u i (6) produced tumors i n mice by r e p e a t e d a p p l i c a t i o n o f t a r s t o the s k i n , and t h i s p a r t i c u l a r assay, w h i c h was q u i c k l y adopted i n o t h e r l a b o r a t o r i e s , has proved t o be of l a s t i n g v a l u e and i s s t i l l used f r e q u e n t l y today. The s e r i e s of events w h i c h then l e d t o the i d e n t i f i c a t i o n of c e r t a i n p o l y c y c l i c a r o m a t i c hydrocarbons as the f i r s t pure c h e m i c a l c a r c i n o g e n s has been d e s c r i b e d i n depth by S i r E r n e s t Kennaway (_7), a key p a r t i c i p a n t i n the d i s c o v e r y , and o n l y a b r i e f o u t l i n e of t h i s e x c i t i n g s t o r y i s i n c l u d e d h e r e i n . I n 1921, B l o c h and D r e i f u s s (8) i n S w i t z e r l a n d had e s t a b l i s h e d t h a t the c a r c i n o g e n i n c o a l t a r was of h i g h b o i l i n g p o i n t , was f r e e of n i t r o g e n and s u l ­ phur, formed a s t a b l e p i c r a t e , and was p r o b a b l y a complex h y d r o c a r ­ bon. Kennaway pursued these l e a d s a f t e r j o i n i n g what i s now the I n s t i t u t e of Cancer R e s e a r c h i n London i n 1922, and, amongst a number of n o t a b l e s t u d i e s on c a r c i n o g e n i c t a r s , he demonstrated t h a t p y r o l y s e s of i s o p r e n e or a c e t y l e n e i n an atmosphere of h y d r o ­ gen gave r i s e t o c a r c i n o g e n i c d i s t i l l a t e s , thereby p r o v i n g t h a t c a r c i n o g e n i c a c t i v i t y r e s i d e d i n some compound c o n t a i n i n g o n l y carbon and hydrogen ( 9 ) . A second v i t a l o b s e r v a t i o n was made when Mayneord, a p h y s i c i s t , j o i n e d i n the r e s e a r c h e f f o r t and d e c i d e d t o examine the c o n s p i c u ­ ous f l u o r e s c e n c e of the many c a r c i n o g e n i c d i s t i l l a t e s p r e s e n t i n Kennaway s l a b o r a t o r y . He found t h a t most of the c a r c i n o g e n i c t a r s e x h i b i t e d a common f l u o r e s c e n c e spectrum (A 400, 418 and 440 nm) but, i n subsequent s t u d i e s w i t h H i e g e r , none of the hydrocarbons a v a i l a b l e a t t h a t time e x h i b i t e d these s p e c t r a l c h a r ­ a c t e r i s t i c s (_7). The spectrum of b e n z [ a j a n t h r a c e n e was found t o be s i m i l a r t o , but of l o n g e r wavelength t h a n , t h a t of the c a r c i n ­ ogenic p r e p a r a t i o n s but t h i s s i m i l a r i t y d i r e c t e d Kennaway s a t t e n ­ t i o n t o C l a r ' s r e p o r t of the s y n t h e s i s of dibenz[a_,h]anthracene ( 1 0 ) . Tumors were o b t a i n e d when t h i s h y d r o c a r b o n was r e p e a t e d l y p a i n t e d on t o mice and thus i t was e s t a b l i s h e d t h a t the p r o p e r t i e s n e c e s s a r y t o e l i c i t tumors i n animals were c o n t a i n e d w i t h i n the s t r u c t u r e of a s i n g l e pure c h e m i c a l compound ( 1 1 ) . S i n c e the spectrum of dibenz [a_,hjanthracene was not i d e n t i c a l t o t h a t of the c a r c i n o g e n i c t a r s , c a r c i n o g e n i c a c t i v i t y o b v i o u s l y was not c o n f i n e d t o a unique c h e m i c a l s t r u c t u r e and i n d e e d Cook, who had j o i n e d t h i s r e s e a r c h e f f o r t i n 1929, soon s y n t h e s i z e d a number of new h y d r o c a r b o n s , and many of these were c a r c i n o g e n i c . The o u t s t a n d i n g problem of the c a r c i n o g e n i n the t a r s was u l t i m a t e ­ l y r e s o l v e d by a massive experiment b e g i n n i n g w i t h the d i s t i l l a t i o n of 2 tons of gas-works p i t c h . T h e r e a f t e r , by f r a c t i o n a l d i s t i l l a ­ t i o n , d i f f e r e n t i a l e x t r a c t i o n s , f r a c t i o n a l c r y s t a l l i z a t i o n and by f o l l o w i n g the f l u o r e s c e n c e spectrum and c a r c i n o g e n i c a c t i v i t y of the v a r i o u s f r a c t i o n s , Cook, Hewett and H i e g e r (12) were a b l e t o o b t a i n gram q u a n t i t i e s of a c r y s t a l l i n e m a t e r i a l w h i c h was c a r c i n o ­ g e n i c and e x h i b i t e d the f l u o r e s c e n c e w h i c h had been a s s o c i a t e d w i t h c a r c i n o g e n i c a c t i v i t y . T h i s m a t e r i a l was r e s o l v e d i n t o t h r e e s e p a r a t e s u b s t a n c e s , p e r y l e n e and two unknown isomers of p e r y l e n e w h i c h were i d e n t i f i e d by s t r u c t u r e - d e t e r m i n i n g s y n t h e s e s as benzof

m a x

f

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon Carcinogenesis

3

[ a j p y r e n e and b e n z o [ e j p y r e n e . Benzo[ajpyrene was t h e source o f b o t h c a r c i n o g e n i c a c t i v i t y and t h e c h a r a c t e r i s t i c f l u o r e s c e n c e o f the c a r c i n o g e n i c t a r s . T h i s f i n d i n g completed a remarkable episode of r e s e a r c h d u r i n g which t h e c a r c i n o g e n i c a c t i v i t y ( o r , a t l e a s t , some o f t h e o f t h e c a r c i n o g e n i c a c t i v i t y ) a s s o c i a t e d w i t h complex m a t e r i a l s l i k e s o o t s and c o a l t a r s came t o be a t t r i b u t e d t o a s p e c i f i c c h e m i c a l component, b e n z o [ a j p y r e n e .

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

Human Exposure The c a r c i n o g e n i c a c t i v i t y o f s o o t s , t a r s and o i l s i n man i s beyond d i s p u t e (13-16) and, i n a d d i t i o n t o t h e s k i n c a n c e r s which were n o t e d i n i t i a l l y , t h e r e have a l s o been s e v e r a l r e p o r t s i n d i c a t i n g t h a t h i g h e r i n c i d e n c e s o f r e s p i r a t o r y t r a c t and upper g a s t r o i n t e s ­ t i n a l t r a c t tumors a r e a s s o c i a t e d w i t h o c c u p a t i o n a l exposures t o these c a r c i n o g e n s (summarized i n r e f s . 13-16). W h i l e p r e s e n t day w o r k i n g c o n d i t i o n s a r e d r a s t i c a l l y improved over those o f t h e 1 9 t h c e n t u r y , contemporary s t u d i e s [ f o r example on D a n i s h chimney sweeps ( 1 7 ) ] c o n t i n u e t o f i n d i n c r e a s e d c a n c e r r i s k s a s s o c i a t e d w i t h exposure t o these p o l y c y c l i c a r o m a t i c h y d r o c a r b o n - c o n t a i n i n g m a t e r i a l s . N e v e r t h e l e s s , because any g i v e n hydrocarbon i s b u t one component o f these complex o c c u p a t i o n a l c a r c i n o g e n s , t h e p o s i ­ t i o n t a k e n by Working Groups o f t h e I n t e r n a t i o n a l Agency f o r Research on Cancer over t h e l a s t t e n y e a r s (13-16) i s t h a t i n d i v i ­ d u a l h y d r o c a r b o n s , such as b e n z o [ a j p y r e n e , have n o t been proven t o be c a r c i n o g e n s f o r man. T h i s l a c k o f d i r e c t p r o o f o f t h e i r c a r c i n ­ o g e n i c i t y f o r man s h o u l d not be o v e r i n t e r p r e t e d . I t does not i m p l y t h a t t h e human r a c e I s r e s i s t a n t t o these p o t e n t e x p e r i m e n t a l c a r c i n o g e n s and most c a r c i n o g e n e s i s r e s e a r c h e r s adopt t h e v i e w - p o i n t t h a t , u n t i l p r o o f t o t h e c o n t r a r y i s o b t a i n e d , c h e m i c a l s found t o be c a r c i n o g e n s i n a n i m a l s s h o u l d be regarded as p r o b a b l e c a r c i n o g e n s f o r man. The p o l y c y c l i c a r o m a t i c hydrocarbons have t o be r e g a r d e d i n t h i s way s i n c e some o f them a r e v e r y p o t e n t e x p e r i m e n t a l c a r c i n o g e n s and t h e metabolism and DNA b i n d i n g p r o d u c t s o f benzo[a] pyrene i n human c e l l s and t i s s u e s a r e v e r y s i m i l a r t o those seen i n s u s c e p t i b l e e x p e r i m e n t a l a n i m a l s ( r e v i e w e d i n 16). Some i n v e s ­ t i g a t o r s b e l i e v e t h a t t h e hydrocarbons a r e proven s k i n c a r c i n o g e n s and p r o b a b l e r e s p i r a t o r y t r a c t c a r c i n o g e n s f o r man ( 1 8 ) . The presence o f p o l y c y c l i c a r o m a t i c hydrocarbons i n t h e environment i s o f obvious c o n c e r n and, a p a r t from s p e c i f i c occupa­ t i o n a l environments, human exposure t o these compounds d e r i v e s from combustion p r o d u c t s r e l e a s e d i n t o t h e atmosphere. E s t i m a t e s of t h e t o t a l a n n u a l benzo[a]pyrene e m i s s i o n s i n t h e U n i t e d S t a t e s range from 900 tons (19) t o about 1300 tons ( 2 0 ) . These t o t a l s a r e d e r i v e d from heat and power g e n e r a t i o n (37-38%), open-refuse b u r n i n g (42-46%), coke p r o d u c t i o n (15-19%) and motor v e h i c l e e m i s s i o n s (1-1.5%) (19,20). S i n c e t h e v a s t m a j o r i t y o f these e m i s s i o n s a r e from s t a t i o n a r y s o u r c e s , l o c a l l e v e l s o f a i r p o l ­ l u t i o n o b v i o u s l y v a r y . Benzo[ajpyrene l e v e l s o f l e s s than 1 ug/1,000 m^ c o r r e s p o n d t o c l e a n a i r ( 2 0 ) . A t t h i s l e v e l , i t can be e s t i m a t e d t h a t t h e average person would i n h a l e about 0.02 u g o f b e n z o [ a j p y r e n e p e r day, and t h i s c o u l d i n c r e a s e t o 1.5 pg/day i n p o l l u t e d a i r ( 2 1 ) .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

4

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS P o l y c y c l i c p a r t i c u l a t e s r e l e a s e d i n t o t h e a i r can be washed out by r a i n o r s e t t l e out under g r a v i t y , thereby c o n t a m i n a t i n g w a t e r and s o i l and p r o v i d i n g o t h e r p o s s i b l e r o u t e s f o r human exposure. I n f a c t , hydrocarbons a r e widespread through t h e w o r l d ' s waters ( 2 2 ) and c a n e n t e r our food c h a i n by b e i n g t a k e n up by p l a n k t o n , by f i l t e r - f e e d i n g m o l l u s k s , and by f i s h ( 2 3 ) . The average l e v e l o f benzo[a]pyrene i n d r i n k i n g water i s about 0.01 pg/1 (19) so t h a t d a i l y i n t a k e from d r i n k i n g w a t e r i s o f a s i m i l a r o r d e r t o t h a t from b r e a t h i n g r e a s o n a b l y c l e a n air. These i n t a k e s , t o g e t h e r w i t h t h e hydrocarbons p r e s e n t i n our uncooked foods ( 2 4 ) , a r e p r o b a b l y l a r g e l y u n a v o i d a b l e and because o f t h i s , and t h e h i g h c a r c i n o g e n i c potency e x h i b i t e d by t h e hydrocarbons, i t i s important t h a t t h e mechanism o f a c t i o n o f these u b i q u i t o u s c a r c i n o g e n s be i n v e s t i g a t e d i n o r d e r t o determine how t o m i n i m i z e t h e i r t h r e a t t o man. Experimental

Carcinogenesis

The p r o c e s s of c a r c i n o g e n e s i s remains p o o r l y understood and t h i s i s perhaps n o t s u r p r i s i n g g i v e n t h a t i t o c c u r s over a p e r i o d o f many months i n e x p e r i m e n t a l animals and many y e a r s i n man. W h i l e mouse s k i n remains a c o n v e n i e n t and p o p u l a r system f o r m o n i t o r i n g t h e c a r c i n o g e n i c a c t i v i t y o f p o l y c y c l i c a r o m a t i c hydrocarbons, i t i s by no means t h e o n l y t i s s u e s e n s i ­ t i v e t o t h i s c l a s s o f c a r c i n o g e n s . To a l a r g e e x t e n t , the t i s s u e a f f e c t e d i s determined by the r o u t e of a d m i n i s t r a t i o n o f t h e c a r c i n o g e n and the a n i m a l s p e c i e s under i n v e s t i g a t i o n . For example, 7 , 1 2 - d i m e t h y l b e n z [ a j a n t h r a c e n e Is a particularly p o t e n t c a r c i n o g e n f o r t h e mammary g l a n d o f young female SpragueDawley r a t s a f t e r o r a l o r i n t r a v e n o u s a d m i n i s t r a t i o n (25,26), d i e t a r y b e n z o [ a j p y r e n e l e a d s t o l e u k e m i a , l u n g adenoma and stomach tumors i n mice ( 2 7 ) , and e i t h e r o f these hydrocarbons can induce hepatomas i n male mice when i n j e c t e d on t h e f i r s t day o f l i f e ( 2 8 ) . N e v e r t h e l e s s , the mouse s k i n system has proved t o be p a r t i c u l a r l y v a l u a b l e because o f t h e r a p i d i t y of tumor i n d u c t i o n , t h e ease o f d e t e c t i o n o f tumors and because the m u l t i - s t a g e n a t u r e o f t h e c a r c i n o g e n i c p r o c e s s was e x p e r i ­ m e n t a l l y e s t a b l i s h e d i n t h i s system. Tumors a r e induced i n mouse s k i n e i t h e r by t h e r e p e a t e d ap­ p l i c a t i o n of s m a l l doses o f p o l y c y c l i c hydrocarbons, by a s i n g l e a p p l i c a t i o n o f a l a r g e dose, o r by t h e s i n g l e a p p l i c a t i o n of a s u b - c a r c i n o g e n i c dose o f hydrocarbon ( i n i t i a t i o n ) f o l l o w e d by r e p e a t e d a p p l i c a t i o n s o f a n o n c a r c i n o g e n i c agent such as croton o i l or i t s active constituent l2-0-tetradecanoyl-phorbol-l3a c e t a t e (promotion) ( 2 9 ) . The c h a r a c t e r i s t i c s o f t h e l a t t e r i n i t i a t i o n - p r o m o t i o n system i n d i c a t e t h a t i n i t i a t i o n i s e s s e n t i a l l y i r r e v e r s i b l e . T h i s f o l l o w s from the f a c t t h a t even when treatment w i t h promoters i s begun s e v e r a l months a f t e r i n i t i a t i o n w i t h a hydrocarbon, a h i g h y i e l d o f tumors i s s t i l l u l t i m a t e l y o b t a i n e d . I n c o n t r a s t , promotion i s r e v e r s i b l e t o some e x t e n t , and i t i s o n l y e f f e c t i v e f o l l o w i n g , not p r e c e d i n g , t h e i n i t i a t i n g e v e n t s . These d i s c o v e r i e s suggest t h a t o n l y t h e i n i t i a t i o n s t a g e of c a r c i n ­ o g e n e s i s has an a b s o l u t e requirement f o r t h e c h e m i c a l c a r c i n o g e n .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon Carcinogenesis

5

More d e t a i l e d r e v i e w s o f the complex i n i t i a t i o n - p r o m o t i o n l i t e r a t u r e s h o u l d be c o n s u l t e d f o r a f u l l a p p r e c i a t i o n of t h i s t o p i c (30,31). W h i l e s e v e r a l g e n e r a l mechanisms through w h i c h c h e m i c a l s might i n i t i a t e the c a r c i n o g e n i c p r o c e s s have been c o n c e i v e d , the weight o f e v i d e n c e a t p r e s e n t suggests t h a t the p o l y c y c l i c a r o m a t i c h y d r o ­ carbons i n i t i a t e c a r c i n o g e n e s i s through a mutagenic mechanism. T h i s i n v o l v e s an i n i t i a l c o v a l e n t i n t e r a c t i o n between a m e t a b o l i t e of the hydrocarbon and the DNA of the t a r g e t t i s s u e . W h i l e these i n t e r a c t i o n s are becoming f a i r l y c l e a r l y u n d e r s t o o d ( 3 2 ) , i t i s i m p o r t a n t to remember t h a t t h i s c h e m i c a l i n t e r a c t i o n i n i t s e l f does not c o n s t i t u t e the process o f i n i t i a t i o n . T h i s f o l l o w s because i n i t i a t i o n i s o p e r a t i o n a l l y d e f i n e d as an i r r e v e r s i b l e process and s e v e r a l s t u d i e s o f the t r a n s f o r m a t i o n of mammalian c e l l s i n v i t r o show t h a t u n t i l c e l l s exposed t o a c a r c i n o g e n have been p e r m i t t e d t o undergo c e l l d i v i s i o n , the t r a n s f o r m i n g e f f e c t s o f c a r c i n o g e n s can be r e v e r s e d (33,34). Thus, even the i n i t i a t i o n stage o f c a r c i n o g e n e s i s i s complex, and i s dependent not o n l y on the p r o p e r t i e s o f the h y d r o c a r b o n a d m i n i s t e r e d , but i t a l s o r e ­ q u i r e s complex c o n t r i b u t i o n s from the a n i m a l t i s s u e i n v o l v e d , f i r s t i n m e t a b o l i z i n g the hydrocarbon t o a n a p p r o p r i a t e c a r c i n o ­ g e n i c m e t a b o l i t e and secondly i n making permanent the p o t e n t i a l l y I n i t i a t i n g damage generated by t h i s m e t a b o l i t e . In order that tumors s h o u l d e v e n t u a l l y a r i s e f o l l o w i n g the i n i t i a t i o n s t a g e , a p p r o p r i a t e p r o m o t i o n a l s t i m u l i are a l s o r e q u i r e d and promotion i t s e l f has been r e s o l v e d i n t o s e v e r a l stages (29,35). Given t h i s degree o f c o m p l e x i t y , i t would be g r o s s l y o p t i m i s t i c t o expect any o b v i o u s r e l a t i o n s h i p between the s t r u c t u r e o f p o l y c y c l i c a r o m a t i c hydrocarbons and t h e i r c a r c i n o g e n i c a c t i v i t i e s . However, a t the o u t s e t o f i n v e s t i g a t i o n s i n t o the c a r c i n o g e n i c h y d r o c a r b o n s , t h e s t r u c t u r e - a c t i v i t y approach was the o n l y means a v a i l a b l e t o attempt t o determine the mechanism of a c t i o n of these compounds. W h i l e i t d i d not p r o v i d e the key e v i d e n c e l e a d i n g t o our p r e s e n t l e v e l o f u n d e r s t a n d i n g , i t has c o n t r i b u t e d c o n s i d e r a b l y t o the l a t t e r , and, w i t h the b e n e f i t o f h i n d s i g h t , i t i s c l e a r t h a t the success o f the s t r u c t u r e - a c t i v i t y approach was l i m i t e d p r i m a r i l y by our i n a b i l i t y t o i n t e r p r e t the i n f o r m a t i o n i t y i e l d e d , r a t h e r than by the i n f o r ­ mation i t s e l f . S t r u c t u r e and

Activity

Immediately a f t e r the f i r s t few c a r c i n o g e n i c hydrocarbons were i d e n t i f i e d , s c i e n t i s t s p u z z l e d over the d e v e l o p i n g s t r u c t u r e - a c t i v ­ i t y r e l a t i o n s h i p s and t r i e d t o i d e n t i f y the s t r u c t u r a l f e a t u r e s o f the hydrocarbons which are a s s o c i a t e d w i t h t h e i r c a r c i n o g e n i c activity. For u n s u b s t i t u t e d p o l y c y c l i c aromatic hydrocarbons (see examples on page 6 ) , i t seems t h a t a minimum o f f o u r benzene r i n g s i s r e q u i r e d f o r , but does not guarantee, c a r c i n o g e n i c a c t i v i t y . Thus, o n l y two of the s i x p o s s i b l e arrangements o f f o u r benzene r i n g s r e p r e s e n t compounds w i t h d e f i n i t e a l t h o u g h weak c a r c i n o g e n i c a c t i v i t y . These are benzo[c]phenanthrene and b e n z [ a ] a n t h r a c e n e w h i c h , as Hewett (36) n o t e d i n 1940, a r e both phenanthrene d e r i v a t i v e s . I n c o n t r a s t , l i n e a r s t r u c t u r e s such as naphthacene are not a s s o c i a t e d

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

6

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Unsubstituted

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

S t r u c t u r e s o f C a r c i n o g e n i c and N o n c a r c i n o g e n i c P o l y c y c l i c Aromatic Hydrocarbons

These compounds show t u m o r - i n i t i a t i n g

activity.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon Carcinogenesis

with carcinogenic a c t i v i t y . S t r u c t u r e s such as t r i p h e n y l e n e and d i b e n z o [f£,op_]naphthacene, which behave c h e m i c a l l y l i k e condensed p o l y p h e n y l s , a r e a l s o i n a c t i v e as c a r c i n o g e n s . W h i l e pyrene i t ­ s e l f , does not e x h i b i t any c a r c i n o g e n i c a c t i v i t y , the more p o t e n t c a r c i n o g e n s amongst the u n s u b s t i t u t e d hydrocarbons a r e b e n z o [ a j ­ pyrene and s e v e r a l compounds which can be c o n s i d e r e d t o be benzod e r i v a t i v e s o f b e n z o [ a j p y r e n e . The presence o f a b e n z o [ a j p y r e n e s t r u c t u r e w i t h i n a more complex molecule does not guarantee c a r c i n ­ o g e n i c a c t i v i t y however, because anthanthrene i s not a c a r c i n o g e n . I n a d d i t i o n t o the benzenoid p o l y c y c l i c s , s t r u c t u r e s c o n t a i n i n g five-membered r i n g s a r e a l s o p r e s e n t i n the environment and some of these a r e a l s o c a r c i n o g e n i c . S t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s become even more complex when the e f f e c t o f v a r i o u s s u b s t i t u e n t s on c a r c i n o g e n i c a c t i v i t y i s c o n ­ s i d e r e d ( 3 7 ) . W h i l e benz [ a j a n t h r a c e n e i s c o n s i d e r e d t o be a f a i r l y weak c a r c i n o g e n , 7 , 1 2 - d i m e t h y l b e n z [ a j a n t h r a c e n e i s one o f the most p o t e n t o f the hydrocarbon c a r c i n o g e n s . A number o f o t h e r d i m e t h y l b e n z [ a j a n t h r a c e n e s , some t r i m e t h y l b e n z [ a j a n t h r a c e n e s and a l l o f the t w e l v e p o s s i b l e methylbenz [ a j a n t h r a c e n e s have been s y n t h e s i z e d and t h e i r c a r c i n o g e n i c a c t i v i t i e s e v a l u a t e d . These f i n d i n g s have been reviewed many times (37-40) and though t h e r e a r e s l i g h t d i f f e r e n c e s from one study t o a n o t h e r the o v e r a l l con­ c l u s i o n s are f a i r l y c l e a r ( T a b l e I ) . Thus, f o r the me t h y l b e n z [ a j a n t h r a c e n e s , the most p o t e n t c a r c i n o g e n i s 7 - m e t h y l b e n z [ a j a n t h r a cene but s u b s t i t u t i o n a t p o s i t i o n s 6, 8 o r 12 i s a l s o a s s o c i a t e d with substantial a c t i v i t y . None o f the o t h e r m e t h y l b e n z [ a j a n t h r a cenes have e x h i b i t e d s u b s t a n t i a l c a r c i n o g e n i c a c t i v i t y , w i t h the p o s s i b l e e x c e p t i o n of 5-methylbenz[ajanthracene ( 4 1 ) , but i n the e a r l i e r t e s t s on mouse s k i n (38) s u b s t i t u t i o n i n the a n g u l a r r i n g i . e . , on the 1-, 2-, 3- o r 4 - p o s i t i o n s , was found t o y i e l d t o t a l l y i n a c t i v e compounds w h i l e the r e m a i n i n g isomers i . e . the 9-, 10-, and 1 1 - m e t h y l b e n z [ a j a n t h r a c e n e s a l l e x h i b i t e d some s l i g h t a c t i v i t y . The concept t h a t s u b s t i t u t i o n i n the a n g u l a r r i n g was i n v e r s e l y a s s o c i a t e d w i t h c a r c i n o g e n i c a c t i v i t y was s t r e n g t h e n e d by t h e f i n d i n g s w i t h d i m e t h y l b e n z [ a j a n t h r a c e n e s . Even though both 7and 1 2 - m e t h y l b e n z [ a j a n t h r a c e n e a r e potent c a r c i n o g e n s , the 1,7-, 1,12-, 4,7-, and 4 , 1 2 - d i m e t h y l b e n z [ a j a n t h r a c e n e s a r e a l l i n a c t i v e (37) . S i m i l a r l y , the p o t e n t a c t i v i t y o f 7 , 1 2 - d i m e t h y l b e n z [ a j ­ anthracene can be d e s t r o y e d by the presence of m e t h y l groups on the 2-or 3- p o s i t i o n s but the 4-methyl d e r i v a t i v e remains a c t i v e . The w e a l t h o f s t r u c t u r e - a c t i v i t y d a t a f o r the h y d r o c a r b o n s , t o ­ g e t h e r w i t h the f a c t t h a t they were the f i r s t pure c h e m i c a l s r e c o g ­ n i z e d t o e x h i b i t c a r c i n o g e n i c potency, a t t r a c t e d a g r e a t d e a l o f a t t e n t i o n o v e r the y e a r s , w i t h numerous attempts b e i n g made t o d e f i n e the s t r u c t u r a l f e a t u r e s a s s o c i a t e d w i t h c a r c i n o g e n i c a c t i v ­ ity. A t t e n t i o n was d i r e c t e d l a r g e l y towards the presence o f a phenanthrene s t r u c t u r e w i t h i n most o f the c a r c i n o g e n i c hydrocarbons (38) and then s u b s e q u e n t l y , t o the presence o f an a r o m a t i c bond w i t h a h i g h degree o f double bond c h a r a c t e r analogous t o t h a t o f the 9,10-bond i n phenanthrene. W h i l e many i n v e s t i g a t o r s c o n t r i b u ­ t e d t o the development o f s o - c a l l e d e l e c t r o n i c t h e o r i e s o f c a r c i n o ­ g e n e s i s , the most w i d e l y a p p l i c a b l e d e s c r i p t i o n o f a hydrocarbon c a r c i n o g e n i n t h e s e terms was developed by the Pullmans ( 4 2 ) .

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

8

They found t h a t , w i t h few e x c e p t i o n s , the c a r c i n o g e n s and noncarc i n o g e n s among the u n s u b s t i t u t e d hydrocarbons c o u l d be d i s t i n ­ g u i s h e d by i n d i c e s d e s c r i b i n g the r e a c t i v i t y of K - r e g i o n s and L - r e g i o n s towards a d d i t i o n r e a c t i o n s ( F i g u r e 1 ) . Carcinogens were c h a r a c t e r i z e d by a h i g h r e a c t i v i t y a t the K - r e g i o n t o g e t h e r w i t h a low r e a c t i v i t y a t the L - r e g i o n (where such a s t r u c t u r a l f e a t u r e was p r e s e n t ) . The i n t e r p r e t a t i o n of t h i s c o r r e l a t i o n i m p l i e d t h a t some i n t e r a c t i o n between a K - r e g i o n and some c e l l u l a r c o n s t i t u e n t was r e s p o n s i b l e f o r i n i t i a t i n g the c a r c i n o g e n i c p r o c e s s , w h i l e some a l t e r n a t i v e i n t e r a c t i o n a t a r e a c t i v e L - r e g i o n c o u l d d e s t r o y the c a r c i n o g e n i c p r o p e r t i e s of an o t h e r w i s e p o t e n t i a l carcinogen. These i d e a s had a major i n f l u e n c e on t h i n k i n g about the mechanisms of a c t i o n of the hydrocarbon c a r c i n o g e n s from the e a r l y 1 9 4 0 s t o the e a r l y 1 9 7 0 s . W h i l e i t i s no l o n g e r thought t h a t the K - r e g i o n p l a y s a major r o l e i n the a c t i v a t i o n of c a r c i n o ­ gens, i t remains p o s s i b l e t h a t i n a c t i v a t i n g r e a c t i o n s may occur at L-regions. S p e c i f i c e x c e p t i o n s t o the K- and L - r e g i o n h y p o t h e s i s were a n t h a n t h r e n e w h i c h was e x p e c t e d t o be a c a r c i n o g e n but i s n o t , and the o v e r a l l e f f e c t of methyl groups i n the a n g u l a r 1,2,3, 4 - r i n g of b e n z [ a ] a n t h r a c e n e d e r i v a t i v e s i n r e d u c i n g c a r c i n o g e n i c activity. Once i t was a p p r e c i a t e d t h a t a v i c i n a l d i h y d r o d i o l epoxide might be the m e t a b o l i t e of benzo[a]pyrene r e s p o n s i b l e f o r c a r c i n o ­ g e n i c a c t i v i t y ( 4 3 ) , J e r i n a and Daly (44) were a b l e t o suggest t h a t a "bay r e g i o n " was the s t r u c t u r a l f e a t u r e r e q u i r e d f o r c a r c i n ­ o g e n i c a c t i v i t y and t h a t the a c t i v e m e t a b o l i t e s f o r many h y d r o c a r ­ bons would be found t o be bay r e g i o n d i h y d r o d i o l e p o x i d e s i . e . v i c i n a l d i h y d r o d i o l epoxides w h e r e i n the epoxide r i n g i s a d j a c e n t t o a bay r e g i o n ( F i g u r e 2 ) . (The term bay r e g i o n i s used t o d e s c r i b e a concave a r e a of the p e r i p h e r y of a r o m a t i c hydrocarbons and was i n i t i a l l y i n t r o d u c e d because p r o t o n s i n such a r e g i o n i . e . at 1 and 12 i n 7-methylbenz[ajanthracene or 10 and 11 i n b e n z o [ a j p y r e n e ( F i g u r e 2) e x h i b i t d i s t i n c t i v e nmr p r o p e r t i e s ) . T h i s s u g g e s t i o n n e a t l y accounted f o r the e x c e p t i o n s t o the K - r e ­ g i o n h y p o t h e s i s , above, s i n c e anthanthrene does not c o n t a i n a bay r e g i o n and s u b s t i t u t i o n s i n the a n g u l a r r i n g of b e n z [ a j a n t h r a c e n e and i t s homologues might be expected t o i n t e r f e r e w i t h metabolic a c t i v a t i o n t o a bay r e g i o n d i h y d r o d i o l epoxide. In a d d i t i o n , the presence of a phenanthrene s t r u c t u r e w i t h i n a more complex h y d r o ­ c a r b o n i s necessary f o r a bay r e g i o n t o be p r e s e n t as w e l l as f o r a K - r e g i o n t o be p r e s e n t . I t appears, then, t h a t the e x c e p t i o n s t o the e a r l i e r s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s were s i g n a l l i n g the c u r r e n t u n d e r s t a n d i n g of the s t r u c t u r a l f e a t u r e s r e q u i r e d f o r c a r c i n o g e n i c a c t i v i t y but, as d e t a i l e d i n the f o l l o w i n g s e c t i o n , e x p e r i m e n t a l advances i n u n d e r s t a n d i n g the mechanism of m e t a b o l i c a c t i v a t i o n of p o l y c y c l i c hydrocarbons had t o be made b e f o r e these s i g n a l s c o u l d be i n t e r p r e t e d .

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

f

f

M e t a b o l i c A c t i v a t i o n of Hydrocarbon C a r c i n o g e n s I n e a r l y s t u d i e s of the metabolism of h y d r o c a r b o n s , i t was noted t h a t v i c i n a l t r a n s d i h y d r o d i o l s were f r e q u e n t l y found as h y d r o c a r ­ bon m e t a b o l i t e s and, because of t h e i r t r a n s c o n f i g u r a t i o n , Boyland

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1.

DIPPLE

9

Polycyclic Aromatic Hydrocarbon Carcinogenesis

Table I . E f f e c t o f a M e t h y l Group a t a S i n g l e S t a r r e d P o s i t i o n on C a r c i n o g e n i c A c t i v i t y o f Benz[a]anthracene D e r i v a t i v e s Active

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

Inactive

F i g u r e 1. Benz[a]anthracene w i t h r e g i o n s o f low bond l o c a l i z a t i o n energy ( K - r e g i o n ) and low para l o c a l i z a t i o n energy ( L - r e g i o n ) indicated.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

10

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

(45) suggested t h a t these d i o l s p r o b a b l y a r o s e from an i n t e r m e d i a t e epoxide. Moreover, he argued t h a t such epoxides might be t h e metabolites responsible f o r i n i t i a t i n g the carcinogenic process. The s t r u c t u r e - a c t i v i t y c o n s i d e r a t i o n s a t t h a t time n a t u r a l l y enough f o c u s s e d i n t e r e s t on epoxides formed a t t h e K - r e g i o n s o f t h e c a r ­ c i n o g e n i c hydrocarbons ( F i g u r e 3 ) , but i t was n o t u n t i l 1964 t h a t the s y n t h e s i s o f such p u t a t i v e m e t a b o l i t e s was a c h i e v e d ( 4 6 ) . The M i l l e r s ' p i o n e e r i n g work on m e t a b o l i c a c t i v a t i o n i n t h e a r o m a t i c amine f i e l d (47) had e s t a b l i s h e d t h e r o l e o f s p e c i f i c metabolites i n the carcinogenic a c t i o n of N-2-fluorenylacetamide by d e m o n s t r a t i n g t h a t t h e N-hydroxy m e t a b o l i t e was o v e r a l l a more potent c a r c i n o g e n than t h e parent compound. Analogous experiments w i t h the K - r e g i o n epoxides o f s e v e r a l hydrocarbon c a r c i n o g e n s , however, i n d i c a t e d t h a t these arene epoxides were e i t h e r v e r y weak o r t o t a l l y i n a c t i v e as c h e m i c a l c a r c i n o g e n s ( r e v i e w e d i n 4 8 ) . W h i l e these f i n d i n g s d i d not support t h e h y p o t h e s i s t h a t h y d r o c a r ­ bons e x p r e s s e d t h e i r c a r c i n o g e n i c a c t i v i t y through t h e i n t e r m e d i a c y of K - r e g i o n e p o x i d e s , t h e f a c t t h a t such m e t a b o l i t e s were c h e m i c a l ­ l y r e a c t i v e and p o t e n t i a l l y s u b j e c t t o a v a r i e t y o f i n a c t i v a t i n g r e a c t i o n s d u r i n g t h e course o f a p p l i c a t i o n t o e x p e r i m e n t a l a n i m a l s l e d many workers t o f e e l t h a t t h e n e g a t i v e f i n d i n g s were not con­ c l u s i v e . T h i s f e e l i n g was s t r e n g t h e n e d by t h e b i o l o g i c a l a c t i v i ­ t i e s e x h i b i t e d by the K - r e g i o n epoxides i n v a r i o u s In v i t r o systems, w h i c h showed them t o be toxiC., mutageniC., and e f f e c t i v e i n d u c e r s o f t r a n s f o r m a t i o n in v i t r o ( 4 8 ) . Thus, by t h e e a r l y 1970s, t h e w e a l t h o f i n f o r m a t i o n on b i o l o g i c a l a c t i v i t i e s i n v a r i o u s systems and t h e l a c k o f an a c c e p t a b l e a l t e r n a t i v e h y p o t h e s i s was l e a d i n g t o a growing acceptance o f K - r e g i o n epoxides as t h e m e t a b o l i t e s through w h i c h the hydrocarbons e x e r t t h e i r c a r c i n o g e n i c p o t e n t i a l , despite t h e i r lack of carcinogenic a c t i v i t y . The developments w h i c h l e d t o t h e p r e s e n t day concepts o f t h e m e t a b o l i c a c t i v a t i o n o f hydrocarbons d i d n o t a r i s e from t h e c l a s s i ­ c a l approach o f i d e n t i f y i n g m e t a b o l i t e s o f g r e a t e r b i o l o g i c a l potency than t h e parent compound, but from an approach dependent upon t h e assumption ( o r presumption) t h a t t h e i n t e r a c t i o n o f c a r ­ cinogens w i t h DNA i s a key event i n t h e i n i t i a t i o n o f t h e c a r c i n o ­ g e n i c p r o c e s s . Brookes and Lawley (49) found i n 1964 t h a t when r a d i o a c t i v e hydrocarbons a r e a p p l i e d t o t h e s k i n o f mice, they become c o v a l e n t l y bound t o t h e DNA o f t h e s k i n . Moreover, t h e e x t e n t s o f b i n d i n g t o DNA f o r v a r i o u s hydrocarbons f o l l o w e d f a i r l y closely their r e l a t i v e carcinogenic a c t i v i t i e s . T h e r e a f t e r , Brookes sought t o i d e n t i f y t h e m e t a b o l i t e s i n v o l v e d i n b i n d i n g t o DNA assuming t h a t these same m e t a b o l i t e s were i n v o l v e d i n t h e c a r c i n o g e n i c p r o c e s s (50-53). Since the b i n d i n g of hydro­ carbon t o DNA i n c e l l u l a r systems does not generate enough m a t e r i a l t o examine d i r e c t l y , DNA i s o l a t e d from c e l l s exposed t o r a d i o a c t i v e hydrocarbons was e n z y m i c a l l y degraded t o d e o x y r i b o n u c l e o s i d e s and the r a d i o a c t i v e h y d r o c a r b o n - d e o x y r i b o n u c l e o s i d e adducts were compared c h r o m a t o g r a p h i c a l l y w i t h those o b t a i n e d from some p u t a t i v e r e a c t i v e m e t a b o l i t e . I n 1973 ( 5 3 ) , t h i s approach c l e a r l y showed t h a t i n mouse s k i n o r mouse embryo c e l l s i n c u l t u r e , t h e c a r c i n o g e n 7-methylbenz[a]anthracene d i d n o t b i n d t o DNA through a K - r e g i o n epoxide i n t e r m e d i a t e and, u n l i k e t h e c o r r e l a t i v e b i o l o g i c a l a c t i v i -

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon Carcinogenesis

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

Bay

Region

CH

3

Bay Region

OH

F i g u r e 2. 7-Methylbenz[a]anthracene and benzo[a]pyrene i n d i c a t i n g those r e g i o n s d e f i n e d as bay r e g i o n s and the s t r u c t u r e s o f the c o r r e s p o n d i n g bay r e g i o n d i h y d r o d i o l e p o x i d e s .

F i g u r e 3. The K - r e g i o n epoxides o f 7-methylbenz[a]anthracene and benzo[ajpyrene.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

11

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

12

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

t y d a t a , t h i s d i r e c t measurement o f events o c c u r r i n g w i t h i n t h e b i o l o g i c a l system c o u l d not be c i r c u m v e n t e d . The s e a r c h f o r an a l t e r n a t i v e r e a c t i v e m e t a b o l i t e f o r t h e p o l y ­ c y c l i c h y d r o c a r b o n c a r c i n o g e n s was soon s u c c e s s f u l . A l s o I n 1973, Borgen e t a l . (54) r e p o r t e d t h a t , i n t h e presence o f a microsomal system from hamster l i v e r , t r a n s 7 , 8 - d i h y d r o - 7 , 8 - d i h y d r o x y b e n z o [ a j ­ pyrene ( a m e t a b o l i t e o f benzo[a]pyrene) was bound t o DNA i n v i t r o some t e n times more e x t e n s i v e l y than was benzo[a]pyrene i t s e l f . They c o n c l u d e d t h a t t h i s t r a n s 7 , 8 - d i h y d r o d i o l " i s f u r t h e r metabo­ l i z e d t o an a c t i v e a l k y l a t i n g agent", though they made no s p e c i f i c s u g g e s t i o n as t o i t s s t r u c t u r e . Sims and h i s c o l l e a g u e s , who had l o n g been proponents o f t h e r o l e of h y d r o c a r b o n e p o x i d e s i n c a r c i n ­ ogenesis, r a p i d l y r e a l i z e d that the a l k y l a t i n g a c t i v i t y could a r i s e from e p o x i d a t i o n o f t h e nonaromatic 9,10-double bond i n the t r a n s 7 , 8 - d i h y d r o d i o l ( F i g u r e 4 ) . They s y n t h e s i z e d a s m a l l amount o f t h i s d i h y d r o d i o l e p o x i d e , and were a b l e t o show t h a t i t s p r o d u c t s o f r e a c t i o n w i t h DNA i n v i t r o were c h r o m a t o g r a p h i c a l l y i n ­ d i s t i n g u i s h a b l e from those o b t a i n e d when benzo[a]pyrene i t s e l f was bound t o DNA i n c e l l u l a r systems through m e t a b o l i c a c t i v a t i o n (43). T h i s g e n e r a l sequence o f m e t a b o l i c s t e p s through which h y d r o ­ carbons become bound t o DNA has s u b s e q u e n t l y been found t o a p p l y t o s e v e r a l o t h e r p o l y c y c l i c a r o m a t i c hydrocarbon c a r c i n o g e n s and t h i s s u p p o r t s t h e bay r e g i o n d i h y d r o d i o l epoxide g e n e r a l i z a t i o n o f J e r i n a and D a l y , d i s c u s s e d e a r l i e r . Moreover, s e v e r a l s t u d i e s i n w h i c h m e t a b o l i t e s i n v o l v e d i n t h e d i h y d r o d i o l epoxide pathway have been t e s t e d f o r c a r c i n o g e n i c a c t i v i t y a r e l a r g e l y s u p p o r t i v e of t h e i d e a t h a t t h i s r o u t e o f m e t a b o l i c a c t i v a t i o n i s a l s o i n v o l v e d i n t h e c a r c i n o g e n i c a c t i o n o f hydrocarbon c a r c i n o g e n s . The most thorough s t u d i e s have been done i n t h e case o f b e n z o [ a ] p y r e n e , so i t i s c o n v e n i e n t t o summarize these as r e p r e s e n t a t i v e o f t h e most e x t e n s i v e developments i n t h e a r e a i n g e n e r a l . F o r t h i s c a r c i n o ­ gen, a l l o f t h e p o s s i b l e s t e r e o i s o m e r s and enantiomers o f t h e bay r e g i o n d i h y d r o d i o l epoxide m e t a b o l i t e s have been s y n t h e s i z e d and t h e i r b i o l o g i c a l a c t i v i t i e s e v a l u a t e d ( T a b l e I I ) (55-58 and r e f e r ­ ences c i t e d t h e r e i n ) . O v e r a l l , f i n d i n g s on t h e t u m o r i g e n i c i t y o f t h e compounds l i s t e d i n T a b l e I I i n d i c a t e s t h a t benzo[a]pyrene e x p r e s s e s i t s c a r c i n o g e n i c p o t e n t i a l through m e t a b o l i c c o n v e r s i o n t o a bay r e g i o n d i h y d r o d i o l e p o x i d e . The (+)-enantiomer o f benzo[a]pyrene-7,8e p o x i d e i s a more p o t e n t c a r c i n o g e n than t h e (-)-enantiomer but n e i t h e r o f t h e s e has demonstrated g r e a t e r a c t i v i t y t h a n b e n z o [ a j ­ pyrene i t s e l f . S i m i l a r l y , t h e d i h y d r o d i o l and a n t i and syn d i h y ­ d r o d i o l e p o x i d e s d e r i v e d from t h e (+) 7,8-epoxide a r e a l l more p o t e n t c a r c i n o g e n s than t h e i r enantiomers d e r i v e d from t h e (-) 7,8e p o x i d e . However, i n comparison w i t h t h e c a r c i n o g e n i c a c t i v i t y o f b e n z o [ a ] p y r e n e , t h e s i t u a t i o n i s l e s s c l e a r , w i t h t h e (-) 7,8-dihy­ d r o d i o l b e i n g t h e o n l y m e t a b o l i t e which c o n s i s t e n t l y e x h i b i t s an a c t i v i t y e q u a l t o o r g r e a t e r t h a n t h a t o f t h e p a r e n t hydrocarbon. I n t h e newborn mouse system ( T a b l e I I ) , t h e (+) a n t i d i h y d r o d i o l epoxide i s c l e a r l y more e f f e c t i v e than benzo[a]pyrene but t h i s i s not t h e case i n i n i t i a t i o n - p r o m o t i o n s t u d i e s o r i n complete c a r c i n ­ o g e n e s i s s t u d i e s on mouse s k i n . N e v e r t h e l e s s , t h e r e i s always

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon

13

Carcinogenesis

7,8-dihydrodiol 9,10-epoxide

7,8-dihydrodiol

F i g u r e 4. The bay r e g i o n d i h y d r o d i o l epoxide r o u t e o f metabolism of benzo[a]pyrene.

Table I I . C a r c i n o g e n i c A c t i v i t i e s

o f Benzo[a]pyrene

Tumor I n i t i a t i o n i n Mouse S k i n M e t a b o l i t e A c t i v i t y / A c t i v i t y of BP a t Same Dose

Compound

% Mice Dose w i t h Av. Tumors Qxmol) Tumors per Mouse

Lung Adenoma I n d u c t i o n i n Newborn Mice M e t a b o l i t e A c t i v i t y / A c t i v i t y o f BP a t Same Dose % Mice Dose w i t h Lung Adenoma (/nmol) Adenoma p e r Mouse

( + ) BP[7R,8S]-epoxide

0.1

a

38/68

0.76/2.1

0.7*

OH (-) BP[7R,8R]-dihydrodiol

0.1

77/77

3.8/2.6

0.14

b

(BP) M e t a b o l i t e s

d

71*

2.14*

88*

9.18*

C o n t i n u e d on next page.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

14

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Table I I . Continued Tumor Initiation in Mouse Skin Metabolite Activity/Activity of BP at Same Dose

Compound

Dose (^mol)

% Mice with tumors

Av. tumors per mouse

Lung Adenoma Induction in Newborn Mice Metabolite Activity/Activity of BP at Same Dose % Mice with lung Adenoma Dose adenoma per mouse (^mol)

0.014

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

e

OH (-) BP[7R,8S]-dihydrodiol [9R,10S]-epoxide

0.1

0.014

e

C

11/68

= OH ( + ) BP[7S,8S]-dihydrodiol

0.11/2.1

0.78

0.44/2.6

0.14

HO

d

HO OH (-) BP[7S,8R]-dihydrodiol [9R,10SJ-epoxide

( + ) BP[7S,8R]-dihydrodiol [9S,10R]-epoxide

0.014

0.1

6

C

0.17/2.1

0.014*

" A c t i v i t i e s f o r benzo[a]pyrene under the same c o n d i t i o n s were not reported. epoxide

d a t a from Ref. 59; benzo[a]pyrene data from Ref. 56.

From Ref. 55. "From Ref. 56. d

From Ref. 57.

"From Ref. 58.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1.

DIPPLE

Polycyclic Aromatic Hydrocarbon Carcinogenesis

15

some difficulty i n the interpretation of carcinogenesis tests with highly reactive compounds and thus, the high carcinogenic activity of the 7,8-dihydrodiol (as well as the high activity of analogous diols from other hydrocarbons) strongly indicates that the dihydro­ diol epoxide route of activation i s involved i n polycyclic aromatic hydrocarbon carcinogenesis. Acknowledgments Research sponsored by the National Cancer Institute, DHHS, under Contract No. NO1-CO-23909 with Litton Bionetics, Inc. Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

Pott, P. "Chirurgical Observations" (1775), Reprinted in National Cancer Inst. Monogr, 1963, 10, 7-13. von Volkmann, R. Beiträge zur ChirurgiëLeipzig, 1875. Ross, P. Br. Med. J. 1948, 2, 369-74. Haddow, A. Persp. i n Biol. Med. 1974, 17, 543-88. Yamagiwa, K.; Ichikawa, K. Mitt. Med. Fak. Tokyo 1915, 15, 295-344. Tsutsui, H. Gann 1918, 12, 17-21. Kennaway, E.L. Br. Med. J. 1955, 2, 749-52. Bloch, B.; Dreifuss, W. Schweiz. Med. Wochenschr. 1921, 51, 1035-7. Kennaway, E.L. Br. Med. J. 1925, 2, 1-4. Clar, E. Ber. Dtsch. Chem. Ges. 1929, 62, 350-9. Kennaway, E.L.; Hieger, I. Br. Med. J. 1930, 1, 1044-6. Cook, J.W.; Hewett, C.L.; Hieger, I. J. Chem. Soc. 1933, 395405. "Evaluation of Carcinogenic Risk" International Agency for Research on on Cancer Monographs, Vol. 3, 1972. "Chemicals and Human Cancer" International Agency for Research on Cancer Monographs, Suppl. 1, 1979. "Chemicals and Industries Associated with Human Cancer" Inter­ national Agency for Research on Cancer Monographs, Suppl. 4, 1982. "Evaluation of Carcinogenic Risk" International Agency for Research on Cancer Monographs, Vol. 32, 1983. Hansen, E.S. Am. J. Epidemiol. 1983, 117, 160-4. Schmähl, D.; Habs, M. In "Environmental Carcinogens: Poly­ cyclic Aromatic Hydrocarbons", Grimmer, G., Ed., CRC: Boca Raton, 1983; p. 237. Baum, E.J. In "Polycyclic Hydrocarbons and Cancer"; Gelboin, H.V.; Ts'O, P.O.P., Eds.; Academic: New York, 1978; Vol. 1, p 45. "Particulate Polycyclic Organic Matter," National Academy of Sciences 1972. Woo, Y.T.; Arcos, J.C. In "Carcinogens i n Industry and the Environment"; Sontag, J.M., Ed.; Dekker: New York, 1981; p. 167. Brown, R.A.; Huffman, H.L. Science 1976, 191, 847-9.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

16

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

23. Shabad, L.M. J. Natl. Cancer Inst. 1980, 64, 405-10. 24. Grasso, P.; O'Hare, C. In "Chemical Carcinogens" Searle, C.E., Ed., American Chemical Society, Washington, D.C., 1976; p. 701. 25. Huggins,C.; Briziarelli,G.; Sutton,H. J. Exp. Med. 1959, 109, 25-42. 26 Huggins,C.; Grand,L.C.; Brillantes, F.P. Nature 1961, 189, 204-7. 27. Rigdon, R.H.; Neal,J. Proc. Soc. Exp. Biol. Med. 1969, 130, 146-8. 28. Roe, F.J.C.; Waters, M.A. Nature 1967, 214, 299-330. 29. Boutwell, R.K. Progr. Exp. Tumor Res. 1964, 4, 207-50. 30. Slaga, T.J. "Mechanisms of Tumor Promotion, Vol. I I " ; CRC Press: Boca Raton, Florida, 1984. 31. Iversen, O.H.; Astrup, E.G., Cancer Investign. 1984, 2, 51-60. 32. Grunberger, D.; Weinstein, I.B. In "Chemical Carcinogens and DNA" Grover, P.L., Ed.; CRC Press, Boca Raton, 1979, Vol. II p. 59. 33. Borek, C.; Sachs, L. Proc. Natl. Acad. Sci., U.S.A. 1967, 57, 1522-7. 34. Kakunaga, T. Cancer Res. 1975, 35, 1637-42. 35. Slaga, T.J.; Fischer, S.M.; Nelson, K.; Gleason, G.L. Proc. Natl. Acad. Sc., U.S.A. 1980, 77, 2251-54. 36. Hewett, C.L. J. Chem. Soc. 1940, 293-303. 37. Dipple, A. In "Chemical Carcinogens" Searle, C.E., Ed.; ACS Monogr., 173 American Chemical Society, Washington, D.C., 1976, pp. 245-314. 38. Badger, G.M. Br. J. Cancer 1948, 2, 309-50. 39. Arcos, J.C.; Argus, M.F. "Chemical Induction of Cancer, Vol. IIA", Academic, New York, 1974. 40. Dipple, A.; Lawley, P.D.; Brookes, P. Eur. J. Cancer 1968, 4, 493-506. 41. Lacassagne, A.; Zajdela, F.; Buu-Hoi, N.P.; Chalvet, O. Bull. Cancer 1962, 49, 312-7. 42. Pullman, A.; Pullman, B. Adv. Cancer Res. 1955, 3,117-69. 43. Sims, P.; Grover, P.L.; Swaisland, A.; Pal, K.; Hewer, A. Nature 1974, 252, 326-8. 44. Jerina, D.M.; Daly, J.W. In "Drug Metabolism: Parke, D.V., Smith, R.L., Eds., Taylor and Francis, London, 1976, pp. 13-32. 45. Boyland, E., Biochem. Soc. Symp. 1950, 5, 40-54. 46. Newman, M.S.; Blum, S. J. Am. Chem. Soc. 1964, 86, 5598-600. 47. Miller, E.C.; Miller, J.A. Pharmacol. Rev. 1966, 18, 805-38. 48. Sims, P.; Grover, P.L. Adv. Cancer Res. 1974, 20, 165-274. 49. Brookes, P.; Lawley, P.D. Nature 1964, 202, 781-4. 50. Brookes, P.; Heidelberger, C. Cancer Res. 1969, 29, 157-65. 51. Dipple, A.; Brookes, P.; Mackintosh, D.S.; Rayman, M.P. Bio­ chemistry 1971, 10, 4323-30. 52. Baird, W.M.; Brookes, P. Cancer Res. 1973, 33, 2378-23. 53. Baird, W.M.; Dipple, A.; Grover, P.L.; Sims, P.; Brookes, P. Cancer Res. 1973, 33, 2386-92.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1.

DIPPLE

54. 55. 56. 57. 58.

Downloaded by UNIV OF VIRGINIA on April 26, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch001

59.

Polycyclic Aromatic Hydrocarbon Carcinogenesis

Borgen, A.; Darvey, H.; Castagnoli, N.; Crocker, T.C.; Rasmussen, R.E.; Yang, I.Y. J. Med. Chem. 1973, 16, 502-6. Levin, W.; Wood, A.W.; Chang, R.L.; Slaga, T.J.; Yagi, H.; Jerina, D.M.; Conney, A.H. Cancer Res. 1977, 37, 2721-25. Slaga, T.J.; Bracken, W.J.; Gleason, G.; Levin, W.; Yagi, H.; Jerina, D.M.; Conney, A.H. Cancer Res. 1979, 39, 67-71. Kapitulnik, J.; Wislocki, P.G.; Levin, W.; Yagi, H.; Thakker, D.R.; Akagi, H.; Koreeda, M.; Jerina, D.M.; Conney, A.H. Cancer Res. 1978, 38, 2661-65. Buening, M.K.; Wislocki, P.G.; Levin, W.; Yagi, H.; Thakker, D.R.; Akagi, H.; Koreeda, M.; Jerina D.M.; Conney, A.H. Proc. Natl. Acad. Sci., U.S.A. 1978, 75, 5358-61. Levin, W.; Buening, A.; Wood, A.; Chang, R.L.; Kedzierski, B.; Thakker, D.H.; Boyd, D.R.; Gadaginamath, G.S.; Armstrong, R.N.; Yagi, H.; Karle, J.M.; Slaga, T.J.; Jerina, D.M.; Conney, A.H. J. Biol. Chem. 1980, 255, 9067-74.

RECEIVED

March 5, 1985

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.