Polymer Adsorption and Dispersion Stability - American Chemical

approach pioneered by Tabor and co-workers 08,9) measured the .... 2 Muscovite Ruby mica, mined in Kenya (Mica and Micanite Ltd., .... cycles. This st...
0 downloads 0 Views 3MB Size
15 Interactions Between Polymer-Bearing Surfaces JACOB KLEIN and YAACOV ALMOG Polymer Department, Weizmann Institute of Science, Rehovot 76100, Israel

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

PAUL LUCKHAM Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, England

The forces acting between atomically smooth mica sur­ faces immersed i n both organic and aqueous l i q u i d media have been determined i n the range of surface separations 0 - 300 nm, both in the absence and the presence of ad­ sorbed polymer layers. In this way the interactions between the adsorbed macromolecular layers themselves were determined. We present results for the following cases: i ) Poor solvent, ii) Θ - solvent, iii) good solvent, iv) polyelectrolytes i n aqueous media. Our results show that interactions between the adsorbed layers may be either attractive or repulsive, depending on the nature of the solvent and the extent of adsorp­ t i o n . For the polyelectrolyte case the interactions are a combination of field-type (electrostatic) and s t e r i c forces. The f o r c e s a c t i n g b e t w e e n c o l l o i d p a r t i c l e s i n d i s p e r s e d s y s t e m s may be s t r o n g l y m o d i f i e d b y a d s o r p t i o n o f p o l y m e r i c o r m a c r o m o l e c u l a r l a y e r s o n t o t h e p a r t i c l e s u r f a c e s (1). T h i s e f f e c t has b e e n u t i l i z e d e m p i r i c a l l y s i n c e h i s t o r i c a l t i m e s ( a s f o r example by t h e a n c i e n t E g y p t i a n s , who s t a b i l i z e d aqueous c a r b o n b l a c k d i s p e r s i o n s b y a d s o r b e d l a y e r s o f gum a r a b l e , a w a t e r - s o l ­ u b l e , n a t u r a l l y o c c u r r i n g p o l y s a c c h a r i d e , t o form s t a b l e i n k s ) : nowadays s u c h a d s o r b e d l a y e r s a r e commonly u s e d b o t h f o r s t a b i ­ l i z a t i o n a n d d e s t a b i l i z a t i o n i n a w i d e r a n g e o f s y n t h e t i c (1) and n a t u r a l l y o c c u r r i n g ( 2 ) c o l l o i d a l s y s t e m s . The c r i t e r i a f o r c o l l o i d a l s t a b i l i t y depend o n s e v e r a l f a c t o r s , s u c h a s h y d r o dynamic i n t e r a c t i o n s , k i n e t i c s o f Brownian c o l l i s i o n s and t h e e x t e n t t o w h i c h t h e s u r f a c e r e g i o n s a r e i n a s t a t e o f thermo­ dynamic e q u i l i b r i u m , i n a d d i t i o n t o the b a s i c n a t u r e o f t h e surface-surface forces. Nonetheless, i t i sthe l a t t e r which i s i n g e n e r a l t h e dominant f a c t o r i n d e t e r m i n i n g the b e h a v i o u r 0097 6156/ 84/ 0240 0227506.00/0 © 1984 American Chemical Society

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

POLYMER ADSORPTION AND DISPERSION STABILITY

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

228

of systems w i t h l a r g e surface-to-volume r a t i o s , and w h i c h must be u n d e r s t o o d i n o r d e r t o h a v e f u n d a m e n t a l i n s i g h t i n t o t h e q u e s t i o n of s t a b i l i t y i n such systems. S t e r i c s t a b i l i z a t i o n and t h e r e l a t e d phenomenon o f p o l y m e r a d s o r p t i o n have been i n t e n s i v e l y s t u d i e d o v e r the p a s t t h i r t y y e a r s ( 1 ) . However, i t i s o n l y i n a v e r y few r e l a t i v e l y r e c e n t c a s e s t h a t a t t e m p t s w e r e made t o measure d i r e c t l y t h e f o r c e s between s u r f a c e s b e a r i n g adsorbed m a c r o m o l e c u l a r l a y e r s . Sur­ f a c e - b a l a n c e (3) and c o m p r e s s i o n - c e l l (4) t e c h n i q u e s h a v e b e e n u s e d t o measure t h e p r e s s u r e b e t w e e n c o l l o i d a l p a r t i c l e s ( b e a r i n g a d s o r b e d p o l y m e r s ) i n two- and t h r e e - d i m e n s i o n a l a r r a y s . More r e c e n t l y the d i s j o i n i n g p r e s s u r e between l a y e r s of polymer ad­ s o r b e d a t t h e two l i q u i d - a i r i n t e r f a c e s o f a f i l m o f p o l y m e r s o l u t i o n was m e a s u r e d as a f u n c t i o n o f f i l m t h i c k n e s s ( 5 ) ; and t h e f o r c e b e t w e e n l a y e r s o f p o l y m e r a d s o r b e d o n t o smooth r u b b e r s p h e r e s was d e t e r m i n e d as a f u n c t i o n o f t h e d i s t a n c e b e t w e e n t h e s p h e r i c a l s u r f a c e s 0 6 ) . A l l t h e s e methods w e r e l i m i t e d by n o t b e i n g a b l e t o measure a t t r a c t i o n , i f any, b e t w e e n t h e a d ­ s o r b e d l a y e r s . I s r a e l a c h v i l i and c o - w o r k e r s ( 7 ) , m o d i f y i n g an a p p r o a c h p i o n e e r e d by T a b o r and c o - w o r k e r s 08,9) m e a s u r e d t h e i n t e r a c t i o n f o r c e (F(D) as a f u n c t i o n o f d i s t a n c e D b e t w e e n two smooth m i c a s h e e t s immersed i n an aqueous s o l u t i o n o f a commer­ c i a l - g r a d e r e s i n c o n s i s t i n g of h i g h l y polydisperse polyethylene o x i d e (PEO). T h e i r r e s u l t s showed s t r o n g h y s t e r e t i c e f f e c t s , and a c o n t i n u o u s b u i l d up w i t h t i m e o f a d s o r b e d l a y e r t h i c k n e s s , and c o u l d n o t be d e s c r i b e d i n t e r m s o f an e q u i l i b r i u m f o r c e l a w . Over t h e p a s t few y e a r s , b o t h a t t h e Weizmann I n s t i t u t e and i n t h e C a v e n d i s h L a b o r a t o r y , we h a v e u s e d a m o d i f i c a t i o n o f t h e 'mica a p p r o a c h t o measure t h e i n t e r a c t i o n f o r c e s F(D) b e t w e e n two m i c a s u r f a c e s , a d i s t a n c e D a p a r t , i m m e r s e d i n o r g a n i c and aqueous l i q u i d m e d i a , b o t h i n t h e a b s e n c e and i n t h e p r e s e n c e of polymer l a y e r s absorbed onto the m i c a from the l i q u i d . We have s t u d i e d a number o f m o d e l s y s t e m s c o v e r i n g a w i d e r a n g e o f c o n d i t i o n s , using monodispersed, w e l l c h a r a c t e r i z e d polymers. I n t h i s p a p e r we b r i e f l y d e s c r i b e t h e a p p a r a t u s and experimental method, then c o n s i d e r the i n t e r a c t i o n s between i ) l a y e r s of p o l y s t y r e n e i n c y c l o h e x a n e u n d e r p o o r - s o l v e n t and i i ) Θ - s o l ­ vent c o n d i t i o n s , i i i ) t h e i n t e r a c t i o n s b e t w e e n a d s o r b e d PEO l a y e r s i n a good ( a q u e o u s ) s o l v e n t and i v ) t h e s u r f a c e f o r c e s between l a y e r s of adsorbed p o l y - L - l y s i n e , a c a t i o n i c p o l y e l e c t r o l y t e , i n aqueous s a l t s o l u t i o n s . We c o n s i d e r b r i e f l y t h e i m p l i ­ c a t i o n s of our r e s u l t s f o r the c u r r e n t t h e o r e t i c a l u n d e r s t a n d i n g . 1

A p p a r a t u s and

Method

M u s c o v i t e m i c a may be c l e a v e d t o p r o v i d e t h i n ( -2 ;im) s h e e t s t h a t a r e m o l e c u l a r l y smooth on b o t h s i d e s and w h i c h can be u s e d as s u b s t r a t e s i n s t u d y i n g s u r f a c e f o r c e s (8). F i g u r e 1 shows s c h e m a t i c a l l y t h e e s s e n t i a l f e a t u r e s o f t h e a p p a r a t u s (10) (used a t W . I . ) . Two smooth c u r v e d m i c a s h e e t s a r e g l u e d on

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

KLEIN ET AL.

Interactions Between Polymer-Bearing

Surfaces

229

c y l i n d r i c a l lenses and mounted opposite each other i n a crossed c y l i n d e r c o n f i g u r a t i o n (to avoid problems of alignment a s s o c i a t e d with two p a r a l l e l s u r f a c e s ) : the top sheet i s r i g i d l y mounted ( v i a arm B, f i g u r e 1) on a p i e z o c r y s t a l while the bottom surface i s mounted onto the r i g i d , movable arm A v i a a f l e x i b l e l e a f s p r i n g of s p r i n g constant K. The c l o s e s t d i s t a n c e D between the surfaces i s measured by an o p t i c a l method i n v o l v i n g m u l t i p l e beam w h i t e - l i g h t i n t e r f e r o m e t r y (10) between the mica sheets (which are h a l f - s i l v e r e d on t h e i r glued side) and may be determined to w i t h i n ± 0.3 nm. D i s c o n t r o l l e d v i a a three-stage mechanism, of which the p i e z o c r y s t a l i s the f i n e c o n t r o l stage (to ± 0.3 nm) . The f o r c e F(D) between the surfaces i s measured by applying a known r e l a t i v e displacement AD between the two r i g i d supports A and B, (by applying a known voltage to the p i e z o c r y s t a l , say) and at the same time observing - using the o p t i c a l i n t e r f e r o m e t r y technique - the a c t u a l motion AD of the surfaces r e l a t i v e to each other. I f there i s no f o r c e between the surfaces then we expect AD = AD , and i f they a t t r a c t , Δ0 > AD ; i f the surfaces r e p e l each other, t h e i r r e l a t i v e displacement AD w i l l be l e s s than ADo, and i f they a t t r a c t , AD > AD (the d i f f e r e n c e i n both cases being taken up by the l e a f s p r i n g ) . In general,

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

Q

Q

0

C

F ( D + AD) + K ( A D

0

- AD)

(1)

(K being the l e a f - s p r i n g constant) and by s t a r t i n g measurements with the surfaces f a r apart, where F ( D ) * 0, f o r c e p r o f i l e s may be determined. The method a l s o allows the measurement of the mean r e f r a c t i v e index n(D) of the medium between the surfaces ( 9 ) , and from t h i s the amount Γ of adsorbed species per u n i t area of mica may be evaluated. F i n a l l y the mean radius of curvature R of the c y l i n d r i c a l l y curved mica surfaces near the contact area may a l s o be c a l c u l a t e d from the shape of the i n t e r f e r e n c e f r i n g e s . Procedure. P r i o r to an experiment a l l parts of the apparatus com­ ing i n contact with s o l u t i o n are thoroughly cleaned and d r i e d (glass parts by standing i n sulphachromic a c i d overnight, metal and D e l r i n p a r t s by s o n i c a t i o n i n degreasing agents and d i l u t e a c i d , and a l l p a r t s f i n a l l y r i n s e d i n f i l t e r e d ethanol and d r i e d i n a laminar flow c a b i n e t ) . The apparatus i s then assembled, closed and mounted i n a v i b r a t i o n - f r e e , thermally i n s u l a t e d box. The mica surfaces are brought to contact i n a i r , and the o p t i c a l parameters of the system are noted: pure solvent i s added t o the g l a s s c e l l ( f i g u r e 1) so as to immerse the s u r f a c e s , and F(D) i s measured ( i n the absence of polymer). A t t h i s stage the presence of dust or other contaminant on the surface may be noted, and only experiments f r e e of such a r t e f a c t s are taken to the next stage. Polymer i s then added t o the r e q u i r e d c o n c e n t r a t i o n , and the surfaces allowed to incubate i n the s o l u t i o n f o r ( g e n e r a l l y ) s e v e r a l hours, to permit adsorption to take p l a c e . F(D) i s then again measured, and i f necessary the polymer s o l u t i o n may be r e -

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

POLYMER ADSORPTION AND DISPERSION STABILITY

230

p l a c e d by s o l v e n t ( t o l e a v e o n l y t h e s u r f a c e a d s o r b e d p o l y m e r i n i n t h e s y s t e m ) , and F(D) m e a s u r e d once more. V a r i a t i o n s on t h i s p r o c e d u r e f o r t h e d i f f e r e n t s y s t e m s s t u d i e d w i l l be d e s c r i b e d i n t h e R e s u l t s and D i s c u s s i o n ' S e c t i o n . Materials. U n l e s s o t h e r w i s e s t a t e d , a l l c h e m i c a l s and s o l v e n t s w e r e a n a l y t i c a l g r a d e m a t e r i a l s ( F l u k a and B.D.H.), and w e r e u s e d as r e c e i v e d . The w a t e r u s e d f o r w a s h i n g and p r e p a r a t i o n o f a q ­ ueous e l e c t r o l y t e s o l u t i o n s was d e i o n i z e d and f r e s h l y d o u b l e - d i s ­ tilled in a fused-silica s t i l l . A l l l i q u i d s a r e f i l t e r e d (0.22 pn M i l l i p o r e or Fluoropore f i l t e r s ) p r i o r to i n t r o d u c t i o n i n t o the glass c e l l . The m i c a u s e d t h r o u g h o u t was B e s t Q u a l i t y FS/GS g r a d e 2 M u s c o v i t e Ruby m i c a , m i n e d i n K e n y a ( M i c a and M i c a n i t e L t d . , U.K.). Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

1

R e s u l t s and

Discussion

The f o r c e - d i s t a n c e p r o f i l e s p r e s e n t e d i n t h e f o l l o w i n g s e c t i o n s a r e g e n e r a l l y p l o t t e d as F ( D ) / R v . D , i . e . t h e f o r c e a x i s i s 'nor­ m a l i z e d ' by d i v i d i n g F(D) by t h e mean r a d i u s R o f t h e m i c a s h e e t s . In the Derjaguin approximation (11), F ( D ) / R = 2πΕ(ϋ)

(2)

where E(D) i s t h e i n t e r a c t i o n e n e r g y p e r u n i t s u r f a c e a r e a b e t w e e n two f l a t , p a r a l l e l p l a t e s a d i s t a n c e D a p a r t , o b e y i n g t h e same f o r c e law. I n t h i s way t h e e f f e c t o f d i f f e r e n t c u r v a t u r e o f t h e m i c a s u r f a c e s i n t h e d i f f e r e n t e x p e r i m e n t s i s e l i m i n a t e d . Where t h i s i s not done, the v a l u e of R i s g i v e n e x p l i c i t y i n the f i g u r e caption. P o l y s t y r e n e i n Cyclohexane at Τ < θ The f o r c e p r o f i l e b e t w e e n b a r e m i c a s u r f a c e s immersed i n p u r e c y c l o ­ h e x a n e a t 24°C i s shown i n f i g u r e 2. No f o r c e ( w i t h i n e r r o r ) i s d e t e c t e d as t h e s u r f a c e s a p p r o a c h f r o m l a r g e D down t o D « 12 nm. when a t t r a c t i o n s e t s i n . A t t h e p o i n t J ( f i g u r e 2) t h e s u r f a c e s jump i n t o t h e i r a i r c o n t a c t p o s i t i o n ( w i t h i n e r r o r ) . Such jumps a r e due t o a m e c h a n i c a l i n s t a b i l i t y w h e n e v e r 3F(D)/8D ^ K, t h e s p r i n g c o n s t a n t o f t h e l o w e r l e a f - s p r i n g ( f i g u r e 1 ) . The b r o k e n l i n e i s t h e t h e o r e t i c a l van d e r W a a l s a t t r a c t i o n F(D) = -AR/6D , e x p e c t e d b e t w e e n c r o s s e d c y l i n d e r s o f r a d i u s R (R = 0.66 cm) w h e r e A i s t h e a p p r o p r i a t e Hamaker c o n s t a n t ( e s t i m a t e d as 1 χ 10""^0 j f o r m i c a i n c y c l o h e x a n e ( 1 2 ) ) . The d a t a o f f i g u r e 2 c o u l d be c o n ­ s t r u e d as i n d i c a t i n g a v a n - d e r - W a a l s - l i k e i n t e r a c t i o n b e t w e e n t h e m i c a s u r f a c e s , t h o u g h we n o t e t h a t H o r n e t a l (12) have r e c e n t l y p r e s e n t e d d a t a i n d i c a t i n g o s c i l l a t i n g f o r c e s between m i c a s u r f a c e s i n d r i e d c y c l o h e x a n e f r o m w h i c h w a t e r had b e e n t h o r o u g h l y removed. These o s c i l l a t i o n s d i s a p p e a r e d , h o w e v e r , when t h e s o l v e n t was n o t e s p e c i a l l y d r i e d , i n accord w i t h the present o b s e r v a t i o n s . Poly­ s t y r e n e was t h e n i n t r o d u c e d i n t o t h e c e l l t o a c o n c e n t r a t i o n o f

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

KLEIN ET AL.

Interactions Between Polymer-Bearing

Surfaces

231

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

Transmitted light

2 cm Collimated white light

F i g u r e 1. S e c t i o n o f a p p a r a t u s u s e d t o measure s u r f a c e - s u r face forcesbetween mica sheets. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 1 0 , C o p y r i g h t 1983, R o y a l S o c i e t y o f C h e m i s t r y ) .

20

40

60

80

D(nm) F i g u r e 2. F o r c e b e t w e e n c u r v e d , b a r e m i c a s u r f a c e s ( r a d i u s R) a d i s t a n c e D a p a r t i n C y c l o h e x a n e . • » R = 0.35 cm.; 0, R = 0.66 cm. B r o k e n l i n e i s t h e o r e t i c a l v a n d e r Waals a t t r a c t i o n ( s e e text). (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 10, C o p y r i g h t 1983, R o y a l S o c i e t y o f C h e m i s t r y ) .

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

232

POLYMER ADSORPTION AND DISPERSION STABILITY

7 ± 2 yg m l and t h e s u r f a c e s l e f t t o i n c u b a t e i n t h e p o l y m e r s o l u t i o n f o r some 10 h o u r s , a l o n g way a p a r t (D - 3mm). Two a n i o n i c a l l y p o l y m e r i z e d p o l y s t y r e n e samples ( P r e s s u r e Chemicals) w e r e u s e d , P S I (M^ = 6.10$) and PS2 (M^ = 1.0 χ 10$. Μ^/Μ £ΐ.1 for both polymers). F o l l o w i n g i n c u b a t i o n F ( D ) was m e a s u r e ( a t 24° ± 2°C), and t h e s o l u t i o n was t h e n r e p l a c e d by p u r e c y c l o h e x a n e and F ( D ) meas­ ured again. The r e s u l t s a r e shown i n f i g u r e 3, f o r ΡSI. Once a g a i n t h e r e i s l i t t l e i n t e r a c t i o n b e t w e e n t h e s u r f a c e s as t h e y a p p r o a c h f r o m a l o n g way a p a r t , b u t a t a r o u n d D ^ 60 nm an a t ­ t r a c t i o n i s o b s e r v e d , w h i c h i n c r e a s e s u n t i l t h e s u r f a c e s jump i n f r o m t h e p o i n t A t o a new e q u i l i b r i u m p o s i t i o n a t B . F u r t h e r ap­ p r o a c h r e s u l t s i n i n c r e a s i n g r e p u l s i o n as shown ( a l s o i n s e t t o figure 3). On s e p a r a t i o n , t h e f o r c e d e c r e a s e s , b e c o m i n g a t t r a c ­ t i v e again (F(D) < 0 ) , u n t i l t h e s u r f a c e s jump a p a r t f r o m t h e p o i n t C o u t t o a new e q u i l i b r i u m p o s i t i o n a t E; f u r t h e r s e p a r a ­ t i o n shows l i t t l e i n t e r a c t i o n b e y o n d E. Further compression-de­ c o m p r e s s i o n c y c l e s f u l l y r e p r o d u c e d t h e above F v. D b e h a v i o u r . The jumps a t A and C, as n o t e d e a r l i e r , a r e due t o i n s t a b i l i t i e s , and o c c u r b e c a u s e a t t h e s e p o i n t s 3F(D)/3D ^ K , t h e l e a f - s p r i n g constant. The r e f r a c t i v e i n d e x n ( D ) o f t h e medium s e p a r a t i n g t h e m i c a s u r f a c e s , b o t h b e f o r e and a f t e r a d s o r p t i o n o f p o l y m e r , was a l s o d e t e r m i n e d , and t h e r e s u l t s a r e shown i n f i g u r e 4. Within e r r o r n ( D ) does n o t change on r e p l a c i n g t h e p o l y m e r s o l u t i o n by pure s o l v e n t , nor f o l l o w i n g s e v e r a l compression/decompression cycles. This strongly i n d i c a t e s a q u a s i - i r r e v e r s i b l e adsorption of the polymer onto the m i c a s u r f a c e s , i n a c c o r d w i t h independent micro-balance experiments of p o l y s t y r e n e a d s o r p t i o n onto mica (13). The v a l u e o f t h e a d s o r b a n c e Γ ( f o r PS1) d e d u c e d f r o m n ( D ) i s 6 ± 1 mg m~2 o f m i c a s u r f a c e , a g a i n i n a c c o r d w i t h i n d e p e n d e n t a d s o r b a n c e measurements ( 1 3 ) . The F ( D ) v. D p r o f i l e s f o l l o w i n g i n c u b a t i o n o f PS2 (M = 1 0 ) a r e n o t shown, b u t f o l l o w e d t h e same q u a l i t a t i v e t r e n d : no i n ­ t e r a c t i o n down t o D - 25 nm, when a t t r a c t i o n s e t i n , and f i n a l l y , on c l o s e r a p p r o a c h , a s t r o n g r e p u l s i v e w a l l a t D ^ 6 nm. The m a i n f e a t u r e s o f t h e f o r c e - d i s t a n c e p r o f i l e s a r e i ) an e f f e c t i v e e x t e n s i o n β f r o m t h e s u r f a c e o f some 1.5 R f o r each ad­ sorbed l a y e r , where R i s the u n p e r t u r b e d r a d i u s of g y r a t i o n f o r the r e s p e c t i v e p o l y m e r s . These v a l u e s o f δ a r e comparable w i t h e l l i p s o m e t r i c (14) and v i s c o m e t r i c (15) s t u d i e s o f a b s o r b e d l a y e r t h i c k n e s s e s i n v a r i o u s s y s t e m s u n d e r Θ-conditions; i i ) an i n ­ i t i a l a t t r a c t i o n f o l l o w e d u l t i m a t e l y by a s t r o n g r e p u l s i o n . T h i s may be u n d e r s t o o d by c o n s i d e r i n g t h e i n t e r a c t i o n s b e t w e e n o p p o s i n g segments as t h e y come i n t o o v e r l a p ( 1 0 ) : i n t h e p o o r s o l v e n t c o n l i t i o n s (T = 24°C < Θ = 35°C) o f t h e p r e s e n t i n v e s t i g a t i o n t h e o s ­ m o t i c i n t e r a c t i o n s a r e a t t r a c t i v e s o l o n g as t h e c o n c e n t r a t i o n o f o v e r l a p p i n g segments i s w i t h i n t h e r a n g e o f c o n c e n t r a t i o n s e x p e c ­ ted f o r the b i p h a s i c r e g i o n , i . e . the range of c o n c e n t r a t i o n s f o r w h i c h p o l y s t y r e n e i n c y c l o h e x a n e w o u l d f l o c c u l a t e . F o r PS1 a t 24°C t h i s c o r r e s p o n d s t o c o n c e n t r a t i o n s o f up t o 25% p o l y m e r ( 1 0 ) :

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

η

5

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

KLEIN ET AL,

Interactions Between Polymer-Bearing

Surfaces

233

1001-

z

• • 0

1

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

Q ST

Κ)

•ο Oh - ^

20

D/nm

Êfé # « H * ^ - o ^ - o * - » I estimated error

-5

50

100 D/nm

Figure 3 F o r c e v . D i s t a n c e D between curved m i c a s u r f a c e s (R = 0.66 cm) f o l l o w i n g 10 h r s . i n c u b a t i o n i n P S 1 s o l u t i o n a t 24°C. ,0 - i n s o l u t i o n , · - f o l l o w i n g r e p l a c e m e n t o f s o l u t i o n b y pure cyclohexane. (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 10, Copyright 1983, R o y a l S o c i e t y o f C h e m i s t r y ) .

1.60 h 1.56h & 152h

i

1 48 !44h 1 40

60

80

D/nm F i g u r e 4. V a r i a t i o n o f r e f r a c t i v e i n d e x n ( D ) o f medium s e p a r a t i n g m i c a s u r f a c e s D a p a r t . 0 - i n p u r e c y c l o h e x a n e ; Δ-following i n c u b a t i o n i n PS1 s o l u t i o n ; à - a f t e r r e p l a c i n g s o l u t i o n by pure cyclohexane. ( a ) - η(bulk p o l y s t y r e n e ) ; ( b ) - η(pure c y c l o ­ hexane) . (Reproduced w i t h p e r m i s s i o n from r e f e r e n c e 10, C o p y r i g h t 1983, R o y a l S o c i e t y o f C h e m i s t r y ) .

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

234

POLYMER ADSORPTION AND DISPERSION STABILITY

f o r concentrations higher than t h i s the osmotic i n t e r a c t i o n s are once again r e p u l s i v e . Since the adsorption of polymer onto the mica i s e s s e n t i a l l y i r r e v e r s i b l e , compression of the surfaces (ie. reducing D) e v e n t u a l l y increases the polymer concentration i n the gap beyond t h i s l i m i t , and the i n t e r a c t i o n changes from a t ­ t r a c t i o n to r e p u l s i o n . Reference to the r e f r a c t i v e index p r o f i l e n(D) shows that the mean polymer volume f r a c t i o n i n the gap f o r D - 20 nm, i . e . , at the p o i n t where the changeover begins from a t t r a c t i o n to r e p u l s i o n ( f i g u r e 3), i s i n f a c t about 25%, i n sup­ port of the q u a l i t a t i v e explanation above. A more q u a n t i t a t i v e model f o r the form of the f o r c e - d i s t a n c e p r o f i l e between adsorbed polymer l a y e r s i n poor solvent c o n d i t i o n s , based on the above ideas, has r e c e n t l y been presented by Pincus and one of us (16). This i s an approach ( f i r s t described by De Gennes (17) f o r the case of adsorbed polymers i n good- and Θs o l v e n t s ) whereby the excess f r e e energy E(D) of adsorbed polymer i n the gap between two surfaces a d i s t a n c e D apart i s c a l c u l a t e d with respect to the polymer segmental d i s t r i b u t i o n across the gap. By minimizing E(D) i t i s p o s s i b l e to deduce the e q u i l i b r i u m segmental d i s t r i b u t i o n and the value of E(D) f o r any D, and hence the d i s j o i n i n g pressure ird = - 8E(D)/8D. The p r e d i c t i o n s of these c a l c u l a t i o n s (16) are i n good q u a l i t a t i v e and q u a n t i t a t i v e accord with the present r e s u l t s f o r Τ < Θ. Polystyrene i n Cyclohexane at Τ £ Θ By mounting a small heating element w i t h i n the g l a s s c e l l ( f i g u r e 1) i t becomes p o s s i b l e to heat the polymer s o l u t i o n , monitoring the temperature v i a a small thermocouple c l o s e to the mica s u r f a c e s . Because of the extreme s e n s i t i v i t y of the present approach to changes i n D, i t i s not p r a c t i c a b l e to thermostat the system, but r a t h e r one allows a steady-state temperature to be reached, where the power provided by the h e a t i n g c o i l equals the heat l o s s e s from the system. In t h i s way s u f f i c i e n t l y steady temperatures may be a t t a i n e d over the time of the f o r c e measurements. F i g u r e 5 shows the f o r c e - d i s t a n c e p r o f i l e between l a y e r s of PS1 adsorbed on mica: f o l l o w i n g overnight adsorption at room temperature F(D) was measured at 23°C (curve ( a ) , f i g u r e 5); the r e s u l t i n g p r o f i l e i s very s i m i l a r to that obtained p r e v i o u s l y ( f i g u r e 3) under the same c o n d i t i o n s . The c e l l was then heated to 37.2°C and F(D) was again measured (curve ( b ) , F i g . 5 ) . The r e s u l t i n g f o r c e - d i s ­ tance p r o f i l e at the higher temperature s t i l l shows a p e r s i s t e n t (though considerably weaker) a t t r a c t i v e r e g i o n , of s i m i l a r range to the p r o f i l e at room temperature (curve ( a ) ) . However, the distance of c l o s e s t approach on s t r o n g l y compressing the surfaces i s now about h a l f (6.5 nm) of i t s previous value (~ 12 nm) f o r an equivalent compression. On r e - c o o l i n g the system to room temper­ ature, the behaviour i n d i c a t e d i n curve (a) was recovered, and on r e - h e a t i n g , curve (b) was again obtained.

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

KLEIN ET AL.

Interactions Between Polymer-Bearing

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

f 4000

235

Surfaces

N/m at 65A

1000 | f t 3000/xN/m (3 120 A PS(6-10 )/CH, D

500

23°C

P S ( 6 - 1 0 ) / C H , 37°C - ·

1

5

Ί Jt tr

ο

U-500|

-1000

.a

500

1000

D(A)

Figure 5. F(D)/R v . d i s t a n c e D between m i c a s u r f a c e s b e a r i n g a d s o r b e d P S 1 l a y e r s , a t 23°C and 37°C. ( A d a p t e d f r o m r e f e r e n c e 18).

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

P O L Y M E R A D S O R P T I O N AND DISPERSION STABILITY

236

The p e r s i s t e n t a t t r a c t i o n between the adsorbed PS1 l a y e r s at 37.2°C (higher than the Θ-temperature f o r the system, 34.5°C) i s at f i r s t s i g h t p u z z l i n g , i n view of our previous i n t e r p r e t a t i o n of the a t t r a c t i o n at room temperature being due to osmotic e f f e c t s r e s u l t i n g from the Τ < Θ c o n d i t i o n s . There are two p o s s i b l e ex­ planations for t h i s : the concept of a Θ-temperature d e r i v e s from a c o n d i t i o n i n f r e e s o l u t i o n , when the net van der Waals a t r a c t i o n s between the segments of a polymer e x a c t l y compensate the r e p u l ­ s i v e 'hard-core excluded volume i n t e r a c t i o n s . I t may not be j u s t i f i e d to assume that the e f f e c t i v e 'Θ-temperature' i n the c l o s e v i c i n i t y of a w a l l i s i d e n t i c a l to the bulk value (35°C), and i n that case one may need to increase the temperature beyond the present value of 37°C i n order to e n t i r e l y e l i m i n a t e osmotic a t t r a c t i o n e f f e c t s (18). The other p o s s i b i l i t y i s suggested by the f a c t that the strong r e p u l s i v e 'wall' at 37°C, at D ~ 6.5 nm, ( f i g u r e 5 curve (b)) i s much c l o s e r i n than at 23°C ( f i g u r e 5 curve ( a ) ) . This i m p l i e s some desorption of polymer has occurred due to r a i s i n g the temperature : q u a l i t a t i v e l y one may imagine that such desorption has r e l e a s e d surface b i n d i n g s i t e s on both mica s u r f a c e s , and thus f a c i l i t a t e d a t t r a c t i v e ' b r i d g i n g ' e f f e c t s by adsorbed polymer across the i n t e r - s u r f a c e gap. In f a c t some c a l c u l a t i o n s by Scheuj tens and F l e e r (19) seem to p r e d i c t such a t t r a c t i o n at Τ = Θ, but s i n c e t h e i r model assumes thermodynamic e q u i l i b r i u m c o n d i t i o n s ( i . e . the surface-adsorbed polymer may ex­ change with a f r e e polymer s o l u t i o n , so that complete desorption at D = 0 i s p o s s i b l e ) , and i n f a c t p r e d i c t s a t t r a c t i o n even i n good solvent c o n d i t i o n s , i t i s probably not appropriate i n the present case of i r r e v e r s i b l y adsorbed polymer. A more promising approach i s v i a the g e n e r a l i z e d van der Waals approach used by De Gennes ( 1 7 ) , and Pincus and K l e i n (_16), where the c o n d i t i o n of i r r e v e r s i b l e adsorption may be e x p l i c i t l y i n c l u d e d . Experimental support f o r the suggestion that depleted s u r f a c e l a y e r s r e s u l t i n a t t r a c t i v e f o r c e s (at Τ ^ Θ) has come from recent experiments (J.K. and Y . A . , submitted) where mica surfaces par­ t i a l l y covered by polystyrene i n cyclopentane above the Θ-temper­ ature show a c l e a r mutual a t t r a c t i o n , which disappears when f u l l surface coverage by the polymer i s a t t a i n e d . 1

1

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

1

Polyethylene Oxide (PEO)

i n a Good Aqueous Solvent

The i n t e r a c t i o n between bare mica surfaces i n 0.1 M KNO3 (pH 5.5) aqueous e l e c t r o l y t e i s shown i n f i g u r e 6a. The s t r a i g h t l i n e (curve (a)) i n d i c a t e d on the l o g a r i t h m i c - l i n e a r p l o t i s i n accord with the exponential r e l a t i o n F/R « Θ -

κ Β

(3)

expected due to overlap of the e l e c t r o s t a t i c double-layers asso­ c i a t e d w i t h the mica surfaces as they approach each other, where κ i s the Debye-Huckel parameter ( 9 ) ; the corresponding surface

In Polymer Adsorption and Dispersion Stability; Goddard, E. D., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1984.

15.

KLEIN ET AL.

Interactions Between Polymer-Bearing

Surfaces

237

30

Downloaded by EMORY UNIV on February 4, 2016 | http://pubs.acs.org Publication Date: February 10, 1984 | doi: 10.1021/bk-1984-0240.ch015

ε ζ

t Q

«