Polycyclic Hydrocarbons and Carcinogenesis - ACS Publications

1. 0. 5. 1-. 5. 1. 27,81-8. 3. 5-nitroacenaphthen e. 2-. 6. 12-1. 7. 4-4. 0. 16-1. 8 .... (70) in mutation-sensitive (TA98 and TA98NR), but not resist...
0 downloads 0 Views 2MB Size
15 The In Vitro Metabolic Activation of Nitro Polycyclic Aromatic Hydrocarbons 1

1

2

FREDERICK A. BELAND , ROBERT H. HEFLICH , PAUL C. HOWARD , and PETER P. FU Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

1

1

National Center for Toxicological Research, Jefferson, AR 72079 Center for Environmental Health Sciences, Case Western Reserve University, Cleveland, OH 44106

2

Nitro polycyclic aromatic hydrocarbons are environ­ mental contaminants which have been detected i n airborne particulates, coal fly ash, diesel emission and carbon black photocopier toners. These compounds are metabolized i n vitro to genotoxic agents through ring oxidation and/or nitroreduction. The details of these metabolic pathways are considered using 4-nitrobiphenyl, 1- and 2-nitronaphthalene, 5-nitroacenaphthene, 7-nitrobenz[a]anthracene, 6 - n i t r o chrysene, 1-nitropyrene, 1,3-, 1,6- and 1,8-dinitropyrene, and 1-, 3- and 6-nitrobenzo[a]pyrene as examples. I t was over a c e n t u r y ago when t h e s y n t h e s i s o f 1 - n i t r o p y r e n e (_1) and 6 - n i t r o c h r y s e n e (2) was d e s c r i b e d and s i n c e t h e n a wide v a r i e t y of n i t r o p o l y c y c l i c a r o m a t i c hydrocarbons (PAHs) have been p r e ­ pared. I n g e n e r a l , n i t r o s u b s t i t u t i o n has been r e p o r t e d t o i n h i b i t the c a r c i n o g e n i c i t y o f PAHs ( 3 ) , and i t was n o t u n t i l 1950 t h a t a n i t r o PAH was found which would i n d u c e tumor f o r m a t i o n ( 4 ) . T w e n t y - f i v e y e a r s l a t e r , McCann et. a l . (_5) observed t h a t a number of n i t r o PAHs were mutagenic i n t h e S a l m o n e l l a typhimurium assay and, i n t e r e s t i n g l y , t h a t they d i d n o t r e q u i r e a mammalian p o s t m i t o c h o n d r i a l s u p e r n a t a n t ( S 9 ) i n o r d e r t o be g e n o t o x i c . These f i n d i n g s were o f academic i n t e r e s t u n t i l 1978 when P i t t s and coworkers (6) r e p o r t e d t h a t mutagenic n i t r o PAHs c o u l d be formed i n model atmospheres c o n t a i n i n g t r a c e q u a n t i t i e s o f PAHs, n i t r o g e n o x i d e and n i t r i c a c i d . A t t h e same t i m e , Wang e t a l . (7^) found that urban a i r p a r t i c u l a t e s contained d i r e c t - a c t i n g b a c t e r i a l mutagens which t h e y suggested might be n i t r o PAHs, and J a g e r ( 8 ) d e t e c t e d 6 - n i t r o b e n z o [ a ] p y r e n e as an a i r p o l l u t a n t . Since these i n i t i a l r e p o r t s , numerous papers have appeared which show t h a t n i t r o PAHs a r e w i d e s p r e a d e n v i r o n m e n t a l contaminants w h i c h may pose a s i g n i f i c a n t human h e a l t h h a z a r d . I n t h i s r e v i e w we d i s c u s s t h e s y n t h e s i s , e n v i r o n m e n t a l o c c u r r e n c e , b i o l o g i c a l e f f e c t s , and b i o t r a n s f o r m a t i o n o f these compounds w i t h emphasis on t h e i r i n v i t r o m e t a b o l i c a c t i v a t i o n pathways. A r e c e n t r e v i e w by Rosenkranz 0097-6156/ 85/ 0283-0371 $07.25/ 0 © 1985 American Chemical Society

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

372

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

and M e r m e l s t e i n greater d e t a i l .

(9^) c o n s i d e r s t h e m u t a g e n i c i t y o f n i t r o

PAHs i n

Synthesis N i t r a t i o n i s one o f t h e most common r e a c t i o n s o f PAHs. Under m i l d c o n d i t i o n s , s u b s t i t u t i o n w i l l o c c u r a t t h e most r e a c t i v e carbon t o g i v e t h e k i n e t i c a l l y - c o n t r o l l e d p r o d u c t as t h e predominant isomer (10). Thus, n i t r a t i o n o f a n t h r a c e n e , pyrene, c h r y s e n e , p e r y l e n e , b e n z [ a ] a n t h r a c e n e , benzo[a]pyrene (BaP) and d i b e n z [ a , h ] a n t h r a c e n e y i e l d s 9-nitroanthracene, 1-nitropyrene, 6-nitrochrysene, 3-nitrop e r y l e n e , 7 - n i t r o b e n z [ a ] a n t h r a c e n e , 6 - n i t r o - B a P and 7 - n i t r o d i b e n z [ a , h ] a n t h r a c e n e , r e s p e c t i v e l y (1-2,10-15). I n a d d i t i o n t o these m a j o r p r o d u c t s , o t h e r i s o m e r s p l u s more e x t e n s i v e l y n i t r a t e d d e r i v a t i v e s a r e n e a r l y always produced. Removal o f t h e u n d e s i r e d compounds c a n be q u i t e t e d i o u s and i n most i n s t a n c e s c l a s s i c a l procedures such as r e c r y s t a l l i z a t i o n and column chromatography do not g i v e m a t e r i a l s u f f i c i e n t l y pure f o r use i n b i o l o g i c a l s t u d i e s . The u s e o f h i g h p r e s s u r e l i q u i d c h r o m a t o g r a p h y i s s t r o n g l y encouraged f o r t h e p u r i f i c a t i o n o f n i t r o PAHs because even t r a c e q u a n t i t i e s o f t h e u n d e s i r e d isomers c a n l e a d t o erroneous c o n c l u ­ sions concerning b i o l o g i c a l a c t i v i t y . F o r example, t h e n i t r a t i o n of BaP g i v e s 6 - n i t r o - B a P accompanied by s m a l l amounts o f 1- and 3- n i t r o - B a P (_13). Pure 6-nitro-BaP i s n o t a d i r e c t - a c t i n g b a c t e r i a l mutagen whereas b o t h 1- and 3 - n i t r o - B a P a r e q u i t e a c t i v e (15-18). Therefore, r e p o r t s o f 6-nitro-BaP being a d i r e c t - a c t i n g b a c t e r i a l mutagen (6,19) a r e p r o b a b l y a r e s u l t o f c o n t a m i n a t i o n by the l a t t e r two i s o m e r s . 1 - N i t r o p y r e n e i s another c a s e ; a l t h o u g h i t i s a d i r e c t - a c t i n g b a c t e r i a l mutagen, i t s a c t i v i t y i s a t l e a s t 1 0 0 - f o l d l e s s than t h a t observed w i t h 1,3-, 1,6- o r 1 , 8 - d i n i t r o p y rene ( 9 ) . The wide v a r i a t i o n i n b a c t e r i a l m u t a g e n i c i t y t h a t has been r e p o r t e d f o r 1 - n i t r o p y r e n e ( 9 ) i s , t h e r e f o r e , p r o b a b l y due t o the presence o f t h e s e d i n i t r o p y r e n e s as t r a c e i m p u r i t i e s . A l a r g e number o f r e a g e n t s a r e a v a i l a b l e f o r t h e p r e p a r a t i o n of n i t r o PAHs. These i n c l u d e fuming n i t r i c a c i d i n a c e t i c a c i d (20) o r a c e t i c a n h y d r i d e ( 1 3 ) , sodium n i t r a t e i n t r i f l u o r o a c e t i c a c i d ( 2 1 ) o r t r i f l u o r o a c e t i c a c i d and a c e t i c a n h y d r i d e ( 1 7 ) , d i n i t r o g e n t e t r o x i d e i n carbon t e t r a c h l o r i d e ( 2 2 ) , sodium n i t r a t e i n t r i m e t h y l phosphate and phosphorus p e n t o x i d e (23) , and n i t r o n i u m t e t r a f l u o r o b o r a t e i n anhydrous a c e t o n i t r i l e ( 2 4 ) . Alternative approaches must be used t o s y n t h e s i z e n i t r o PAHs s u b s t i t u t e d a t p o s i t i o n s o t h e r t h a n t h e most r e a c t i v e carbon. For instance, 4- n i t r o p y r e n e has been prepared by n i t r a t i o n o f 4 , 5 , 9 , 1 0 - t e t r a hydropyrene f o l l o w e d by d e h y d r o g e n a t i o n ( 2 5 - 2 6 ) . E n v i r o n m e n t a l Occurrence A wide v a r i e t y o f n i t r o PAHs have been i s o l a t e d from d i f f e r e n t environmental sources i n c l u d i n g a i r b o r n e p a r t i c u l a t e s (27-34), c o a l f l y a s h ( 3 5 - 3 7 ) , d i e s e l e m i s s i o n p a r t i c u l a t e s (38-41) and carbon black photocopier toners (42-43). T h e i r presence has a l s o been suggested i n t h e smoke from n i t r a t e - f o r t i f i e d c i g a r e t t e s ( 4 4 ) . The s t r u c t u r e s o f t h e most commonly d e t e c t e d n i t r o PAHs a r e shown i n F i g u r e 1 and i n each i n s t a n c e i t i s t h e k i n e t i c a l l y - f a v o r e d isomer t h a t i s found. There a r e a t l e a s t two r o u t e s which c o u l d r e s u l t i n t h e forma-

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

BELAND ET AL.

N0

5

Nitro Polycyclic Aromatic

2

4

N0

2-nitronaphthalene

1 -nitronaphthalene Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

Hydrocarbons

N0

(0)^OV

N02

2

5-nitroacenaphthene 2

\0)—(OV °2

7

N

9-nitroanthracene ^N0

2

o rr 1,6-dinitropyrene 2

1,3-dinitropyrene

1-nitropyrene .N0

2

N0

2

N0

1,8-dinitropyrene N0

2

6-nitrochrysene

N0

2

7-nitrobenz(a)anthracene

2

1 -nitrobenzo(a)pyrene

3-nitrobenzo(a)pyrene

N0

2

6-nitrobenzo(a)pyrene

F i g u r e 1. S t r u c t u r e s o f commonly d e t e c t e d n i t r o PAHs.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

374

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

t i o n o f n i t r o PAHs i n t h e environment. S i n c e PAHs a r e p r o d u c t s o f the i n c o m p l e t e combustion o f o r g a n i c m a t e r i a l , i f n i t r o g e n i s p r e s e n t , t h e n i t r o PAHs may be formed d u r i n g t h e combustion p r o c e s s i t s e l f ( 4 5 ) . N i t r o PAHs may a l s o r e s u l t from a t m o s p h e r i c r e a c t i o n s of PAHs w i t h n i t r o g e n o x i d e s (6,46-49), as e v i d e n c e d by t h e o b s e r ­ v a t i o n t h a t t h e predominant n i t r o PAHs d e t e c t e d i n a i r samples a r e d e r i v a t i v e s o f t h e most abundant PAHs found i n t h e environment (50-51). The q u a n t i t y o f n i t r o PAHs found i n a i r samples may not r e f l e c t t h e i r i n i t i a l c o n c e n t r a t i o n because these compounds appear to undergo p h o t o l y t i c d e c o m p o s i t i o n . F o r example, when 9 - n i t r o ­ a n t h r a c e n e , 1 - n i t r o - B a P , 6 - n i t r o - B a P and 1 - n i t r o p y r e n e were exposed to s u n l i g h t , each decomposed t o y i e l d quinones b u t t h e r a t e s v a r i e d markedly between compounds ( 5 2 ) . I t s h o u l d a l s o be noted t h a t n i t r o PAHs have been r e p o r t e d t o be formed as a r t i f a c t s d u r i n g the c o l l e c t i o n o f a i r samples ( 5 3 ) . Biological Effects N i t r o PAHs have been shown t o e x h i b i t a l a r g e v a r i e t y o f b i o l o g i c a l activities. Included i n these a r e : the i n d u c t i o n of mutations i n b a c t e r i a l ( T a b l e I ) and e u k a r y o t i c c e l l s (9,17,54-57), t h e neo­ p l a s t i c t r a n s f o r m a t i o n of c u l t u r e d mammalian c e l l s (58-59) , and t h e i n d u c t i o n o f DNA s t r a n d b r e a k s ( 6 0 ) , DNA r e p a i r ( 6 1 - 6 2 ) , s i s t e r c h r o m a t i d exchanges ( 6 3 - 6 4 ) , and chromosomal a b e r r a t i o n s ( 6 5 - 6 6 ) . N i t r o PAHs have a l s o been demonstrated t o b i n d c e l l u l a r DNA i n b a c t e r i a (67-73) and mammalian c e l l s ( 7 4 - 7 7 ) , t o i n h i b i t p r e f e r e n ­ t i a l l y t h e growth o f r e p a i r - d e f i c i e n t b a c t e r i a ( 7 8 ) , t o have recombinogenic a c t i v i t y i n y e a s t (66,79-80) and t o i n d u c e tumors i n experimental animals (Table I I ) . M u t a g e n i c i t y . The m u t a g e n i c i t y o f n i t r o PAHs has been s t u d i e d most e x t e n s i v e l y i n t h e Ames S a l m o n e l l a typhimurium r e v e r s i o n assay (5). The m u t a g e n i c i t i e s o f r e p r e s e n t a t i v e n i t r o PAHs i n t h i s assay a r e shown i n T a b l e I . Some o f t h e more i m p o r t a n t f e a t u r e s r e g a r d ­ ing t h e i r m u t a g e n i c i t y c a n be summarized as f o l l o w s : i. N i t r o PAHs g e n e r a l l y e x h i b i t t h e i r h i g h e s t m u t a g e n i c i t y i n s t r a i n TA98 ( a f r a m e s h i f t d e t e c t o r ) i n t h e absence o f an S9 a c t i v a t i n g system. T h i s d i r e c t mutagenic a c t i v i t y c o n t r a s t s w i t h t h e response observed w i t h PAHs and amino PAHs w h i c h n o r m a l l y r e q u i r e S9 t o i n d u c e m u t a t i o n s , ii. Some o f t h e n i t r o PAHs ( e . g . , 1,3-, 1,6-, and 1 , 8 - d i n i t r o p y r e n e ) a r e among t h e most mutagenic compounds ever t e s t e d i n t h e S_. typhimurium r e v e r s i o n a s s a y , iii. N i t r o PAHs which show g r e a t e r a c t i v i t y i n t h e presence of S9 ( e . g . , 6 - n i t r o - B a P ) may have a f u n d a m e n t a l l y d i f f e r e n t r e a c t i v e i n t e r m e d i a t e than t h e d i r e c t - a c t i n g n i t r o PAHs. iv. There c a n be d r a m a t i c v a r i a t i o n s i n mutagenic p o t e n t i a l between n i t r o PAH i s o m e r s . F o r i n s t a n c e , 6 - n i t r o - B a P i s not a d i r e c t - a c t i n g mutagen whereas 1- and 3 - n i t r o - B a P a r e p o t e n t d i r e c t - a c t i n g mutagens, v. D i n i t r o PAHs appear t o be more mutagenic t h a n t h e i r mononitrated analogues. 1

Tumorigenicity.

A number o f n i t r o

PAHs have

been

shown t o be

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

1-nitronaphthalene 2-nitronaphthalene 5-nitroacenaphthene 4-nitrobiphenyl 2-nitrofluorene 9-nitroanthracene 1-nitropyrene 1,3-dinitropyrene 1,6-dinitropyrene 1,8-dinitropyrene 6-nitrochrysene 7-nitrobenz[aj­ anthracene 1-nitrobenzo[aj­ pyrene 3-nitrobenzo[a]pyrene 6-nitrobenzo[a]pyrene

Compound

150-1000 250-1010 50-450

100-1900 0-31

-

0.2-0.3 0.5 12-17 0.6 26-433 0.01-2 40-1506

+S9

80-1574

TA98

380 120 22-27 1

-S9

0.01-1 0.2-1 2-6 0.6-1 14-88 0.01-3 470-4360 28600-163800 36000-192000 72900-275000 27-270

4J JC2

CD CD 4J *j

CO

o,

»H cd

TH e d o -H to

CD » ° O «

4J H

2

CD

O H

4J

OJ

.fi

ci .

3 O

O

CO CD

^4 cd

•H iH 4 j X> 1

0

*

rn

4J

CO

CD

O O

N iH Cd •U cd

W

CM

CD

00 •H

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

W

cy CD CD

,0

O 4J iH O 4-1 C cd

0 13 1 1-1 x

ON

3

* CD 4-> CD

CD > cd

O JC

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15.

BELAND ETAL.

Nitro Polycyclic Aromatic

Hydrocarbons

381

a n a e r o b i c c o n d i t i o n s i n the presence o f FMN. T h i s suggests t h a t 1-nitronaphthalene i s l e s s mutagenic than 5-nitroacenaphthene because i t i s more r e s i s t a n t t o n i t r o r e d u c t i o n . I t i s also s i g n i f i c a n t t h a t when n i t r o r e d u c t i o n d i d o c c u r , N - h y d r o x y - l naphthylamine was n o t d e t e c t e d as a m e t a b o l i t e (125) s i n c e t h i s compound i s b o t h mutagenic (5,126-127) and c a r c i n o g e n i c (127-129). I t i s p o s s i b l e t h a t d u r i n g the S 9 - c a t a l y z e d r e d u c t i o n o f 1 - n i t r o ­ naphthalene o n l y t h e t e r m i n a l l y - r e d u c e d s p e c i e s , 1-naphthylamine, i s r e l e a s e d from the enzyme complex. Recent s t u d i e s have i n d i c a t e d t h a t 1-naphthylamine i s not o x i d i z e d by mixed f u n c t i o n o x i d a s e s t o i t s N-hydroxy a r y l a m i n e d e r i v a t i v e ( 1 3 0 ) . Taken t o g e t h e r , these d a t a h e l p e x p l a i n why N-hydroxy-l-naphthylamine c a n be a potent c a r c i n o g e n w h i l e 1 - n i t r o n a p h t h a l e n e and 1-naphthylamine a r e apparently noncarcinogenic. 9-Nitroanthracene, 7-nitrobenz[a]anthracene and 6 - n i t r o c h r y s e n e . Rat l i v e r microsomes o x i d i z e d 9 - n i t r o a n t h r a c e n e p r i m a r i l y t o 9-nitroanthracene-trans-3,4-dihydrodiol, with 9-nitroanthracenet r a n s - 1 , 2 - d i h y d r o d i o l and 9,10-anthraquinone b e i n g d e t e c t e d as minor m e t a b o l i t e s ( F i g u r e 3; 8 9 ) . The p r e f e r e n t i a l o x i d a t i o n o f the 3- and 4-carbons, as opposed t o carbons 1 and 2, suggests t h a t metabolism i s i n h i b i t e d i n r e g i o n s p e r i t o the n i t r o s u b s t i t u e n t . 9-Nitroanthracene and i t s two d i h y r o d i o l m e t a b o l i t e s were n o t d i r e c t - a c t i n g mutagens i n S^. typhimurium and were o n l y weakly mutagenic i n t h e presence o f an S 9 - a c t i v a t i n g system. When m i c r o s o m a l i n c u b a t i o n s were conducted under a n a e r o b i c c o n d i t i o n s , r e d u c t i o n t o 9-aminoanthracene was not observed. The p r i m a r y product formed d u r i n g the m i c r o s o m a l metabolism o f 7-nitrobenz[a]anthracene was 7-nitrobenz[a]anthracene-trans-3,4d i h y d r o d i o l ( F i g u r e 4; 131). A s m a l l amount o f 7 - n i t r o b e n z [ a ] a n t h r a c e n e - t r a n s - 8 , 9 - d i h y d r o d i o l was a l s o d e t e c t e d w h i c h i s c o n s i s ­ t e n t w i t h t h e p r e v i o u s o b s e r v a t i o n (89) t h a t n i t r o s u b s t i t u t i o n i n h i b i t s p e r i - r e g i o n o x i d a t i o n . Both d i h y d r o d i o l m e t a b o l i t e s were f o r m e d i n a s t e r e o s e l e c t i v e manner w i t h t h e R,R e n a n t i o m e r s predominating. S i n c e the same t r a n s - 3 , 4 - and 8,9-enantiomers a r e formed d u r i n g the m i c r o s o m a l metabolism o f b e n z [ a ] a n t h r a c e n e , i t appears t h a t n i t r o s u b s t i t u t i o n a f f e c t s the r e g i o s e l e c t i v i t y b u t not the s t e r e o s e l e c t i v i t y o f metabolism. Nitro substitution also a f f e c t s the c o n f o r m a t i o n o f the r e s u l t a n t d i h y d r o d i o l m e t a b o l i t e s . Thus, w h i l e the h y d r o x y l groups o f 7 - n i t r o b e n z [ a ] a n t h r a c e n e - t r a n s 3 , 4 - d i h y d r o d i o l p r e f e r e n t i a l l y adopt a q u a s i - d i e q u a t o r i a l conforma­ t i o n ( 1 3 1 ) , t h e 8,9-isomer has a s i g n i f i c a n t p o p u l a t i o n w i t h a q u a s i - d i a x i a l c o n f o r m a t i o n . The e f f e c t o f these c o n f o r m a t i o n s upon the f u r t h e r metabolism of 7 - n i t r o b e n z [ a ] a n t h r a c e n e i s p r e s e n t l y not known, a l t h o u g h w i t h o t h e r PAH d e r i v a t i v e s , q u a s i - d i a x i a l conforma­ t i o n s tend t o i n h i b i t metabolism t o d i o l epoxides ( 1 3 2 ) . As was observed w i t h 9 - n i t r o a n t h r a c e n e (89) , 7 - n i t r o b e n z [ a ] a n t h r a c e n e and i t s two d i h y d r o d i o l m e t a b o l i t e s were not d i r e c t - a c t i n g mutagens i n S^. typhimurium and were o n l y weakly mutagenic i n the presence o f S9 (96). El-Bayoumy and Hecht (95) have r e c e n t l y examined the metabo­ l i s m o f 6 - n i t r o c h r y s e n e by r a t l i v e r S9. 6 - N i t r o c h r y s e n e - t r a n s 1 , 2 - d i h y d r o d i o l was d e t e c t e d as the major m e t a b o l i t e and t h i s was f u r t h e r metabolized t o a product t e n t a t i v e l y i d e n t i f i e d as

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Figure 4. Microsomal metabolites of 7-nitrobenz[a]anthracene.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

15.

BELAND ETAL.

Nitro Polycyclic Aromatic

Hydrocarbons

383

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

1,2-dihydroxy-6-nitrochrysene ( F i g u r e 5 ) . O x i d a t i o n i n the r e g i o n p e r i t o the n i t r o f u n c t i o n ( i . e . , carbons 7 and 8) was not observed and r e d u c t i o n t o 6-aminochrysene o n l y o c c u r r e d when the 0^ concen­ t r a t i o n was d e c r e a s e d . I n S_. typhimurium TA100, 6 - n i t r o c h r y s e n e t r a n s - 1 , 2 - d i h y d r o d i o l was a b e t t e r d i r e c t - a c t i n g m u t a g e n t h a n 6-nitrochrysene o r t h e o t h e r two m e t a b o l i t e s . This latter o b s e r v a t i o n s u g g e s t s t h a t t h e d i h y d r o d i o l may be a p r o x i m a t e mutagenic form o f 6 - n i t r o c h r y s e n e and t h a t i t i s f u r t h e r a c t i v a t e d by b a c t e r i a l n i t r o r e d u c t i o n . I n t h e presence o f S9, a l l o f t h e m e t a b o l i t e s were mutagenic i n s t r a i n TA100, w i t h 6-aminochrysene b e i n g the most a c t i v e . 1-Nitropyrene. 1 - N i t r o p y r e n e i s the p r i n c i p a l n i t r o PAH found i n d i e s e l exhaust (40) and, t h e r e f o r e , has been the s u b j e c t o f i n t e n s e study. Nachtman and Wei (133) found t h a t under a n a e r o b i c c o n d i ­ t i o n s , 1 - n i t r o p y r e n e was r e d u c e d b y h e p a t i c S 9 , c y t o s o l o r microsomes t o p r i n c i p a l l y 1-aminopyrene. Only l i m i t e d r e d u c t i o n o c c u r r e d i n the absence o f c o f a c t o r s , w h i l e maximum m e t a b o l i s m was observed i n t h e presence o f b o t h FMN and NADPH. Although the microsomal f r a c t i o n had t h e g r e a t e s t s p e c i f i c a c t i v i t y toward 1 - n i t r o p y r e n e m e t a b o l i s m , t h e c y t o s o l had 30 times the t o t a l activity. S a i t o et_ a l . (134) found t h a t t h e c y t o s o l i c n i t r o r e d u c t a s e a c t i v i t y was due t o DT-diaphorase, aldehyde o x i d a s e , xanthine oxidase plus other u n i d e n t i f i e d n i t r o r e d u c t a s e s . As a n t i c i p a t e d , the microsomal r e d u c t i o n o f 1 - n i t r o p y r e n e was i n h i b i t e d by 0^ and s t i m u l a t e d by FMN w h i c h was a t t r i b u t e d t o t h i s c o f a c t o r a c t i n g as an e l e c t r o n s h u t t l e between NADPH-cytochrome P-450 r e d u c t a s e and cytochrome P-450. Carbon monoxide and type I I cytochrome P-450 i n h i b i t o r s d e c r e a s e d t h e r a t e o f n i t r o r e d u c t i o n w h i c h was c o n s i s t e n t w i t h the i n v o l v e m e n t o f cytochrome P-450. I n d u c t i o n o f cytochromes P-450 i n c r e a s e d r a t e s o f 1-aminopyrene f o r m a t i o n and n i t r o r e d u c t i o n was demonstrated i n a r e c o n s t i t u t e d cytochrome P-450 s y s t e m , w i t h i s o z y m e P - 4 4 8 - I I d c a t a l y z i n g t h e r e d u c t i o n most efficiently. El-Bayoumy and Hecht (91) were the f i r s t t o r e p o r t the o x i d a ­ t i v e metabolism o f 1 - n i t r o p y r e n e . U s i n g r a t l i v e r S9, they found 3-, 6-, and 8 - h y d r o x y - l - n i t r o p y r e n e and l - n i t r o p y r e n e - t r a n s - 4 , 5 - d i hydrodiol (Figure 6). A s m a l l amount o f 1-aminopyrene was a l s o formed and t h i s i n c r e a s e d i n c o n c e n t r a t i o n as the 0^ c o n c e n t r a t i o n was d e c r e a s e d . S i m i l a r m e t a b o l i t e s have r e c e n t l y been d e t e c t e d w i t h mouse l i v e r and l u n g S9 ( 1 0 3 ) . When assayed i n _S. typhimurium TA98 and TA100, 3- and 6 - h y d r o x y - l - n i t r o p y r e n e were found t o be b e t t e r d i r e c t - a c t i n g mutagens than 1 - n i t r o p y r e n e . Thus, as was found w i t h 6 - n i t r o c h r y s e n e (95) and 5 - n i t r o a c e n a p h t h e n e ( 8 4 - 8 6 ) , r i n g h y d r o x y l a t i o n does not n e c e s s a r i l y r e p r e s e n t a d e t o x i f i c a t i o n process. I n t e r e s t i n g l y , when the mutagenic a s s a y s were conducted i n the presence o f S9, 1 - n i t r o p y r e n e was more mutagenic t h a n i t s phenolic metabolites. The r e a s o n f o r t h i s apparent dichotomy i s not known. Bond (135) found t h a t S9 p r e p a r a t i o n s from r a t n a s a l t i s s u e have t w i c e t h e s p e c i f i c a c t i v i t y f o r the o x i d a t i v e m e t a b o l i s m o f 1 - n i t r o p y r e n e as l i v e r S9 and 10 times the a c t i v i t y o f l u n g S9. Each S9 p r e p a r a t i o n gave s i m i l a r m e t a b o l i c p r o f i l e s with the

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

Figure 5. S9-catalyzed metabolites of 6-nitrochrysene.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

BELAND ETAL.

Nitro Polycyclic Aromatic

Hydrocarbons

385

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15.

F i g u r e 6. 1 - N i t r o p y r e n e tions.

metabolites

detected

i n i nvitro

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

incuba­

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

386

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

predominant m e t a b o l i t e s b e i n g 3-, 6-, and 8 - h y d r o x y - l - n i t r o p y r e n e p l u s a t l e a s t t h r e e o t h e r u n i d e n t i f i e d p r o d u c t s . K i n g ej: a i l . (136) conducted s i m i l a r s t u d i e s u s i n g S9 from r a b b i t l i v e r . A t l e a s t 12 m e t a b o l i t e s were d e t e c t e d and, based upon cochromatography w i t h known s t a n d a r d s , the major compounds appeared t o be K - r e g i o n ( i . e . , 4,5- and 9,10-) d i h y d r o d i o l s , 1 0 - h y d r o x y - l - n i t r o p y r e n e and o t h e r phenols. Bond and Mauderly (137) a l s o r e p o r t e d t h e presence o f 1 0 - h y d r o x y - l - n i t r o p y r e n e as w e l l as N - a c e t y l - l - a m i n o p y r e n e i n perfused r a t lung preparations. Howard ejt a l . (138) have s t u d i e d t h e metabolism o f 1 - n i t r o ­ pyrene u s i n g r a t l i v e r microsomes. I n microsomes from c o n t r o l and p h e n o b a r b i t a l - p r e t r e a t e d r a t s , t h e p r i n c i p a l m e t a b o l i t e was 3 - h y d r o x y - l - n i t r o p y r e n e , whereas A r o c l o r p r e t r e a t m e n t r e s u l t e d i n 6- and 8 - h y d r o x y - l - n i t r o p y r e n e b e i n g t h e major p r o d u c t s . These d a t a suggest t h a t d i f f e r e n t cytochrome P-450 isozymes may be responsible f o r the formation of the i n d i v i d u a l phenolic metabolites. I n a d d i t i o n t o these hydroxylated d e r i v a t i v e s , 1 - n i t r o p y r e n e - t r a n s - 4 , 5 - d i h y d r o d i o l , 1 - a m i n o p y r e n e , a n d two a d d i t i o n a l m e t a b o l i t e s were d e t e c t e d . More r e c e n t l y , t h i s m i c r o s o m a l metabolism has been examined i n g r e a t e r d e t a i l and l - n i t r o p y r e n e - 4 , 5 - o x i d e , l - n i t r o p y r e n e - 9 , 1 0 - o x i d e and 1-hydroxypyrene were i d e n t i f i e d as m e t a b o l i t e s through s p e c t r a l a n a l y s i s and by comparison t o s y n t h e t i c s t a n d a r d s ( 1 3 9 ) . 1-Nitropyrene-trans9 , 1 0 - d i h y d r o d i o l was a l s o d e t e c t e d , w h i c h c o n f i r m e d t h e o r i g i n a l i s o l a t i o n o f t h i s d e r i v a t i v e by K i n g et_ a l . ( 1 3 6 ) . I n subsequent s t u d i e s , m i c r o s o m a l i n c u b a t i o n s were conducted i n t h e presence o f Chinese hamster ovary (CHO) c e l l s . Under a n a e r o b i c c o n d i t i o n s , t h e p r i n c i p a l m e t a b o l i t e was 1 - a m i n o p y r e n e a n d one m a j o r a d d u c t , N - ( d e o x y g u a n o s i n - 8 - y l ) - 1 - a m i n o p y r e n e , was d e t e c t e d i n t h e CHO c e l l genome ( 1 4 0 ) . I n c o n t r a s t , under o x i d a t i v e c o n d i t i o n s amine f o r m a t i o n was suppressed and two DNA adducts were found. One o f these adducts c o e l u t e d w i t h N-(deoxyguanosin-8-yl)-1-aminopyrene, w h i l e the o t h e r was more p o l a r . T h i s l a t t e r adduct may r e s u l t from l - n i t r o p y r e n e - 4 , 5 - o x i d e and suggests t h a t g e n o t o x i c damage c a n r e s u l t from the o x i d a t i v e metabolism o f 1 - n i t r o p y r e n e . 1,3-, 1,6- and 1 , 8 - D i n i t r o p y r e n e . A l t h o u g h d i n i t r o p y r e n e s account f o r o n l y a s m a l l amount o f t h e n i t r o PAHs found i n d i e s e l e x h a u s t , they make a s i g n i f i c a n t c o n t r i b u t i o n t o the m u t a g e n i c i t y a s s o c i a t e d w i t h d i e s e l p a r t i c u l a t e s ( 4 0 ) . As noted e a r l i e r , i n S. typhimurium these d i n i t r o p y r e n e s appear t o be m e t a b o l i c a l l y a c t i v a t e d through s e q u e n t i a l n i t r o r e d u c t i o n and O - a c e t y l a t i o n . T h i s i s i n c o n t r a s t t o t h e r e l a t e d , l e s s mutagenic 1 - n i t r o p y r e n e , w h i c h o n l y r e q u i r e s n i t r o r e d u c t i o n f o r i t s m u t a g e n i c i t y (70,73,118). A s i m i l a r pathway has r e c e n t l y b e e n f o u n d u s i n g mammalian n i t r o r e d u c t a s e s a n d acetylases (141). Incubation of rat l i v e r cytosol with 1 - n i t r o ­ pyrene o r 1,3-, 1,6- o r 1 , 8 - d i n i t r o p y r e n e r e s u l t e d i n t h e f o r m a t i o n of 1-aminopyrene and t h e r e s p e c t i v e a m i n o n i t r o p y r e n e s . When DNA was i n c l u d e d i n t h e i n c u b a t i o n s , o n l y a l o w l e v e l o f DNA b i n d i n g was d e t e c t e d . However, a d d i t i o n o f a c e t y l coenzyme A (AcCoA) i n c r e a s e d t h e b i n d i n g o f t h e d i n i t r o p y r e n e s t o DNA 20- t o 4 0 - f o l d w h i l e t h e b i n d i n g o f 1 - n i t r o p y r e n e was o n l y s l i g h t l y a f f e c t e d . T h i s i n c r e a s e i n b i n d i n g o f d i n i t r o p y r e n e s t o DNA i n t h e presence of AcCoA was n o t d e t e c t e d when u s i n g dog l i v e r c y t o s o l w h i c h i s

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

15.

BELAND ETAL.

Nitro Polycyclic Aromatic

Hydrocarbons

387

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

known t o be d e f i c i e n t i n a c e t y l a s e s . These d a t a i n d i c a t e t h a t mammalian c y t o s o l i c n i t r o r e d u c t a s e s c a t a l y z e t h e f o r m a t i o n o f N-hydroxy a r y l a m i n e i n t e r m e d i a t e s which i n t h e case o f d i n i t r o ­ pyrenes a r e c o n v e r t e d t o r e a c t i v e N-acetoxy a r y l a m i n e s by c y t o s o l i c AcCoA-dependent a c e t y l a s e s . 6-Nitrobenzo[a]pyrene. 6-Nitro-BaP i s a l s o a component o f d i e s e l exhaust (16,40); however, i n c o n t r a s t t o t h e n i t r a t e d p y r e n e s , i t i s o n l y mutagenic i n t h e presence o f S9 ( 1 5 - 1 8 ) . T h i s suggests t h a t o x i d i z e d m e t a b o l i t e s o f 6 - n i t r o - B a P may be r e s p o n s i b l e f o r m u t a t i o n i n d u c t i o n , and t h e r e f o r e , t h e s e p r o d u c t s have been c h a r a c t e r i z e d . When i n c u b a t e d w i t h l i v e r microsomes from 3-methylc h o l a n t h r e n e - p r e t r e a t e d r a t s , 6 - n i t r o - B a P was c o n v e r t e d i n t o 1- and 3 - h y d r o x y - 6 - n i t r o - B a P , 6 - n i t r o - B a P - l , 9 - and -3,9-hydroquinone and BaP-3,6-quinone ( F i g u r e 7, 1 4 2 ) . The same m e t a b o l i t e s were found when c o n t r o l o r p h e n o b a r b i t a l - i n d u c e d microsomes were used, w i t h 1and 3-hydroxy-6-nitro-BaP b e i n g t h e predominant p r o d u c t s i n each instance (143). The l a t t e r two phenols were more mutagenic than 6 - n i t r o - B a P , b u t as was observed w i t h 6 - n i t r o - B a P , they r e q u i r e d S9 t o be a c t i v e ( 1 4 2 ) . I n c o n t r a s t , 6 - n i t r o - B a P - l , 9 - and -3,9-hydroquinones appear t o be d i r e c t - a c t i n g b a c t e r i a l mutagens ( 9 6 ) . S e v e r a l c o n c l u s i o n s c a n be drawn from these r e s u l t s . First, as has been noted w i t h 5-nitroacenaphthe n e and 6 - n i t r o c h r y s e n e , t h e r e appears t o be no p e r i - r e g i o n ( i . e . , 4,5- o r 7,8-) o x i d a t i o n . Second, a l t h o u g h r i n g o x i d a t i o n appears t o be an a c t i v a t i o n s t e p , S9 i s s t i l l r e q u i r e d f o r 1- and 3-hy d r o x y - 6 - n i t r o - B a P t o be mutagenic. I n a d d i t i o n , e s s e n t i a l l y t h e same mutagenic a c t i v i t y was found i n TA98 and TA100 and t h e i r r e s p e c t i v e n i t r o r e d u c t a s e deficient derivatives. Thus, i n c o n t r a s t t o t h e n i t r o PAHs c o n s i d e r e d p r e v i o u s l y , t h e m e t a b o l i c a c t i v a t i o n o f 6 - n i t r o - B a P may not i n v o l v e n i t r o r e d u c t i o n , but o n l y r i n g o x i d a t i o n . Third, since 6 - n i t r o - B a P - l , 9 - and -3,9-hydroquinones a r e d i r e c t - a c t i n g mutagens, t h e s e m e t a b o l i t e s may be t h e u l t i m a t e m u t a g e n i c f o r m s o f 6-nitro-BaP. R e c e n t l y , t h e mechanism o f 6 - n i t r o - B a P r i n g h y d r o x y l a t i o n h a s been e l u c i d a t e d by u s i n g 3 - d e u t e r o - 6 - n i t r o - B a P ( 1 4 4 ) . When i n c u ­ b a t e d w i t h 3 - m e t h y l c h o l a n t h r e n e - i n d u c e d r a t l i v e r microsomes, t h i s d e u t e r a t e d analogue y i e l d e d t h e same m e t a b o l i t e p r o f i l e p r e v i o u s l y observed w i t h 6 - n i t r o - B a P . S p e c t r o s c o p i c a n a l y s i s o f 3-hydroxy-6n i t r o - B a P and 6-nitro-BaP-3,9-hydroquinone i n d i c a t e d t h a t 30% o f the d e u t e r i u m l a b e l had m i g r a t e d t o carbon 2, presumably v i a a n NIH shift. T h e r e f o r e , i t appears t h a t 6 - n i t r o - B a P - 2 , 3 - o x i d e i s a common i n t e r m e d i a t e f o r these two m e t a b o l i t e s . 1- and 3 - N i t r o b e n z o [ a ] p y r e n e . 1- and 3-Nitro-BaP a l s o appear t o be components o f d i e s e l e x h a u s t , b u t u n l i k e 6 - n i t r o - B a P , these n i t r o PAHs a r e d i r e c t - a c t i n g b a c t e r i a l mutagens ( 1 5 - 1 8 ) . When 1- and 3 - n i t r o - B a P were i n c u b a t e d w i t h l i v e r microsomes from 3-methylcholanthrene-pretreated r a t s , 7 , 8 - t r a n s - d i h y d r o d i o l s , 9,10-transd i h y d r o d i o l s , and 7 , 8 , 9 , 1 0 - t e t r a h y d r o t e t r o l s were formed as major m e t a b o l i t e s ( F i g u r e 8; 145-146), w h i l e amine f o r m a t i o n was d e t e c t e d o n l y under a n a e r o b i c i n c u b a t i o n s ( 1 4 7 ) . These r e s u l t s a r e i n c o n t r a s t t o those found w i t h 6 - n i t r o - B a P ; w i t h 1- and 3 - n i t r o - B a P , a l l o f t h e o x i d a t i o n o c c u r r e d i n t h e t e r m i n a l benzo r i n g ( i . e . ,

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15.

BELAND ETAL.

Nitro Polycyclic Aromatic

Hydrocarbons

389

carbons 7, 8, 9, and 1 0 ) , w h i l e 6 - n i t r o - B a P metabolism initially o c c u r s a t carbons 1 and 3. Thus, the n i t r o group has a s i g n i f i c a n t e f f e c t upon t h e r e g i o s e l e c t i v i t y o f m e t a b o l i c o x i d a t i o n . The absence o f h y d r o x y l a t i o n a t carbon 3 i n 1 - n i t r o - B a P i s noteworthy because, i n a d d i t i o n t o b e i n g a major s i t e o f o x i d a t i o n i n 6 - n i t r o - B a P (142) , 3-hydroxy-BaP i s a predominant m i c r o s o m a l m e t a b o l i t e o f BaP ( 1 4 8 ) . Furthermore, t h e analogous carbon i n 1 - n i t r o p y r e n e i s a s i t e f o r e x t e n s i v e metabolism (91,138). The r e a s o n f o r t h i s marked r e g i o s e l e c t i v i t y i s not known. The c o n f o r m a t i o n s o f the 1- and 3 - n i t r o - B a P m e t a b o l i t e s were determined through a n a l y s i s o f t h e i r NMR s p e c t r a (145-146). Both 1- and 3 - n i t r o - B a P - t r a n s - 7 , 8 - d i h y d r o d i o l s e x i s t e d p r e d o m i n a n t l y i n q u a s i - d i e q u a t o r i a l c o n f o r m a t i o n s , w h i c h corresponds t o the pre­ f e r r e d c o n f o r m a t i o n of the proximate c a r c i n o g e n BaP-Jtrans-7 ,8-dihy­ d r o d i o l (149). T h i s suggests t h a t these d i h y d r o d i o l m e t a b o l i t e s may be c o n v e r t e d i n t o e l e c t r o p h i l i c d i o l epoxides and i n support o f t h i s c o n t e n t i o n , t h e s t e r e o c h e m i s t r i e s o f 1- and 3 - n i t r o - B a P 7 , 8 , 9 , 1 0 - t e t r o l s were i n d i c a t i v e o f t r a n s - 7 , 8 - d i h y d r o d i o l - a n t i 9,10-epoxide i n t e r m e d i a t e s . I t i s p o s s i b l e , however, t h a t a p r o p o r t i o n o f the t e t r o l m e t a b o l i t e s were formed from t r a n s - 9 , 1 0 dihydrodiol-anti-7,8-epoxides. The m u t a g e n i c i t i e s o f 3 - n i t r o - B a P , 3-amino-BaP, and 3 - n i t r o BaP-7,8- and - 9 , 1 0 - d i h y d r o d i o l s have r e c e n t l y been compared i n S. typhimurium s t r a i n s TA98, TA98NR, and TA98/1,8-DNP, ( 1 4 7 ) . I n the absence o f S9, 3 - n i t r o - B a P showed decreased a c t i v i t y i n TA98NR and s l i g h t l y h i g h e r m u t a g e n i c i t y i n TA98/1,8-DNP compared t o TA98, which i s c o n s i s t e n t w i t h n i t r o r e d u c t i o n , but not e s t e r i f i c a t i o n , being e s s e n t i a l for mutation i n d u c t i o n . This conclusion i s s u p p o r t e d by the o b s e r v a t i o n t h a t the d i r e c t - a c t i n g m u t a g e n i c i t y o f 3-amino-BaP was the same i n a l l t h r e e s t r a i n s , p r o b a b l y as a r e s u l t of i t b e i n g s p o n t a n e o u s l y o x i d i z e d t o N-hydroxy-3-amino-BaP. The d i h y d r o d i o l s behaved s i m i l a r l y t o one a n o t h e r : t h e i r d i r e c t - a c t i n g m u t a g e n i c i t y was s i m i l a r t o t h a t o f 3 - n i t r o - B a P i n TA98, decreased by a b o u t 5 0 % i n TA98NR, a n d was s u b s t a n t i a l l y d e c r e a s e d i n TA98/1,8-DNP^. These r e s u l t s suggest t h a t b o t h n i t r o r e d u c t i o n and e s t e r i f i c a t i o n a r e r e q u i r e d f o r the d i r e c t - a c t i n g m u t a g e n i c i t y o f these d i h y d r o d i o l m e t a b o l i t e s . 6

Conclusions The d a t a p r e s e n t e d i n t h i s r e v i e w show t h a t b o t h o x i d a t i v e and r e d u c t i v e pathways a r e i n v o l v e d i n t h e m e t a b o l i c a c t i v a t i o n o f n i t r o PAHs t o g e n o t o x i c agents jLn v i t r o . The p r e c i s e pathways depend upon the p a r t i c u l a r compound, but i n each i n s t a n c e the n i t r o group appears t o p l a y a c r i t i c a l r o l e i n the a c t i v a t i o n p r o c e s s . W i t h r e g a r d t o o x i d a t i v e metabolism, the l o c a t i o n of the n i t r o f u n c t i o n i n f l u e n c e s the r e g i o s e l e c t i v i t y o f r i n g o x i d a t i o n s i n c e metabolism i s generally inhibited i n peri regions. When p e r i r e g i o n o x i d a t i o n does o c c u r , i t i s q u i t e l i m i t e d i n e x t e n t and a s i g n i f i c a n t p r o p o r t i o n o f the d i h y d r o d i o l m e t a b o l i t e e x i s t s i n a q u a s i - d i a x i a l conformation. Thus, i n a d d i t i o n t o i n f l u e n c i n g t h e r e g i o s e l e c t i v i t y o f o x i d a t i o n , the n i t r o group can have a marked e f f e c t upon the c o n f o r m a t i o n o f the r e s u l t a n t m e t a b o l i t e w h i c h , i n t u r n , may i n f l u e n c e subsequent metabolism. The n i t r o f u n c t i o n may a l s o be d i r e c t l y i n v o l v e d i n the a c t i v a t i o n sequence v i a r e d u c t i o n

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

390

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

to r e a c t i v e N-hydroxy a r y l a m i n e s . N-Hydroxy a r y l a m i n e s c a n r e a c t d i r e c t l y w i t h DNA, o r i n some i n s t a n c e s they may be f u r t h e r a c t i v a t e d by 0 - e s t e r i f i c a t i o n . A l t h o u g h t h e f a c t o r s t h a t a l l o w an N-hydroxy a r y l a m i n e t o undergo 0 - e s t e r i f i c a t i o n a r e n o t known, e s t e r f o r m a t i o n g e n e r a l l y r e s u l t s i n t h e p r o d u c t i o n o f a compound which i s more g e n o t o x i c than t h e N-hydroxy a r y l a m i n e p r e c u r s o r . F i n a l l y , some n i t r o PAHs a r e m e t a b o l i z e d t o u l t i m a t e mutagens by a combination o f o x i d a t i v e and r e d u c t i v e pathways. With these compounds, r i n g o x i d a t i o n g e n e r a l l y precedes n i t r o r e d u c t i o n and t h e net e f f e c t appears t o be t h e f o r m a t i o n o f an N-hydroxy a r y l a m i n e m e t a b o l i t e which can serve as a s u b s t r a t e f o r O ^ e s t e r i f i c a t i o n . The d a t a from these i n v i t r o s t u d i e s c a n p r o v i d e i n s i g h t i n t o the t u m o r i g e n i c i t y o f n i t r o PAHs. Thus, n i t r o d e r i v a t i v e s o f n o n c a r c i n o g e n i c PAHs, such as 2 - n i t r o n a p h t h a l e n e o r 4 - n i t r o b i ­ p h e n y l , a r e e x t e n s i v e l y reduced _in v i t r o which i s c o n s i s t e n t w i t h t h e i r showing t h e same t a r g e t s p e c i f i c i t y as t h e i r a r o m a t i c amine analogues. T h i s v i e w i s s t r e n g t h e n e d by t h e o b s e r v a t i o n t h a t i d e n t i c a l DNA adducts have been found i n t h e b l a d d e r e p i t h e l i u m o f dogs a d m i n i s t e r e d e i t h e r 4 - n i t r o b i p h e n y l o r 4-aminobiphenyl ( 1 1 6 ) . N i t r o d e r i v a t i v e s o f c a r c i n o g e n i c PAHs demonstrate v a r i e d t u m o r i ­ g e n i c r e s p o n s e s w h i c h may be a s s o c i a t e d w i t h d i f f e r e n c e s i n m e t a b o l i c pathways. F o r example, 6 - n i t r o c h r y s e n e i s t u m o r i g e n i c on mouse s k i n and undergoes e x t e n s i v e d i h y d r o d i o l f o r m a t i o n i n v i t r o w h i c h suggests t h a t i t i s m e t a b o l i z e d t o a r e a c t i v e d i o l e p o x i d e . I n c o n t r a s t , d i h y d r o d i o l m e t a b o l i t e s a r e a p p a r e n t l y n o t formed from 6 - n i t r o b e n z o [ a ] p y r e n e and t h i s compound g i v e s a n e g a t i v e t u m o r i ­ g e n i c response on mouse s k i n . I n a d d i t i o n , 6-nitrobenzo[a]pyrene has two p r o t o n s p e r i t o i t s n i t r o f u n c t i o n , which appears t o r e s t r i c t i t s a b i l i t y t o be e n z y m a t i c a l l y c o n v e r t e d t o a r e a c t i v e N-hydroxy a r y l a m i n e ( 1 5 0 ) . These i n v i t r o m e t a b o l i c s t u d i e s a l s o i n d i c a t e t h a t a c o m b i n a t i o n o f o x i d a t i v e and r e d u c t i v e pathways may be i n v o l v e d i n t h e t u m o r i g e n i c i t y o f c e r t a i n n i t r o PAHs. T h i s may be p a r t i c u l a r l y i m p o r t a n t w i t h t h e r i n g - o x i d i z e d m e t a b o l i t e s o f 1 - n i t r o p y r e n e , 5 - n i t r o a c e n a p h t h e n e and 3 - n i t r o b e n z o [ a ] p y r e n e , which a r e a t l e a s t as g e n o t o x i c as t h e i r parent n i t r o PAHs. These o b s e r v a t i o n s suggest t h a t i n o r d e r t o a s s e s s t h e human h e a l t h r i s k from n i t r o PAHs, t u m o r i g e n i c i t y assays s h o u l d be conducted n o t o n l y w i t h t h e p a r e n t compounds and t h e i r n i t r o r e d u c t i o n p r o d u c t s , b u t a l s o w i t h t h e r i n g - o x i d i z e d m e t a b o l i t e s t h a t have been d e t e c t e d i n i n v i t r o incubations. Acknowledgment We thank Ruth Y o r k f o r h e l p i n g prepare t h i s

review.

Literature Cited 1. Graebe, C. Liebigs Ann. 1871, 158, 292. 2. Schmidt, J. J. prakt. Chem. 1874, 9, 250. 3. Hartwell, J.L. "Survey of Compounds Which Have Been Tested for Carcinogenic Activity"; U.S. Public Health Service Publi­ cation No. 149: Washington, D.C., 1951. 4. Morris, H.P.; Dubnik, C.S.; Johnson, J.M. J. Natl. Cancer Inst. 1950, 10, 1201. 5. McCann, J.; Choi, E.; Yamasaki, E.; Ames, B.N. Proc. Natl. Acad. Sci. USA 1975, 72, 5135.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15. BELAND ETAL.

Nitro Polycyclic Aromatic Hydrocarbons

391

6. Pitts, J.N., Jr.; van Cauwenberghe, K.A.; Grosjean, D.; Schmid, J.P.; Fitz, D.R.; Belser, W.J., Jr.; Knudson, G.B.; Hynds, P.M. Science 1978, 202, 515. 7. Wang, Y.Y.; Rappaport, S.M.; Sawyer, R.F.; Talcott, R.E.; Wei, E.T. Cancer Lett. 1978, 5, 39. 8. Jager, J. J. Chromatogr. 1978, 152, 575. 9. Rosenkranz, H.S.; Mermelstein, R. Mutation Res. 1983, 114, 217. 10. Clar, E. In "Polycyclic Hydrocarbons"; Academic: London, 1964; Vols. 1 and 2. 11. Meisenheimer, J. Liebigs Ann. 1904, 330, 133. 12. Bavin, P.M.G.; Dewar, M.J.S. J. Chem. Soc. 1955, 4477. 13. Dewar, M.J.S.; Mole, T.; Urch, D.S.; Warford, E.W.T. J. Chem. Soc. 1956, 3572. 14. Cook, J.W. J. Chem. Soc. 1931, 3273. 15. Pitts, J.N., Jr.; Zielinska, B.; Harger, W.P. Mutation Res. 1984, 140, 81. 16. Pitts, J.N., Jr.; Lokensgard, D.M.; Harger, W.; Fisher, T.S.; Mejia, V.; Schuler, J.J.; Scorziell, G.M.; Katzenstein, Y.A. Mutation Res. 1982, 103, 241. 17. Chou, M.W.; Heflich, R.H.; Casciano, D.A.; Miller, D.W.; Freeman, J.P.; Evans, F.E.; Fu, P.P. J. Med. Chem. 1984, 27, 1156. 18. Lofroth, G.; Toftgard, R.; Nilsson, L.; Agurell, E.; Gustafsson, J.-A. Carcinogenesis 1984, 5, 925. 19. Tokiwa, H.; Nakagawa, R.; Ohnishi, Y. Mutation Res. 1981, 91, 321. 20. Rodenburg, L.; Brandsma, R.; Tintel,; Cornelisse, J.; Lugtenburg, J. J. Chem. Soc. Chem. Commun. 1983, 1039. 21. Spitzer, U.A.; Stewart, R. J. Org. Chem. 1974, 39, 3936. 22. Radner, F. Acta Chem. Scand. 1983, 37, 65. 23. Pearson, D.E.; Frazer, J.G.; Frazer, V.S.; Washburn, L.C. Synthesis 1976, 621. 24. Vance, W.A.; Chan, R. Environ. Mutagenesis 1983, 5, 859. 25. Bavin, P.M.G. Can. J. Chem. 1959, 37, 1614. 26. Bodine, R.S.; Ruehle, P.H.; Roth, R.W.; Bosch, G.; Bosch, L.; Opperman, G.; Saugier, J.H. In "Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement"; Cooke, M.; Dennis, A.J., Eds.; Battelle: Columbus, OH, 1983; p. 135. 27. Wang, C.Y.; Lee, M.-S.; King, C.M.; Warner, P.O. Chemosphere 1980, 9, 83. 28. Talcott, R.E.; Harger, W. Mutation Res. 1981, 91, 433. 29. Gibson, T.L. Atmospheric Environ. 1982, 16, 2037. 30. Fukino, H.; Mimura, S.; Inoue, K.; Yamane, Y. Mutation Res. 1982, 102, 237. 31. Pitts, J.N., Jr.; Harger, W.; Lokensgard, D.M.; Fitz, D.R.; Scorziell, G.M.; Mejia, V. Mutation Res. 1982, 104, 35. 32. Nielsen, T. Anal. Chem. 1983, 55, 286. 33. Ramdahl, T.; Becher, G.; Bjorseth, A. Environ. Sci. Technol. 1982, 16, 861. 34. Tokiwa, H.; Kitamori, S.; Nakagawa, R.; Horikawa, K.; Matamala, L. Mutation Res. 1983, 121, 107. 35. Li, A.P.; Clark, C.R.; Hanson, R.L.; Henderson, T.R.; Hobbs, C.H. Environ. Mutagenesis 1982, 4, 407.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

392

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

36. Wei, C.-I.; Raabe, O.G.; Rosenblatt, L.S. Environ. Mutagenesis 1982, 4, 249. 37. Rappaport, S.M.; Wang, Y.Y.; Wei, E.T.; Sawyer, R.; Watkins, B.E.; Rapoport, H. Environ. Sci. Tech. 1980, 14, 1505. 38. Clark, D.R.; Brooks, A.L.; Li, A.P.; Hadley, W.M.; Hanson, R.L.; McClellan, R.O. Environ. Mutagenesis 1982, 4, 333. 39. Xu, X.B.; Nachtman, J.P.; Jin, Z.L.; Wei, E.T.; Rappaport, S.M.; Burlingame, A.L. Anal. Chim. Acta 1982, 136, 163. 40. Schuetzle, D. Environ. Health Perspect. 1983, 17, 65. 41. Paputa-Peck, M.C.; Marano, R.S.; Schuetzle, D.; Riley, T.L.; Hampton, C.V.; Prater, T.J.; Skewes, L.M.; Jensen, T.E.; Ruehle, P.H.; Bosch, L.C.; Duncan, W.P. Anal. Chem. 1983, 55, 1946. 42. Lofroth, G.; Hefner, E.; Alfheim, I.; Molle, M. Science 1980, 209, 1037. 43. Rosenkranz, H.S.; McCoy, E.C.; Sanders, D.R.; Butler, M.; Kiriazides, D.K.; Mermelstein, R. Science 1980, 209, 1039. 44. McCoy, E.C.; Rosenkranz, H.S. Cancer Lett. 1982, 15, 9. 45. Yergey, J.A.; Risby, T.H.; Lestz, S.S. Anal. Chem. 1982, 54, 354. 46. Fukui, S.; Hirayama, T.; Shindo, H.; Nohara, M. Chemosphere 1980, 9, 771. 47. Hirayama, T.; Nohara, M.; Shindo, H.; Fukui, S. Chemosphere 1981, 10, 223. 48. Tokiwa, H.; Nakagawa, R.; Morita, K.; Ohnishi, Y. Mutation Res. 1981, 85, 195. 49. Hirayama, T.; Nohara, M.; Ando, T.; Tanaka, M.; Nagano, K.; Fukui, S. Mutation Res. 1983, 122, 273. 50. Guerin, M.R. In "Polycyclic Hydrocarbons and Cancer"; Gelboin, H.V.; Ts'o, P.O.P., Eds.; Academic: New York, 1978; Vol. 1, p. 3. 51. Baum, E.J. In "Polycyclic Hydrocarbons and Cancer"; Gelboin, H.V.; Ts'o, P.O.P., Eds.; Academic: New York, 1978; Vol. 1, p. 45. 52. Chou, M.W.; Fu, P.P. unpublished data. 53. Risby, T.H.; Lestz, S.S. Environ. Sci. Technol. 1983, 17, 621. 54. Li, A.P.; Dutcher, J.S. Mutation Res. Lett. 1983, 119, 387. 55. Li, A.P.; Clark, C.R.; Hanson, R.L.; Henderson, T.R.; Hobbs, C.H. Environ. Mutagenesis 1983, 5, 263. 56. Cole, J.; Arlett, C.F.; Lowe, J.; Bridges, B.A. Mutation Res. 1982, 93, 213. 57. Takayama, S.; Tanaka, M.; Katoh, Y.; Terada, M.; Sugimura, T. Gann 1983, 74, 338. 58. Howard, P.C.; Gerrard, J.A.; Milo, G.E.; Fu, P.P.; Beland, F.A.; Kadlubar, F.F. Carcinogenesis 1983, 4, 353. 59. DiPaolo, J.A.; DeMarinis, A.J.; Chow, F.L.; Garner, R.C.; Martin, C.N.; Doniger, J. Carcinogenesis 1983, 4, 357. 60. Moller, M.; Thorgeirsson, S.S. Proc. Amer. Assoc. Cancer Res. 1984, 25, 110. 61. Campbell, J.; Crumplin, G.C.; Garner, J.V.; Garner, R.C.; Martin, C.N.; Rutter, A. Carcinogenesis 1981, 2, 559. 62. Butterworth, B.E.; Earle, L . L . ; Strom, S.; Jirtle, R.; Michalopoulos, G. Mutation Res. 1983, 122, 73.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15. BELAND ETAL.

Nitro Polycyclic Aromatic Hydrocarbons

393

63. Nachtman, J.P.; Wolff, S. Environ. Mutagenesis 1982, 4, 1. 64. Marshall, T.C.; Royer, R.E.; Li, A.P.; Kusewitt, D.F.; Brooks, A.L. J. Toxicol. Environ. Health 1982, 10, 373. 65. Danford, N.; Wilcox, O.; Parry, J.M. Mutation Res. 1982, 105, 349. 66. Wilcox, P.; Danford, N.; Parry, J.M. In "Mutagens in Our Environment"; Sorso, M.; Vaino, H., Eds.; Liss: New York, 1982, p. 249. 67. Messier, F.; Lu, C.; Andrews, P.; McCarry, B.E.; Quilliam, M.A.; McCalla, D.R. Carcinogenesis 1981, 2, 1007. 68. Quilliam, M.A.; Messier, F.; Lu, C.; Andrews, P.A.; McCarry, B.E.; McCalla, D.R. In "Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry"; Cooke, M.; Dennis, A.J.; Fisher, G.L., Eds.; Battelle: Columbus, OH, 1982; p. 667. 69. Andrews, P.A.; Bryant, D.; Vitakunas, S.; Gouin, M.; Anderson, G.; McCarry, B.E.; Quilliam, M.A.; McCalla, D.R. In "Polynuclear Aromatic Hydrocarbons: Formation, Metabolism and Measurement"; Cooke, M.; Dennis, A . J . , Eds.; Battelle: Columbus, OH, 1983, p. 89. 70. Bryant, D.W.; McCalla, D.R.; Lultschik, P.; Quilliam, M.A.; McCarry, B.E. Chem.-Biol. Interact. 1984, 49, 351. 71. Howard, P.C.; Heflich, R.H.; Evans, F.E.; Beland, F.A. Cancer Res. 1983, 43, 2052. 72. Heflich, R.H.; Howard, P.C.; Beland, F.A. Mutation Res. in press. 73. Heflich, R.H.; Fifer, E.K.; Djuric, Z.; Beland, F.A. Environ. Health Perspect. in press. 74. Jackson, M.A.; King, L.C.; Ball, L.M. Drug Chem. Toxicol. 1983, 6, 549. 75. King, L.C.; Jackson, J.; Ball, L.M.; Lewtas, J. Cancer Lett. 1983, 19, 241. 76. Beland, F.A.; Heflich, R.H.; Howard, P.C.; Kurian, P.; Milo, G.E. Proc. Eur. Assoc. Cancer Res. 1983. 77. Heflich, R.H.; Fullerton, N.F.; Beland, F.A. in preparation. 78. Rosenkranz, H.S.; Poirier, L.A. J. Natl. Cancer Inst. 1979, 62, 873. 79. Wilcox, P.; Parry, J.M. Carcinogenesis 1981, 2, 1201. 80. McCoy, E.C.; Anders, M.; McCartney, M.; Howard, P.C.; Beland, F.A.; Rosenkranz, H.S. Mutation Res. 1984, 139, 115. 81. El-Bayoumy, K.; LaVoie, E.J.; Hecht, S.S.; Fow, E.A.; Hoffman, D. Mutation Res. 1981, 81, 143. 82. Scribner, J.D.; Fisk, S.R.; Scribner, N.K. Chem.-Biol. Interact. 1979, 26, 11. 83. McCoy, E.C.; Rosenkranz, E.J.; Petrullo, L.A.; Rosenkranz, H. S.; Mermelstein, R. Environ. Mutagenesis 1981, 3, 499. 84. El-Bayoumy, K.; Hecht, S.S. In "Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry"; Cooke, M.; Dennis, A.J.; Fisher, G.L., Eds.; Battelle: Columbus, OH, 1982; p. 263. 85. El-Bayoumy, K.; Hecht, S.S. Cancer Res. 1982, 42, 1243. 86. McCoy, E.C.; De Marco, G.; Rosenkranz, E.J.; Anders, M.; Rosenkranz, H.S.; Mermelstein, R. Environ. Mutagenesis 1983, 5, 17.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

394

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

87. McCoy, E.C.; Rosenkranz, E.J.; Mermelstein, R.; Rosenkranz, H. S. Mutation Res. 1983, 111, 61. 88. McCoy, E.C.; Rosenkranz, E.J.; Rosenkranz, H.S.; Mermelstein, R. Mutation Res. 1981, 90, 11. 89. Fu, P.P.; Von Tungeln, L.S.; Chou, M.W. submitted. 90. Greibrokk, T.; Lofroth, G.; Nilsson, L.; Toftgard, R.; Carlstedt-Duke, J.; Gustafsson, J.-A. In "Toxicity of Nitroaromatic Compounds"; Rickert, D.E.; Dent, J.G.; Gibson, J.E.; Popp, J.A.; Rosenkranz, H.S., Eds.; Hemisphere: Washington, D.C. in press. 91. El-Bayoumy, K.; Hecht, S.S. Cancer Res. 1983, 43, 3132. 92. Mermelstein, R.; Kiriazides, D.K.; Butler, M.; McCoy, E.C.; Rosenkranz, H.S. Mutation Res. 1981, 89, 187. 93. Pederson, T.C.; Siak, J.-S. J. Appl. Toxicol. 1981, 1, 54. 94. Nakayasu, M.; Sakamoto, H.; Wakabayashi, K.; Terada, M.; Sugimura, T.; Rosenkranz, H.S. Carcinogenesis 1982, 3, 917. 95. El-Bayoumy, K.; Hecht, S.S. Cancer Res. 1984, 44, 3408. 96. Fu, P.P.; Chou, M.W. unpublished results. 97. Conzelman, G.M., Jr.; Moulton, J.E.; Flanders, L.E. Gann 1970, 61, 79. 98. Takemura, N.; Hashida, C.; Terasawa, M. Brit. J. Cancer 1974, 30, 481. 99. Deichmann, W.B.; MacDonald, W.M.; Coplan, M.M.; Woods, F.M.; Anderson, W.A.D. Indust. Med. Surg. 1958, 27, 634. 100. Miller, J.A.; Sandin, R.B.; Miller, E.C.; Rusch, H.P. Cancer Res. 1955, 15, 188. 101. Ohgaki, H.; Matsukura, N.; Morino, K.; Kawachi, T.; Sugimura, T.; Morita, K.; Tokiwa, H.; Hirota, T. Cancer Lett. 1982, 15, 1. 102. Hirose, M.; Lee, M.-S.; Wang, C.Y.; King, C.M. Cancer Res. 1984, 44, 1158. 103. El-Bayoumy, K.; Hecht, S.S.; Sackl, T.; Stoner, G.D. Carcinogenesis 1984, 5, 1449. 104. Ohgaki, H.; Negishi, C.; Wakabayashi, K.; Kusama, K.; Sato, S.; Sugimura, T. Carcinogenesis 1984, 5, 583. 105. Ohnishi, Y.; Kinouchi, T.; Manabe, Y.; Tsutsui, H.; Otsuka, H.; Tokiwa, H.; Otofuji, T. In "Short-Term Genetic Bioassays in the Evaluation of Complex Environmental Mixtures"; Water, M.D., Ed.; Plenum: New York, in press. 106. El-Bayoumy, K.; Hecht, S.S.; Hoffman, D. Cancer Lett. 1982, 16, 333. 107. Conzelman, G.M., Jr.; Moulton, J.E.; Flanders, L.E.; Springer, K.; Crout, D. J. Natl. Cancer Inst. 1969, 42, 825. 108. Walpole, A.L.; Williams, M.H.C.; Roberts, D.C. Brit. J. Indust. Med. 1954, 11, 105. 109. Deichmann, W.B.; Radomski, J.L.; Anderson, W.A.D.; Coplan, M.M.; Woods, F.M. Indust. Med. Surg. 1958, 27, 25. 110. Lambelin, G.; Roba, J.; Roncucci, R.; Parmentier, R. Eur. J. Cancer 1975, 11, 327. 111. Nesnow, S.; Triplett, L.L.; Slaga, T.J. Cancer Lett. 1984, 23, 1. 112. Howard, P.C.; Beland, F.A. Biochem. Biophys. Res. Commun. 1982, 104, 727.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

15. BELAND ETAL.

Nitro Polycyclic Aromatic Hydrocarbons

395

113. McCoy, E.C.; Rosenkranz, H.S.; Mermelstein, R. Environ. Mutagenesis 1981, 3, 421. 114. Rosenkranz, H.S.; McCoy, E.C.; Mermelstein, R.; Speck, W.T. Mutation Res. 1981, 91, 103. 115. Howard, P.C.; Beland, F.A.; Cerniglia, C.E. Carcinogenesis 1983, 4, 985. 116. Beland, F.A.; Beranek, D.T.; Dooley, K.L.; Heflich, R.H.; Kadlubar, F.F. Environ. Health Perspect. 1983, 49, 125. 117. McCoy, E.C.; McCoy, G.D.; Rosenkranz, H.S. Biochem. Biophys. Res. Commun. 1982, 108, 1362. 118. McCoy, E.C.; Anders, M.; Rosenkranz, H.S. Mutation Res. 1983, 121, 17. 119. Goldman, P. Ann. Rev. Pharmacol. Toxicol. 1978, 18, 523. 120. Kinouchi, T.; Manabe, Y.; Wakisaka, K.; Ohnishi, Y. Microbiol. Immunol. 1982, 26, 993. 121. Kinouchi, T.; Ohnishi, Y. Appl. Environ. Microbiol. 1983, 46, 596. 122. El-Bayoumy, K.; Sharma, C.; Louis, Y.M.; Reddy, B.; Hecht, S.S. Cancer Lett. 1983, 19, 311. 123. Cerniglia, C.E.; Howard, P.C.; Fu, P.P.; Franklin, W. Biochem. Biophys. Res. Commun. 1984, 123, 262. 124. Uehleke, H.; Nestel, K. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 1967, 257, 151. 125. Poirier, L.A.; Weisburger, J.H. Biochem. Pharmacol. 1974, 23, 661. 126. Perez, G.; Radomski, J.L. Indust. Med. Surg. 1965, 34, 714. 127. Belman, S.; Troll, W.; Teebor, G.; Mukai, F. Cancer Res. 1968, 28, 535. 128. Radomski, J.L.; Brill, E.; Deichmann, W.B.; Glass, E.M. Cancer Res. 1971, 31, 1461. 129. Dooley, K.L.; Beland, F.A.; Bucci, T.J.; Kadlubar, F.F. Cancer Res. 1984, 44, 1172. 130. Hammons, G.J.; Guengerich, F.P.; Weis, C.C.; Beland, F.A.; Kadlubar, F.F. submitted. 131. Fu, P.P.; Yang, S.K. Biochem. Biophys. Res. Commun. 1983, 115, 123. 132. Yang, S.K.; Chou, M.W.; Fu, P.P. In "Carcinogenesis: Fundamental Mechanisms and Environmental Effects"; Pullman, B.; Ts'o, P.O.P.; Gelboin, H.V., Eds.; Reidel: Boston, 1980; p. 143. 133. Nachtman, J.P.; Wei, E.T. Experentia 1982, 38, 837. 134. Saito, K.; Kamataki, T.; Kato, R. Cancer Res. 1984, 44, 3169. 135. Bond, J.A. Mutation Res. 1983, 124, 315. 136. King, L.C.; Kohan, M.J.; Ball, L.M.; Lewtas, J. Cancer Lett. 1984, 22, 255. 137. Bond, J.A.; Mauderly, J.L. Cancer Res. 1984, 44, 3924. 138. Howard, P.C.; Flammang, T.J.; Beland, F.A. Carcinogenesis in press. 139. Djuric, Z.; Fifer, E.K.; Heflich, R.H.; Howard, P.C.; Beland, F.A. submitted. 140. Heflich, R.H.; Beland, F.A. unpublished observation. 141. Djuric, Z.; Beland, F.A. submitted.

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV ILLINOIS URBANA on May 15, 2013 | http://pubs.acs.org Publication Date: July 19, 1985 | doi: 10.1021/bk-1985-0283.ch015

396

POLYCYCLIC HYDROCARBONS AND CARCINOGENESIS

142. Fu, P.P.; Chou, M.W.; Yang, S.K.; Beland, F.A.; Kadlubar, F.F.; Casciano, D.A.; Heflich, R.H.; Evans, F.E. Biochem. Biophys. Res. Commun. 1982, 105, 1037. 143. Fu, P.P.; Chou, M.W. In "Cytochrome P-450, Biochemistry, Biophysics and Environmental Implications"; Hietanen, E.; Laitinen, M.; Hanninen, O., Eds.; Elsevier: Amsterdam, 1982, p. 71. 144. Chou, M.W.; Evans, F.E.; Yang, S.K.; Fu, P.P. Carcinogenesis 1983, 4, 699. 145. Chou, M.W.; Fu, P.P. Biochem. Biophys. Res. Commun. 1983, 117, 541. 146. Chou, M.W.; Von Tungeln, L.S.; Unruh, L.E.; Fu, P.P. In "Eighth International Symposium on Polynuclear Aromatic Hydrocarbons"; Cooke, W.M.; Dennis, A.J., Eds.; Battelle: Columbus, OH, in press. 147. Chou, M.W.; Heflich, R.H.; Fu, P.P. submitted. 148. Holder, G.; Yagi, H.; Dansette, P.; Jerina, D.M.; Levin, W.; Lu, A.Y.H.; Conney, A.H. Proc. Natl. Acad. Sci. USA 1974, 71, 4356. 149. Jerina, D.M.; Selander, H.; Yagi, H.; Wells, M.C.; Davey, J.F.; Mahadevan, V.; Gibson, D.T. J. Amer. Chem. Soc. 1976, 98, 5988. 150. Fu, P.P.; Chou, M.W.; Miller, D.W.; White, G.L.; Heflich, R.H.; Beland, F.A. submitted. RECEIVED May 2, 1985

In Polycyclic Hydrocarbons and Carcinogenesis; Harvey, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.