Polymer Solar Cells Employing Water-Soluble Polypyrrole

Aug 14, 2017 - Institute of Polymer Optoelectronic Materials and Devices, State Key ... College of Information Science & Electronic Engineering, Zheji...
0 downloads 0 Views 4MB Size
Article pubs.acs.org/JPCC

Polymer Solar Cells Employing Water-Soluble Polypyrrole Nanoparticles as Dopants of PEDOT:PSS with Enhanced Efficiency and Stability Xingye Zhang,†,§,# Bin Zhang,†,‡,# Xinhua Ouyang,*,† Lihui Chen,† and Hui Wu*,† †

College of Materials Engineering, Fujian Agriculture and Forest University, Fuzhou, Fujian 350108, P. R. China Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China § College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

J. Phys. Chem. C 2017.121:18378-18384. Downloaded from pubs.acs.org by KAOHSIUNG MEDICAL UNIV on 10/04/18. For personal use only.



S Supporting Information *

ABSTRACT: Water-soluble polypyrrole nanoparticles (PPy NPs) were developed and demonstrated as effective modifiers of PEDOT:PSS. By using them as the anode interfaces of polymer solar cells (PSCs), these PSCs showed a high power conversion efficiency (PCE) with the value of 9.48% as doping 20% PPy NPs into PEDOT:PSS. Interestingly, the enhancement of ∼16% and ∼150% compared with that of pure PEDOT:PSS (PCE = 8.04%) and PEDOT:PSS-free (PCE = 3.76%) was observed. Importantly, the stability of these devices with 20% PPy NPs doped PEDOT:PSS was also improved significantly. The enhanced performance was possible attributed to the changes of pH value, enhanced conductivities, and morphological changes of PEDOT:PSS. Our study supplies an alternative method to obtain high-efficient PSCs with the development of polymer NPs interfacial materials.



PEDOT:PSS film usually exhibits low conductivity (90%) was purchased from Nippon Sheet Glass Company, Ltd., and cleaned by sonication in detergent, deionized water, acetone, and isopropyl alcohol and dried in a nitrogen stream, followed by an UV−ozone treatment of 20 min. A 35 nm-thick PEDOT: PSS (Baytron P VP Al 4083, J&K Co.) or 20% PPy NPs doped

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b05767. Photographs of color changes, dark J−V characteristics, and elemental composition (PDF)



AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected] (X.O.). *E-mail: [email protected] (H.W.). ORCID

Bin Zhang: 0000-0002-7176-699X Xinhua Ouyang: 0000-0003-2911-8283 Hui Wu: 0000-0002-9755-8371 Author Contributions #

These authors contributed equally to this work

Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This work was financially supported from the National Natural Science Foundation of China (21674123). H.W. thanks the Award Program for a Minjiang Scholar Professorship. 18383

DOI: 10.1021/acs.jpcc.7b05767 J. Phys. Chem. C 2017, 121, 18378−18384

Article

The Journal of Physical Chemistry C



solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. J. Mater. Chem. C 2015, 3, 1082−1090. (19) Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Guntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408. (20) Preinfalk, J. B.; Schackmar, F. R.; Lampe, T.; Egel, A.; Schmidt, T. D.; Brutting, W.; Gomard, G.; Lemmer, U. Tuning the microcavity of organic light emitting diodes by solution processable polymernanoparticle composite layers. ACS Appl. Mater. Interfaces 2016, 8, 2666−2672. (21) Zhang, S.; Shao, Y. Y.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphenepolypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4− from Wastewater. ACS Appl. Mater. Interfaces 2011, 3, 3633−3637. (22) Guo, F. M.; Xu, R. Q.; Cui, X.; Zhang, L.; Wang, K. L.; Yao, Y. W.; Wei, J. Q. High performance of stretchable carbon nanotubepolypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 2016, 4, 9311−9318. (23) Cataldo, F.; Omastová, L. On the ozone degradation of polypyrrole. Polym. Degrad. Stab. 2003, 82, 487. (24) Wang, Q.; Chueh, C. C.; Eslamian, M.; Jen, A. K. Y. Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 2016, 8, 32068−32076. (25) Noh, Y. J.; Park, S. M.; Yeo, J. S.; Kim, D. Y.; Kim, S. S.; Na, S. I. Efficient PEDOT:PSS-free polymer solar cells with an easily accessible polyacrylonitrile polymer material as a novel solution-processable anode interfacial layer. ACS Appl. Mater. Interfaces 2015, 7, 25032.

REFERENCES

(1) Yin, Z. G.; Wei, J. J.; Zheng, Q. D. Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. 2016, 3, 1500362. (2) Lin, X. F.; Yang, Y. Z.; Nian, L.; Su, H.; Ou, J. M.; Yuan, Z. K.; Xie, F. Y.; Hong, W.; Yu, D. S.; Zhang, M. Q.; et al. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency. Nano Energy 2016, 26, 216−223. (3) Zou, J. Y.; Li, C. Z.; Chang, C. Y.; Yip, H. L.; Jen, A. K. Y. Interfacial Engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells. Adv. Mater. 2014, 26, 3618−3623. (4) Yeo, J. S.; Kang, M.; Jung, Y. S.; Kang, R.; Lee, S. H.; Heo, Y. J.; Jin, S. H.; Kim, D. Y.; Na, S. I. In-depth considerations for better polyelectrolytes as interfacial materials in polymer solar cells. Nano Energy 2016, 21, 26−38. (5) He, Z. C.; Xiao, B.; Liu, F.; Wu, H. B.; Yang, Y. L.; Xiao, S.; Wang, C.; Russell, T. P.; Cao, Y. Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 2015, 9, 174− 179. (6) Ouyang, X. H.; Peng, R. X.; Ai, L.; Zhang, X. Y.; Ge, Z. Y. Efficient polymer solar cells employing a non-conjugated smallmolecule electrolyte. Nat. Photonics 2015, 9, 520−524. (7) Jung, K.; Song, H. J.; Lee, G.; Ko, Y.; Ahn, K.; Choi, H.; Kim, J. Y.; Ha, K.; Song, J.; Lee, J. K.; et al. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 2014, 8, 2590−2601. (8) Dai, A.; Zhou, Y. H.; Shu, A. L.; Mohapatra, S. K.; Wang, H.; Fuentes-Hernandez, C.; Zhang, Y. D.; Barlow, S.; Loo, Y. L.; Marder, S. R.; et al. Enhanced charge-carrier injection and collection via lamination of doped polymer layers p-doped with a dolutionprocessible molybdenum complex. Adv. Funct. Mater. 2014, 24, 2197−2204. (9) Feng, T.; Xiao, B.; Lv, Y.; Xie, Z. Q.; Wu, H. B.; Ma, Y. G. Domain-like ultra-thin layers deposited electrochemically from carbazole-functionalized perylene bisimides for electron collection in inverted photovoltaic cells. Chem. Commun. 2013, 49, 6283−6285. (10) Kim, J. S.; Park, J. H.; Lee, J. H.; Jo, J.; Kim, D. Y.; Cho, K. Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Appl. Phys. Lett. 2007, 91, 112111. (11) Chao, Y. H.; Wu, J. S.; Wu, C. E.; Jheng, J. F.; Wang, C. L.; Hsu, C. S. Solution-processed (Graphene oxide)-(d(0) transition metal oxide) composite anodic buffer layers toward high-performance and durable inverted polymer solar cells. Adv. Energy Mater. 2013, 3, 1279−1285. (12) Yip, H. L.; Jen, A. K. Y. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 2012, 5, 5994−6011. (13) Chou, T. R.; Chen, S. H.; Chiang, Y. T.; Lin, Y. T.; Chao, C. Y. Highly conductive PEDOT:PSS films by post-treatment with dimethyl sulfoxide for ITO-free liquid crystal display. J. Mater. Chem. C 2015, 3, 3760−3766. (14) Oh, S. H.; Heo, S. J.; Yang, J. S.; Kim, H. J. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMFmodulated PEDOT:PSS buffer layers. ACS Appl. Mater. Interfaces 2013, 5, 11530−11534. (15) Lin, Y. J.; Ni, W. S.; Lee, J. Y. Effect of incorporation of ethylene glycol into PEDOT: PSS on electron phonon coupling and conductivity. J. Appl. Phys. 2015, 117, 215501. (16) Lin, Y. J.; Ni, W. S.; Lee, J. Y. Erratum: Effect of incorporation of ethylene glycol into PEDOT: PSS on electron phonon coupling and conductivity. J. Appl. Phys. 2015, 118, 219901. (17) Yao, K.; Salvador, M.; Chueh, C.-C.; Xin, X.-K.; Xu, Y.-X.; de Quilettes, D. W.; Hu, T.; Chen, Y.; Ginger, D. S.; Jen, A. K. Y. A General route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 2014, 4, 1400206. (18) Hao, Y.; Song, J. C.; Yang, F.; Hao, Y. Y.; Sun, Q. J.; Guo, J. J.; Cui, Y. X.; Wang, H.; Zhu, F. R. Improved performance of organic 18384

DOI: 10.1021/acs.jpcc.7b05767 J. Phys. Chem. C 2017, 121, 18378−18384