10
Polymerization by Opening of
Polymerization Reactions and New Polymers Downloaded from pubs.acs.org by UNIV OF AUCKLAND on 09/29/18. For personal use only.
Small Carbon Rings
C. P. PINAZZI, J. C. BROSSE, A. P L E U R D E A U , J. BROSSAS, G. LEGEAY, and J. C A T T I A U X Laboratoire de Chimie Organique Macromoléculaire, Equipe de Recherche Associée au Centre National de la Recherche Scientifique, Rte de Laval 72, Le Mans, France
Polymerization of cyclopropane and substituted cyclopropyl compounds was studied with cationic initiators and ZieglerNatta catalysts.
Cyclopropane, bicyclo[n.1.0]alkanes, spiro
[2.n]alkanes, bicyclopropyle, and two isomers of isoprene give rise, with Lewis acids as initiators, to oligomers whose structures generally present methyl groups in a side chain. These methyl groups stem from molecular involving
opening
of the cyclopropyl
shift during the polymerization
rearrangement
group and
step. With
hydride
Ziegler-Natta
catalysts, these monomers give oligomers whose structures are different from those observed with cationic catalysts. Dihalocyclopropyl
compounds give, with either cationic or
Ziegler-Natta catalysts, oligomers by opening of the three -carbon ring.
The structures of these polymers are the same
in both cases and are characterized by the loss of one molecule of HCl per monomer unit.
'""phis w o r k concerns the s t u d y of the p o l y m e r i z a t i o n of c y c l o p r o p a n e , s u b s t i t u t e d c y c l o p r o p a n e s , a n d conjugated c y c l o p r o p a n e s i n the presence of c a t i o n i c a n d Z i e g l e r - N a t t a p o l y m e r i z a t i o n .
T h e u n s a t u r a t i o n of
c y c l o p r o p a n e has b e e n d e s c r i b e d b y several w o r k e r s i n the s a m e w a y as unsaturated compounds.
T h e u n s a t u r a t i o n of c y c l o p r o p a n e c o m p o u n d s ,
w h i c h is the basis for the p o l y m e r i z a t i o n of these structures, c a n
be
e x p l a i n e d b y the electronic r e p a r t i t i o n o n the three c a r b o n atoms
of
the r i n g .
D e t e r m i n a t i o n of the d i p o l a r m o m e n t of c h l o r o c y c l o p r o p a n e
has s h o w n that the c a r b o n i u m i o n r e s u l t i n g f r o m the attack of the r i n g b y a c a r b o c a t i o n is s t a b i l i z e d i n a h o m o a l l y l i c structure. 141
142
POLYMERIZATION REACTIONS AND N E W POLYMERS
S e v e r a l hypotheses c o n c e r n i n g t h e electronic structure of c y c l o p r o p a n e h a v e b e e n suggested. b y Bernett
(I).
T h i s t o p i c has b e e n i n t e r e s t i n g l y p i n p o i n t e d
A cyclopropane model proposed b y W a l s h ( 2 ) indi
cates that C - C b o n d s o f t h e rings a r e c a u s e d b y a n o v e r l a p o f o n e o f the sp- h y b r i d i z e d orbitals of each c a r b o n a t o m a n d o f e a c h ( W a l s h p r o p o s e d , i n fact, a n sp
2
pane
orbital
h y b r i d i z a t i o n state f o r each c y c l o p r o
carbon). C o n s i d e r a t i o n o f t h e u n s a t u r a t i o n of c y c l o p r o p a n e l e d t h e a u t h o r
to c o m p a r e t h e attack o f a p r o t o n o n c y c l o p r o p a n e w i t h t h e f o r m a t i o n of a π c o m p l e x .
H i i c k e l ( 3 ) d e t e r m i n e d m a t h e m a t i c a l l y t h e most stable
structure f o r a p r o t o n a t e d c y c l o p r o p a n e .
T h e representation
g i v e n is
i m p e r f e c t since i t is c o n c e r n e d w i t h o n l y one resonant structure; there are three possibilities as o n e of the ρ orbitals is a n t i b o n d i n g .
I n fact,
i t has b e e n c a l c u l a t e d that t h e b o n d s f o r m e d b y t h e o v e r l a p o f t h e ρ orbitals are o c c u p i e d b y f o u r electrons, associated i n t h e o v e r l a p o f three sp
2
I n this representation,
w h i l e o n l y t w o electrons a r e
orbitals i n t h e center o f t h e r i n g .
t h e C - H b o n d s are represented
b y sp
2
hybrid
orbitals. A m o r e recent representation
o f c y c l o p r o p a n e has b e e n
proposed
b y C o u l s o n a n d M o f f i t t (4), w h o i n t r o d u c e d t h e n o t i o n o f a b e n t b o n d . T h i s representation has t h e a d v a n t a g e of m i n i m i z i n g t h e b o n d energies. T h e orbitals associated w i t h t h e C - C bonds w e r e c a l c u l a t e d as b e i n g sp '
h y b r i d i z e d , w h i l e those of t h e C - H b o n d s a r e sp '
(5).
U n d e r these c o n d i t i o n s , t h e v a l e n c e
4
12
2
responds to a b e n d i n g o f 2 2 ° .
28
hybridized
angle is 1 0 4 ° , w h i c h cor
C o u l s o n a n d G o o d w i n r e c o n s i d e r e d this
p r o b l e m , a p p l y i n g t h e p r i n c i p l e of m a x i m u m o r b i t a l o v e r l a p ( 6 ) . T h e b e n d i n g t h e n assumes a v a l u e o f 2 1 ° 2 6 ' .
F i n a l l y , t h e w o r k of R a n d i c
a n d M a k s i c ( 7 ) gives a v a l u e o f 101 ° 3 2 ' f o r t h e C - C v a l e n c e w h i c h i n v o l v e s a b e n d i n g of 2 0 ° 4 6 . /
angle,
T h e o p t i m u m c o n f o r m a t i o n is t h e n
o b t a i n e d w h e n t h e C - C b o n d orbitals a r e sp
5
hybridized and the C - H
orbitals sp h y b r i d i z e d . 2
T h e u n s a t u r a t e d nature of c y c l o p r o p a n e a n d its derivatives suggests that they are a b l e to p o l y m e r i z e w i t h p a r t i c i p a t i o n o f t h e r i n g t h e same as C = C c o m p o u n d s . (8),
T h e first studies w e r e m a d e b y T i p p e r a n d W a l k e r
w h o u s e d a c a t i o n i c catalyst
(between 0 ° a n d - 7 8 ° ) .
( A l B r . , - H B r ) at l o w e r
temperature
T h e y s h o w e d that t h e m e c h a n i s m was s i m i
l a r to that of t h e p o l y m e r i z a t i o n of p r o p y l e n e a n d other olefins w i t h F r i e d e l - C r a f t s catalysts. A m o r e recent p a p e r ( 9 ) indicates t h e existence o f m e t h y l groups i n side chains i n c a t i o n i c p o l y m e r s of c y c l o p r o p a n e .
T h i s is n o t i n c o n
flict w i t h the existence of a IT c o m p l e x d u r i n g t h e i n i t i a t i o n step, b u t i t suggests that t h e p o l y m e r i z a t i o n m e c h a n i s m is m o r e c o m p l e x t h a n that proposed by Tipper and Walker.
10.
Opening of Carbon
PINAZZI E T A L .
Ketley
(JO)
has
same p o l y m e r b y
s h o w n that
cationic
methyl-l-butene.
143
Rings
1,1-dimethylcyclopropane
p o l y m e r i z a t i o n as
that
the
from
3-
H e assumed a π complex mechanism for initiation.
I s o p r o p y l c y c l o p r o p a n e treated
with
Lewis
p a r t i c i p a t i o n of the c y c l o p r o p y l g r o u p (11).
acids
polymerization mechanism.
polymerizes
by
I n this case n o e v i d e n c e
has b e e n f o u n d f o r a h y d r i d e shift o c c u r r i n g i n the
3-methyl-l-butene
P h e n y l c y c l o p r o p a n e has b e e n p o l y m e r i z e d
w i t h L e w i s - a c i d - t y p e initiators
(12)
and with Ziegler-Natta
catalysts
T h e p o l y m e r s h a v e a structure that i m p l i e s o p e n i n g of the three-
(13).
carbon ring.
N o r c a r a n e ( b i c y c l o [4.1.0] h e p t a n e ) reacts w i t h Z i e g l e r -
N a t t a catalysts the
gives
obtained
chain.
cyclohexane
(13)
a n d gives oligomers h a v i n g c y c l o h e x a n e units i n
It p o l y m e r i z e s b y o p e n i n g of the s m a l l r i n g , l e a v i n g the unchanged.
T h i s p a p e r deals w i t h the p o l y m e r i z a t i o n of several p u r e l y h y d r o carbonated
and gem-dihalocyclopropanic monomers.
T h e influence
of
c o n j u g a t i o n b e t w e e n a c y c l o p r o p a n e a n d one d o u b l e b o n d , a n d the i n f l u ence of the c o n j u g a t i o n
between
t w o c y c l o p r o p a n i c groups is s h o w n
for several m o n o m e r s , s u c h as spiropentane, v i n y l g e m - d i h a l o c y c l o p r o pane, a n d b i c y c l o n o n e n e .
Polymerization
of Cyclopropanic
Systems
T i p p e r a n d W a l k e r (8)
h a v e a l r e a d y s t u d i e d the kinetics of
p o l y m e r i z a t i o n of c y c l o p r o p a n e 0° and - 7 8 ° C ,
and cyclobutane
i n heptane
u s i n g a A l B r - H B r catalyst system. > r
the
between
W e have studied
the s t r u c t u r a l aspects b y s u b j e c t i n g c y c l o p r o p a n e ( M i ) a n d c y c l o b u t a n e to different types of initiators.
U s i n g a c a t i o n i c process i n the presence
of S n C l , T i C l , E t 0 - B F , a n d A l B r , b e t w e e n - 3 0 ° a n d 1 0 0 ° p o l y m e r i 4
4
2
3
z a t i o n of c y c l o p r o p a n e occurs, whereas the same initiators h a v e no effect on cyclobutane.
T h e m e c h a n i s m i n v o l v e s the f o r m a t i o n of a π c o m p l e x
w i t h one of the c y c l o p r o p a n e bonds f o l l o w e d b y a h y d r i d e shift, g i v i n g rise to structure Ρ . Λ
N M R a n d I R spectroscopy s h o w that the p o l y m e r
has a p o l y p r o p y l e n e structure. I n the presence of Z i e g l e r - N a t t a catalysts, phase, The
the
reactivities
of c y c l o p r o p a n e
c o n v e r s i o n degrees v a r y b e t w e e n CH;
i n the
and cyclobutane
heterogeneous are
1 a n d 5%, a n d the
similar.
molecular
POLYMERIZATION REACTIONS AND N E W
144
POLYMERS
w e i g h t s are 1 5 0 0 < M < 2 0 0 0 for the s o l u b l e f r a c t i o n of the p o l y m e r s . N
W i t h this k i n d of catalyst, the p o l y m e r s h a v e a p o l y e t h y l e n e s t r u c t u r e of t y p e Ρ
2
(Equation 1 ) .
Polymerization
of
GENERAL PREPARATION. methylene
to the
Bicyclo[n.l.O]alkanes
and
Spiro[2.n]alkanes.
T h e m o n o m e r s w e r e s y n t h e s i z e d b y a d d i t i o n of
d o u b l e b o n d of the
methylenecycloalkenes—Simmons
corresponding cycloalkenes
a n d S m i t h r e a c t i o n (14)—or
or
by addi
t i o n of a d i h a l o c a r b e n e f o l l o w e d b y the r e d u c t i o n of the d i h a l o c y c l o p r o p a n e g r o u p b y a N a / h y d r a t e d m e t h a n o l system ( E q u a t i o n 2 ) (15,
16):
I n t h e first case, the m e t h y l e n e is o b t a i n e d b y r e a c t i o n of a Z n - C u complex on diodomethane. i n t h e heterogeneous on
T h e a d d i t i o n r e a c t i o n itself is c a r r i e d o u t
phase.
The yields i n bicyclo compounds depend
the c o n d i t i o n of a d d i t i o n to the c y c l o a l k e n e d o u b l e b o n d .
The in
terest i n this m e t h o d lies i n the fact that the s t a r t i n g cycloolefins
are
c o m m e r c i a l l y a v a i l a b l e a n d that the y i e l d s i n b i c y c l o a l k a n e s are g o o d ( f r o m 3 0 to 8 0 % ) . are
relatively
A d i s a d v a n t a g e , h o w e v e r , is that t h e final p r o d u c t s
hard
to separate,
especially
the
high-molecular-weight
monomers. POLYMERIZATION
O F BiCYCLo[n.l.O]ALKANES.
b i c y c l o [ n . 1 . 0 ] a l k a n e series,
six w e r e
chosen
F r o m the
large-ring
b e c a u s e of t h e i r
relative
ease of synthesis: b i c y c l o [ 5 . 1 . 0 ] o c t a n e ( M ) , b i c y c l o [ 6 . 1 . 0 ] n o n a n e ( M ) , 2
bicyclo[10.1.0]tridecane ( M [n.l.OJalkanes
and
prepared
1-methylcyclqalkenes See
4
3
) , a n d the c o r r e s p o n d i n g 1 - m e t h y l b i c y c l o f r o m the
( cycloheptene,
corresponding cycloalkenes
cyclooctene,
and
or
cyclododecene).
Equation 4. C A T I O N I C P O L Y M E R I Z A T I O N O F BiCYCLo[n.l.O]ALKANES.
The
bicyclo
[n.l.0]alkanes were polymerized i n methylene chloride b y various L e w i s a c i d s : T i C l , B F < - E t 0 , a n d S n C l — w i t h c a t a l y s t / m o n o m e r m o l a r ratios 4
f r o m 4 to 15%.
2
4
T h e temperatures
A t the l o w e r temperatures
used were between 2 0 ° a n d
a n d f o r the concentrations
80°C.
u s e d , the d e g r e e
10.
Opening of Carbon
PINAZZI E T A L .
Rings
145
(R =
η = 5
H)
Mo (R = C H ) 3
(R = H ) η = 6
M
3
(3)
(R = C H ) 3
(CH ) 2
(R = H )
n
10
M
4
(R = C H ) 3
of c o n v e r s i o n to p o l y m e r s is v e r y l o w , suggesting that p o l y m e r i z a t i o n of these c o m p o u n d s necessitates r e l a t i v e l y h i g h temperatures.
T h e degrees
of p o l y m e r i z a t i o n are l o w a n d v a r y little w i t h the e x p e r i m e n t a l c o n d i tions, a n d they decrease as the r i n g size increases. effects
are
therefore
probably
responsible
for
Steric
hindrance
oligomer production.
C o n v e r s i o n s v a r y f r o m 0 to 65%, a n d are l o w e r f o r b i c y c l o [10.1.0] t r i d e cane t h a n f o r the other t w o m o n o m e r s .
F o r a given monomer,
the
degree of c o n v e r s i o n d e p e n d s o n the a m o u n t of catalyst. T h e p o l y m e r structures w e r e s t u d i e d b y i n f r a r e d spectroscopy a n d NMR.
I n f r a r e d is ineffective i n d i s t i n g u i s h i n g b e t w e e n
these three types.
polymers
of
I n a l l three cases, C - H b o n d s signals are o b s e r v e d
at 2950, 2920, a n d 1450 c m " , a n d a b a n d at 1375 c m " m a y b e a t t r i b u t e d 1
1
to m e t h y l groups. N M R spectroscopy gives m o r e d e t a i l a n d distinguishes b e t w e e n the three types of p o l y m e r s .
T h e signals r e c o r d e d i n the r e g i o n of δ = 1.4
p p m are caused b y h y d r o g e n s c a r r i e d b y the r i n g carbons, whereas the signals s i t u a t e d at 0.8-1
p p m are those
η
with
' (CH ) 2
=
of m e t h y l g r o u p h y d r o g e n s R
= H
P a
R
= CH3
?2b
R
= Η
P
R
= CH3
P b
R
= Η
P a
R
= CH
2
5
3 a
η = 6 3
n
η
=
10
4
3
P
4 b
(4)
146
POLYMERIZATION REACTIONS AND N E W POLYMERS
c a r r i e d b y the saturated carbons.
It m u s t therefore b e a s s u m e d
that
p o l y m e r i z a t i o n proceeds b y o p e n i n g of the c y c l o p r o p a n e , f o l l o w e d b y a rearrangement l e a d i n g to the f o r m a t i o n of one m e t h y l g r o u p p e r " m o n o m e r u n i t " a n d t w o i n the structures F
2 a
to P
4h
case of
l-methylbicyclo[n.l.O]alkanes;
see
( E q u a t i o n 4 ).
O f various mechanisms that m a y be p r o p o s e d , the o n l y a c c e p t a b l e one is that s u m m a r i z e d i n E q u a t i o n 5 .
It is assumed that the attack o n
the c y c l o p r o p a n e system b y the active site leads to the f o r m a t i o n of a π c o m p l e x , w h i c h later rearranges to a c a r b o c a t i o n .
T h e r u p t u r e of the
b o n d of carbons 1 a n d 2 a n d the r o t a t i o n b e t w e e n A a n d c a r b o n 2 i n volves the appearance
of a p o s i t i v e charge o n c a r b o n 1.
The primary
c a r b o c a t i o n f o r m e d w i l l b e able to rearrange i n t o a m o r e stable tertiary c a r b o c a t i o n b y h y d r i d e shift.
T h e polymers obtained b y such a mecha
n i s m w o u l d have structures Ρ> to P i , . Ά
4
T h e y are the o n l y ones h a v i n g
one m e t h y l g r o u p i n the side c h a i n p e r " m o n o m e r u n i t " a n d t w o i n the case of l - m e t h y l b i c y c l o [ n . l . O ] a l k a n e s .
It must, therefore,
be
assumed
that this is the m e c h a n i s m to b e c o n s i d e r e d , a n d that structures P P
4 b
2 a
to
are the o n l y ones that agree w i t h the d a t a .
(5)
10.
PINAZZI E T A L .
Opening of Carbon
147
Rings
T h e i n i t i a t i o n step m a y b e i n t e r p r e t e d b y a s s u m i n g that a p r o t o n gives rise to a π c o m p l e x w i t h the c y c l o p r o p a n e , w h i c h rearranges
by
h y d r i d e shift i n t o a c a r b o c a t i o n that w i l l b e the active site f o r the p o l y m erization.
The
t e r m i n a t i o n step m a y b e c o n s i d e r e d as a d e p r o t o n i z a -
t i o n i n the a p o s i t i o n f r o m the a c t i v e site of the last u n i t i n the c h a i n . T h i s h y p o t h e s i s is c o n f i r m e d e x p e r i m e n t a l l y i n o l i g o m e r s h a v i n g a v e r y l o w d e g r e e of p o l y m e r i z a t i o n b y the p r e s e n c e of w e a k N M R signals at δ =5.2
p p m (characteristic
of v i n y l i c p r o t o n s ) a n d at a b o u t δ = 2
ppm
( m e t h y l groups c a r r i e d b y C = C ). T h e s e results agree w i t h those of v a r i o u s authors w h o h a v e d e m o n strated the t r a n s f o r m a t i o n of b i c y c l o [ n . l . 0 ] a l k a n e t y p e structures u n d e r a c i d catalysis into c o m p o u n d s h a v i n g a m e t h y l g r o u p . not p o s s i b l e to v i s u a l i z e a p r i o r i s o m e r i z a t i o n i n t o f o l l o w e d b y its p o l y m e r i z a t i o n .
H o w e v e r , i t is
methylcycloalkenes
O n e m u s t c o n s i d e r that p o l y m e r i z a t i o n
occurs i n a single step b y t r a n s f o r m a t i o n i n t o the c a r b o c a t i o n .
E v e n so,
the presence of m o n o m e r units w i t h the m e t h y l g r o u p not i n the side c h a i n b u t c a r r i e d b y c a r b o n atoms i n the r i n g s h o u l d not b e e x c l u d e d . If s u c h units existed, t h e y w o u l d b e present i n a v e r y s m a l l p r o p o r t i o n w i t h respect to the m a i n m o n o m e r u n i t . P O L Y M E R I Z A T I O N OF BiCYCLo[n.l.O]ALKANES B Y M E T A L - H A L I D E
PLEXES.
Bicyclo[4.1.0]heptane
i z e d w i t h Z i e g l e r - N a t t a t y p e catalysts s t u d y of the reactivities nonane,
W e h a v e c o n t i n u e d the
bicyclo[5.1.0]octane,
a n d b i c y c l o [10.1.0] t r i d e c a n e , (M
(13).
of the h i g h e r h o m o l o g s of n o r c a r a n e
t r a n s i t i o n m e t a l c o m p l e x catalysts: bicyclo[n.l.0]alkane
2
to M ) . 4
a n d the c o r r e s p o n d i n g 1 - m e t h y l -
The
t i o n seems to o c c u r at l o w temperatures. titanium, v a n a d i u m , and tungsten
with trialkylaluminum ( E t A l , 3
toward
bicyclo[6.1.0]-
reactions
were carried out i n
sealed tubes i n hexane, u n d e r n i t r o g e n , at 8 0 ° C f o r 24 hours. used:
COM
( n o r c a r a n e ) has a l r e a d y b e e n p o l y m e r
N o reac
V a r i o u s catalyst systems w e r e halides
used i n
( i - B u ) A l , and B u A l ) . 3
3
conjunction
T h e best con
versions w e r e o b t a i n e d w i t h the complexes of t r i e t h y l a l u m i n u m , t r i i s o b u t y l a l u m i n u m , or t r i b u t y l a l u m i n u m w i t h stannic c h l o r i d e . formed
with
titanium
tetrachloride
produce
no
Complexes
polymer.
Although
o l i g o m e r s are o b t a i n e d i n a l l cases, the average degrees of p o l y m e r i z a t i o n are g e n e r a l l y h i g h e r t h a n w i t h c a t i o n i c p o l y m e r i z a t i o n s ( f r o m
five
to e i g h t o n a v e r a g e ) , a n d are n e a r l y i d e n t i c a l f o r a l l six m o n o m e r s . Structural
determination
of
the
polymers
because of the c o m p l e x i t y of the spectra.
obtained
was
difficult
I n f r a r e d spectra s h o w b a n d s
a l r e a d y o b s e r v e d i n c a t i o n i c p o l y m e r i z a t i o n at 2950, 2920, a n d 1450 T h e m e t h y l b a n d at 1375 c m is a p e a k at 1460
- 1
s t i l l exists, b u t its i n t e n s i t y is less.
c m , i n the - C H 1
2
cm . -1
There
- r e g i o n , w h i c h suggests that
the
p o l y m e r s possess m e t h y l e n e groups different f r o m the c y c l i c m e t h y l e n e s . NMR
shows a s i g n a l at a b o u t δ = 1.4 p p m , w h i c h m a y b e a t t r i b u t e d to
148
POLYMERIZATION REACTIONS A N D N E W POLYMERS
r i n g h y d r o g e n s , a n d a s i g n a l at 8 = 0 . 8 - 0 . 9 p p m , characteristic of m e t h y l groups o n saturated carbons.
T h e p r o p o r t i o n of methyls is f a r less t h a n H CH
P
2 c
P
3
td
H
P c 3
(6) CH
3
H CH
P;kl
P
3
4 c
P a 4
one per " m o n o m e r u n i t , " a n d less t h a n t w o w i t h p o l y m e r s of the 1 methylbicyclo[n.l.O]alkanes
group.
W h e n it is a s s u m e d that the c h a i n
ends are e t h y l , b u t y l , or i s o b u t y l residues catalyst),
( d e p e n d i n g o n the t y p e of
the m o n o m e r u n i t consists of a 7-, 8-, or 12-carbon r i n g , de
p e n d i n g on the monomers c o n s i d e r e d , a n d that these rings are by
a methylene
group P
( t - B u ) A l , the CH3/CH0 3
2 c
to P .
connected
I n p a r t i c u l a r , f o r catalysts u s i n g
4d
r a t i o i n the p o l y m e r p r o d u c e d is greater t h a n
for the catalysts o b t a i n e d f r o m E t A l . 3
F o r p o l y m e r s of h i g h e r degrees
of p o l y m e r i z a t i o n , the m e t h y l peaks are n e g l i g i b l e , thus c o n f i r m i n g that they b e l o n g to c h a i n - e n d m e t h y l groups.
T h i s hypothesis is c o n f i r m e d
b y the presence of an N M R peak i n the r e g i o n of δ = 1.2 p p m that does not a p p e a r i n b i c y c l o a l k a n e c a t i o n i c p o l y m e r s ( E q u a t i o n The
polymerization mechanism
proposed
is b a s e d
olefin p o l y m e r i z a t i o n b y N a t t a a n d D a n u s s o ( 1 7 ) .
6). o n studies
of
It i n v o l v e s attack of
the c y c l o p r o p a n e b y the c o m p l e x Α,,,Μβ-ΑΊΑ'οΜβ', w h e r e M e = T i , S n , V , or W ; M e ' = A l ; A = C1, or A \ ; a n d A ' = E t , i B u , or sec-Bu ( E q u a t i o n 7 ) . 2
A
CH
3
(7)
10.
Opening of Carbon
PINAZZI E T A L .
149
Rings
S p i r o [ 2 . 6 ] n o n a n e ( M ) , spiro
Polymerization of Spiro[2.n]alkanes.
5
[2.7]decane ( M ) , a n d spiro[2.1 l ] t e t r a d e c a n e ( M ) w e r e p r e p a r e d f r o m ( i
7
the c o r r e s p o n d i n g m e t h y l e n e c y c l o a l k a n e s ylenecyclooctane,
and
S i m m o n s a n d S m i t h reaction (14);
N
(methylenecycloheptane,
methylenecyclododecane,
respectively)
methby
the
see E q u a t i o n 8.
η
=
.6
M
5
η
=
7
M
6
η
=
11
M
(8)
7
(CH ) ' 2
n
T h e y i e l d varies f r o m 40 to 60% no m a t t e r w h a t size the r i n g is. T h e separation of the alkenes a n d their derivatives is difficult because of
the
closeness
of
their
boiling
points.
Furthermore,
one
obtains,
p r o b a b l y as the result of p a r t i a l i s o m e r i z a t i o n d u r i n g r e a c t i o n of methylenecycloalkanes ondary
compounds,
to 1-methylcycloalkenes, such
as
the
s m a l l amounts
corresponding
the
of sec
methylbicyclo[n.l.O]
alkanes. CATIONIC POLYMERIZATION OF SPIRO[2.n]ALKANES.
erization
Cationic polym
of s p i r o [ 2 . 5 ] o c t a n e a n d s p i r o [ 2 . 4 ] h e p t a n e has
c o n s i d e r e d b y K e t l e y a n d E h r i g (18) p o l y m e r s o b t a i n e d b y means of A l B r
already
been
to c o m p a r e the structures of the 3
w i t h those of p o l y m e r s
f r o m the c o r r e s p o n d i n g v i n y l c y c l o a l k a n e s .
obtained
T h e s e authors h a v e f o u n d
that the t w o groups of p o l y m e r s have v e r y different structures a n d , w i t h out g i v i n g definitive results, c o n c l u d e d that p o l y m e r i z a t i o n of
spiranes
p r o b a b l y occurs b y passing t h r o u g h a b i c y c l i c i n t e r m e d i a t e ; o n o p e n i n g , the i n t e r m e d i a t e gives c o m p l e x c o m p o u n d s . S p i r o [2.6]nonane, spiro [2.7] decane, a n d spiro [2.11] tetradecane h a v e b e e n p o l y m e r i z e d i n m e t h y l e n e c h l o r i d e i n the presence of F r i e d e l - C r a f t s catalysts w i t h this i n c r e a s i n g o r d e r of r e a c t i v i t y : V O C l , 3
E t 0 , T i C l , and A1C1 . 2
4
at 8 0 ° C .
3
SnCl , 4
BF 3
T h e reactions w e r e c a r r i e d out over 24 hours
P o l y m e r i z a t i o n , a l t h o u g h r e q u i r i n g rather h i g h
temperatures
( a b o v e 2 0 ° C ) c o u l d o c c u r at temperatures l o w e r t h a n those o b s e r v e d f o r the
corresponding
b i c y c l o [ n . 1.0]alkanes.
Conversions
h i g h e r t h a n for the c o r r e s p o n d i n g b i c y c l o a l k a n e s .
are
generally
The polymerization
degrees are l o w a n d v i r t u a l l y i d e n t i c a l for the same o p e r a t i n g c o n d i t i o n s ( f r o m 3 to 6 ) . The
i n f r a r e d spectra
1450 c m . - 1
of p o l y m e r s s h o w bands at 2950, 2920, a n d
T h e presence of a peak at 1375 c m
1
means that these p o l y -
150
POLYMERIZATION REACTIONS A N D N E W POLYMERS
mers h a v e a m e t h y l g r o u p , w h i c h confirms the results of K e t l e y a n d E h r i g a n d proves that the structure is different f r o m that of p o l y m e r s of v i n y l cycloalkanes.
N M R gives t w o massive peaks, one i n the r e g i o n of
δ = 1.4 p p m , c o r r e s p o n d i n g to h y d r o g e n s i n the r i n g s , a n d the other i n the r e g i o n of δ = 0.9 p p m , c o r r e s p o n d i n g to the h y d r o g e n s of a m e t h y l g r o u p o n a saturated c a r b o n .
I n t e g r a t i o n shows one m e t h y l g r o u p p e r
monomer unit (Equation 9). CH
3
T h e p r o p o s e d p o l y m e r i z a t i o n m e c h a n i s m suggests that a π c o m p l e x is f o r m e d f r o m the spirane c y c l o p r o p a n e a n d the c a r b o c a t i o n active site (Equation θ Α
10).
Φ
10.
Opening of Carbon
PINAZZI ET A L .
151
Rings
F r o m this c o m p l e x , the r u p t u r e of the b o n d b e t w e e n carbons 1 a n d 2 gives rise to the f o r m a t i o n of a p o s i t i v e c h a r g e a p p e a r i n g o n c a r b o n 2, w h i c h involves f o r m a t i o n of a p r i m a r y c a r b o c a t i o n that c a n
rearrange,
b y h y d r i d e shift, i n t o a m o r e stable secondary carbo c a t i o n o n c a r b o n 3, l e a d i n g to p o l y m e r s of structure P , Pea, a n d P . 5 a
T h e s e structures
7 a
are
the o n l y ones h a v i n g one m e t h y l i n the side c h a i n p e r m o n o m e r u n i t . T h e structure of c a t i o n i c p o l y m e r s of s p i r o [2.n]alkanes is too h i n d e r e d to a l l o w the f o r m a t i o n of h i g h - m o l e c u l a r - w e i g h t p o l y m e r . t e r m i n a t i o n step occurs r a p i d l y , p r o b a b l y b y rearrangement,
The
loss of a
p r o t o n , a n d f o r m a t i o n of a d o u b l e b o n d , the existence of w h i c h is c o n firmed b y a v i n y l h y d r o g e n N M R s i g n a l at about δ =5.2 p p m . P O L Y M E R I Z A T I O N O F S P I R O [2.n]
PLEXES.
ALKANES BY TRANSITION-METAL
P o l y m e r i z a t i o n of s p i r o [2.n] alkanes
COM
b y transition-metal
plexes was c a r r i e d out i n hexane at 8 0 ° C over 24 hours.
The
com
catalyst
systems w e r e : E t , A l / T i C l , E t A l / S n C l , E t A l / V O C l , a n d E t A l / W C l 4
3
4
3
f o r catalyst/monomer ratios of a b o u t 16%. to 90%)
were
obtained
with Et Al/SnCl , 3
4
degrees b e i n g o b s e r v e d w i t h E t A l / T i C l 3
4
3
the highest
c o u p l e (D
6
(80
polymerization
= 3).
p
is p r a c t i c a l l y w i t h o u t effect o n b i c y c l o [ n . 1 . 0 ] a l k a n e s [n.1.0]alkanes.
3
T h e highest conversions
T h i s catalyst
and on methylbicyclo-
It is possible that the m o r e o p e n structure of c y c l o p r o
p a n e i n the case of spirane-type c o m p o u n d s allows a n easier r e a c t i o n w i t h this catalyst.
I n f r a r e d spectroscopy indicates b a n d s at 2950, 2920, 1450, a n d cm
- 1
1375
already
observed
on cationic
polymers.
1375
H o w e v e r , the b a n d
at
c m , c o r r e s p o n d i n g to m e t h y l groups, decreases i n intensity a n d 1
c o m p l e t e l y disappears i n h i g h - m o l e c u l a r - w e i g h t p o l y m e r s . the b a n d at 1455 c m
1
Furthermore,
m a y b e a t t r i b u t e d to l i n e a r - C H - groups. N M R 2
confirms this a s s u m p t i o n , since the h y d r o g e n i n the rings appear i n the r e g i o n of δ = 1.4 p p m , whereas the s i g n a l o b s e r v e d at δ = 0.9 p p m o b t a i n e d w i t h c a t i o n i c p o l y m e r s is p r a c t i c a l l y nonexistent.
It appears
at
l o w intensity w i t h l o w - m o l e c u l a r - w e i g h t oligomers, a n d c a n p r e s u m a b l y be
attributed
to
the
chain-end
structures P , P , a n d P 5 b
( i h
7 b
methyl
groups.
From
these
results,
m a y be assigned to c o m p o u n d s o b t a i n e d f r o m
spiroalkanes f o r this t y p e of p o l y m e r i z a t i o n ( E q u a t i o n
11).
152
POLYMERIZATION REACTIONS A N D N E W POLYMERS
It is possible to assume a p o l y m e r i z a t i o n m e c h a n i s m b a s e d o n that p r o p o s e d b y N a t t a a n d D a n u s s o ( E q u a t i o n 12)
(17):
Αχ R
Me
/
\
/
\
/
\
Polymerization of Spiropentane, Methylenecylobutane, and Bicyclopropyle.
O n e c o m p o u n d i n the spirane h y d r o c a r b o n series is e s p e c i a l l y
w o r t h y of a t t e n t i o n — n a m e l y s p i r o p e n t a n e ( M ) , w h i c h is a n isomer of s
b o t h isoprene a n d m e t h y l e n e c y c l o b u t a n e ( M ) ; see 9
E q u a t i o n 13.
From
a s t r u c t u r a l p o i n t of v i e w , if one considers that s p i r o p e n t a n e is the l i n e a r c o m b i n a t i o n of the ρ o r b i t a l a n d the sp o r b i t a l associated w i t h e a c h r i n g of spiropentane, f o u r e q u i v a l e n t sp
A
h y b r i d orbitals m a y b e f o r m e d .
U n d e r these c o n d i t i o n s , s p i r o p e n t a n e constitutes
a highly p-type un
saturated entity that is thus especially suitable f o r p o l y m e r i z a t i o n . A s l i g h t l y different m o n o m e r has also b e e n s t u d i e d : b i c y c l o p r o p y l e , c o m p o s e d of t w o c y c l o p r o p a n e s l i n k e d b y a σ C - C b o n d (M ). 10
The
c o n j u g a t i o n b e t w e e n the t w o c y c l o p r o p a n e s of the m o n o m e r is s i m i l a r to that a p p e a r i n g b e t w e e n the b u t a d i e n e orbitals. CH
M
2
Afio
M
8
9
Syntheses of spiropentane, m e t h y l e n e c y c l o b u t a n e , a n d b i c y c l o p r o p y l e are d e s c r i b e d i n the a p p r o p r i a t e sections. POLYMERIZATION
tane (19)
OF SPIROPENTANE.
The
preparation
of
spiropen
is i m p o r t a n t , since other c o m p o u n d s are f o r m e d ( f o r e x a m p l e ,
10.
Opening of Carbon
PINAZZI E TA L .
methylenecyclobutane, catalysis.
153
Rings
2 - m e t h y l - l - b u t e n e ) that are sensitive to c a t i o n i c
S p i r o p e n t a n e is s y n t h e s i z e d f r o m p e n t a e r y t h r i t y l t e t r a b r o m i d e ,
w h i c h itself is p r e p a r e d b y successive reactions of h y d r o b r o m i c a c i d a n d phosphorus tribromide o n commerical pentaerythritol.
Pentaerythrityl
t e t r a b r o m i d e is treated w i t h z i n c i n a l c o h o l i c m e d i u m i n presence o f s o d i u m e t h y l e n e d i a m i n e tetracetate ( E q u a t i o n 1 4 ) .
PBr
The
r e s i d u a l alkenes
(14)
3
are d e s t r o y e d b y b r o m i n e i n d i b r o m o m e t h a n e ,
w h i c h leaves p u r e spiropentane ( y i e l d 60%), t h e p u r i t y b e i n g c o n f i r m e d b y a single N M R p e a k at 0.72 p p m . CATIONIC
decreasing TiCl , 4
POLYMERIZATION
order
O F SPIROPENTANE.
These initiators,
of a c t i v i t y — A 1 C 1 , W C 1 , M o C l , 3
G
5
ZrCl , 4
in
BF -Et 0, 3
2
a n d S n C l — y i e l d p o l y m e r s f o r w h i c h t h e c o n v e r s i o n degree is 4
h i g h e r i n m e t h y l e n e c h l o r i d e t h a n i n n-hexane.
T h e temperature
is i m p o r t a n t , since n o r e a c t i o n o c c u r r e d b e l o w 2 0 ° C . c a r r i e d o u t at 8 0 ° C or, o c c a s i o n a l l y , at 1 0 0 ° C .
factor
A l l runs h a v e b e e n
T h e a m o u n t of i n i t i a t o r
r e q u i r e d is v e r y h i g h , t h e catalyst/monomer ratio b e i n g u p to 10%. T h e p o l y m e r s o b t a i n e d h a v e a n average m o l e c u l a r w e i g h t of a b o u t 1000,
t h e i r i n f r a r e d spectra h a v i n g b a n d s i d e n t i c a l to those d e s c r i b e d
for c y c l i z e d p o l y - l , 4 - i s o p r e n e s .
T h e peaks at 2960, 2925, a n d 2870 c m
c o r r e s p o n d to c y c l i c methylenes. 1700
cm
- 1
- 1
A w e a k b a n d l y i n g b e t w e e n 1650 a n d
, t h e intensity of w h i c h depends o n t h e c y c l i z a t i o n degree,
determines t h e p r o p o r t i o n of tetrasubstituted c y c l i c d o u b l e b o n d s ( P A n a b s o r p t i o n b a n d b e t w e e n 1450 a n d 1465 c m groups, a n d a p e a k at 1378 c m Attempts
- 1
1
8 A
is c a u s e d b y - C H
)· 2
characterizes t h e m e t h y l groups.
of c y c l i z a t i o n of h i g h - m o l e c u l a r - w e i g h t p o l y - c i 5 - l , 4 - i s o -
prene has a l r e a d y b e e n p u b l i s h e d (20-22).
T h e m a i n characteristics o f
these c o m p o u n d s are ( N M R ) n o s i g n a l f o r protons c a r r i e d b y a C ^ C d o u b l e b o n d , b u t a strong s i g n a l at δ = 0.9 p p m c o r r e s p o n d i n g t o protons f r o m m e t h y l groups o n saturated carbons, a n d a massive p e a k b e t w e e n
-
154
POLYMERIZATION REACTIONS A N D N E W POLYMERS
δ = 1.1 a n d δ = 1.7 p p m , w i t h m a x i m a at δ = 1.25 a n d 1.6 p p m , caused, respectively, b y r i n g protons a n d protons of m e t h y l groups o n d o u b l e b o n d s ( structure P
S a
)·
0=0
T h e r e l a t i v e size of these t w o m a x i m a is
a f u n c t i o n of the c y c l i z a t i o n degree, the p e a k at δ = 1.6 p p m b e c o m i n g s m a l l e r as the n u m b e r of rings increases.
H o w e v e r , it is d i f f i c u l t to
d e t e r m i n e this n u m b e r exactly. Cyclopolymers
of s p i r o p e n t a n e
those of c y c l o p o l y i s o p r e n e s .
have
the
same characteristics
as
W e c o n c l u d e they h a v e s i m i l a r structures
( P ) a n d ( P b ) i n E q u a t i o n 15. 8 a
8
8b
T h e m e c h a n i s m p r o p o s e d i n v o l v e s the f o r m a t i o n of a c o m p l e x ( 15i, E q u a t i o n 15a)
b e t w e e n the c a t i o n i c i n i t i a t o r a n d the h y d r o c a r b o n r i n g ,
f o l l o w e d b y its t r a n s f o r m a t i o n into a c a r b o c a t i o n ( 1 5 ) 2
s p i r o p e n t y l i u m i o n p r o p o s e d b y F a n ta ( 2 3 ) . ture ( 1 5 ) 3
rearranges
s i m i l a r to the
T h e i n t e r m e d i a t e struc
b y c y c l i z a t i o n because of the presence of L e w i s
a c i d a n d the rather h i g h r e a c t i o n t e m p e r a t u r e .
1X1 -
E^^
Φ : "A
φ
A-
CH 15
2
2
15i
^/cyclization (15a)
15 POLYMERIZATION
OF
SPIROPENTANE
BY
3
METAL-HALIDE
COMPLEXES.
Heterogeneous-phase polymerization w i t h t r i a l k y l a l u m i n u m metal-halide
10.
155
Opening of Carbon Rings
PINAZZI E T A L .
complexes has also b e e n s t u d i e d , u s i n g n-hexane as solvent at t e m p e r a tures b e t w e e n 2 0 ° a n d 1 0 0 ° C ( t h e r e is n o r e a c t i o n b e l o w 2 0 ° C ) . catalysts
These
were used: T i C l / R A l , W C 1 / R A 1 , S n C l / R A l , a n d V O C l / 4
3
6
R A 1 , where R = E t , i - B u , or C I .
3
4
3
3
A s before, the p o l y m e r s o b t a i n e d a r e
3
s o l u b l e i n h y d r o c a r b o n s a n d h a l o g e n a t e d solvents except those p r o d u c e d b y t h e r e a c t i o n w i t h t h e S n C l / R A l c o u p l e , w h i c h gives i n s o l u b l e p r o d 4
ucts
with
3
c o n v e r s i o n degrees of about
weights were determined b y osmometry.
70%. T h e average
molecular
T h e y v a r y b e t w e e n 1000 a n d
5000, d e p e n d i n g o n t h e nature a n d a m o u n t of catalyst a n d temperature. A s t r u c t u r a l s t u d y confirms c y c l o p o l y m e r i z a t i o n .
I n f r a r e d b a n d s are
o b t a i n e d at 2960, 2925, a n d 2870 c m " , as w i t h p o l y m e r s o b t a i n e d b y 1
L e w i s acids.
T h e difference b e t w e e n this case a n d t h e p r e v i o u s o n e lies
i n t h e existence of a s h o u l d e r of v a r y i n g intensity o n t h e m e t h y l b a n d between
1360 a n d 1370 c m
( t h e m a i n p e a k is at 1380 c m " ) .
1
This
1
s p l i t t i n g corresponds to t h e presence of g e m - d i m e t h y l groups, t h e n u m b e r of w h i c h varies inversely w i t h t h e n u m b e r of consecutive f u s e d rings (structure P
8 B
).
It is i m p o s s i b l e to differentiate b y N M R b e t w e e n c y -
c l o p o l y - l , 4 - i s o p r e n e s a n d t h e 3,4 v a r i e t y , since t h e signals o b t a i n e d i n b o t h cases are i d e n t i c a l . In P
8 A
;
This
s u m m a r y , c a t i o n i c p o l y m e r i z a t i o n gives p o l y m e r s of structure
Z i e g l e r - N a t t a complexes study
gives
further
m a i n l y l e a d to b l o c k s
evidence
molecular-weight polyisoprenes.
of structure P
f o r c y c l i z a t i o n reactions
8
B
.
of h i g h -
T h i s p o i n t of v i e w has b e e n c o n f i r m e d
b y t h e s t u d y of t h e c y c l i z a t i o n of m o d e l p o l y i s o p r e n e molecules
with
t w o , three, or f o u r m o n o m e r units t o w a r d t h e catalysts able to i n i t i a t e s u c h a reaction
(24).
POLYMERIZATION
OF METHYLENECYCLOBUTANE .
M ethylenecyclobu-
tane w a s s y n t h e s i z e d b y r e a c t i o n of a Z n - C u c o u p l e o n p e n t a e r y t r i t y l tetrabromide
(Equation 16).
T h e y i e l d of t h e synthesis is a b o u t 65%
(9). CH
;
(16)
M
9
CATIONIC
POLYMERIZATION
OF METHYLENECYCLOBUTANE.
Attempts
w e r e m a d e to d i s c o v e r catalyst systems able to attack m e t h y l e n e c y c l o b u tane, a n d tests w e r e c a r r i e d o u t o n different classes of catalysts. was
n o detectable reaction
w h e n u s i n g either
a n i o n i c catalysts s u c h as s o d i u m n a p h t h a l e n e .
There
benzoyl peroxide, or
H o w e v e r , interesting re-
156
POLYMERIZATION REACTIONS A N DN E W POLYMERS
suits w e r e o b t a i n e d w i t h L e w i s acids, Z i e g l e r - N a t t a catalysts, a n d c o m plexes s u c h as t r a n s i t i o n - m e t a l a c e t y l
acetonates/alkylaluminum.
I n i o n i c p o l y m e r i z a t i o n , E q u a t i o n 17, it c a n be assumed that there is a first stage c o m p r i s i n g f o r m a t i o n of a n a l k y l b i c y c l o b u t o n i u m i o n , v e r y s i m i l a r to the c y c l o p r o p y l c a r b i n y l c a t i o n s t u d i e d b y R o b e r t s a n d M a z u r (25).
T h e u n u s u a l a l k y l b i c y c l o b u t o n i u m i o n is c o n s i d e r e d as a resonant
h y b r i d of p y r a m i d a l structure that interconverts at different rates.
CH
The
(17)
1 2
CH
3
9d
10.
Opening of Carbon
PINAZZI E T A L .
p o s i t i v e charge
157
Rings
derives f r o m r e l o c a l i z a t i o n of the π o r b i t a l , a n d
the
unstable c y c l o b u t y l i u m i o n rearranges to a n u n u s u a l i o n b y d e r e a l i z a t i o n — f o r e x a m p l e , of the 3-4 covalence d o u b l e t b e t w e e n carbons 1-3-4. T h e substituent m a y s t a b i l i z e a resonant f o r m , thus f a v o r i n g p r o d u c t s derived
from
this f o r m .
Generally speaking, during polymerization,
r e l o c a l i z a t i o n of the electrons of the a l k y l b i c y c l o b u t o n i u m i o n c a n o c c u r b y three different processes.
I n r e l o c a l i z i n g , the charges g i v e , as possi
b l e structures, P , Peb, a n d P . 9 a
ture P
9 b
I n the presence of a c i d catalysts, struc
9 c
m a y i s o m e r i z e to structure P , w h e r e the d o u b l e b o n d s b e c o m e 9 d
trisubstituted. F i n a l l y , i t has b e e n p r o v e d that structure P easily to s t r u c t u r e P With
9 e
9 d
could cyclize quite
because of the a h y d r o g e n s f r o m the d o u b l e b o n d .
a l u m i n u m - c h l o r i d e catalysts,
the
p o l y m e r structure
is
80%
c y c l o b u t a n e units a n d a b o u t 5% c y c l o p r o p a n e units, the r e m a i n d e r b e i n g polyene units. pane
W i t h stannic c h l o r i d e , w e d o not observe a n y c y c l o p r o
u n i t s ; the p o l y m e r consists
m a i n l y of c y c l o b u t a n e units
T h e presence
of m e t h y l groups o n c y c l o h e x a n e shows that the
units
partially isomerized
possess
and
cyclized polyene
(75%). other
structures.
W h e n u s i n g t i t a n i u m c h l o r i d e or e t h y l a l u m i n u m c h l o r i d e w i t h traces of
water
as
cocatalyst,
the
p o l y m e r consists
m a i n l y of
u n i t s — t h a t is, 60%, the d e m a i n d e r b e i n g c y c l i z e d ; see POLYMERIZATION OF METHYLENECYCLOBUTANE BY
COMPLEXES.
cyclobutane
E q u a t i o n 17. TRANSITION-METAL
Various transition metal halides were used: T i C l , 4
W C l o , V C 1 , etc., 3
SnCl , 4
c o m p l e x e d w i t h o r g a n o m e t a l l i c c o m p o u n d s s u c h as
E t A l , E t A l C l , (wo-Bu)sAl, and B u S n H . 3
2
3
I n the presence of E t A l / T i C l , p o l y m e r i z a t i o n of m e t h y l e n e c y c l o 3
4
b u t a n e gives a p o l y m e r h a v i n g exomethylene units ( P b ) 9
representing
a b o u t 40% of the structure, 60% b e i n g p a r t i a l l y c y c l i z e d . W i t h E t A l C l / T i C l , the p o l y m e r structures are different, d e p e n d i n g 2
4
o n the r e a c t i o n t e m p e r a t u r e .
A t l o w temperatures,
m i x t u r e of structures P , P b, Pec, a n d P . 9 a
veals the presence of P cm .
9 a
9
9 d
structures b y v i b r a t i o n s at 920 c m
T h e h o m o a l l y l i c structure Pç
- 1
b a n d at 890 c m . - 1
the p o l y m e r is a
I n f r a r e d s p e c t r o g r a p h y re
)b
- 1
and
T h i s p o l y e n e structure is not alone, since
character-
istic absorptions of t r i s u b s t i t u t e d d o u b l e b o n d s P , R R C = C H R , 9 d
v i s i b l e w i t h shoulders at 930
1240
is d e m o n s t r a t e d b y a n a b s o r p t i o n
a n d 835-840 c m
- 1
1
2
3
are
f o r the trans a n d cis
forms, r e s p e c t i v e l y . N M R spectra s h o w a massive p e a k at 8 = 4 . 8 p p m , characteristic of structure P . 9 d
The P
9 b
A t 8 = 5.2 p p m , a slight s i g n a l indicates structure P . 9 d
u n i t c a n b e c o m e p a r t i a l l y c y c l i z e d to g i v e structure P . S e
When
the p o l y m e r is p r e p a r e d at l o w temperature, its b r o m i n e i n d e x is a b o u t 54%, w h i c h corresponds to a m o n o c y c l i z e d structure P . 9 e
erization temperature
increases,
A s the p o l y m -
the intensity of the characteristic s i g -
158
POLYMERIZATION REACTIONS A N D N E W POLYMERS
nal
of m e t h y l groups o n saturated c a r b o n atoms goes u p , a n d that of
a protons f r o m the d o u b l e b o n d s d i m i n i s h e s i n the same p r o p o r t i o n . T h e p e a k at 8 = 1.5 p p m becomes the most i m p o r t a n t ( c y c l o h e x a n e p r o tons).
T h e s a t u r a t e d - c a r b o n m e t h y l p e a k at 8 = 0.9 p p m , v i r t u a l l y n o n -
existent for l o w - t e m p e r a t u r e p o l y m e r s , increases i n size. tion temperature
increases,
As polymeriza-
the c y c l i z a t i o n degree increases, w h i l e t h e
p r o p o r t i o n of c a r b o n - c a r b o n d o u b l e b o n d s decreases ( E q u a t i o n Various
acetylacetonates
have
been
17).
used w i t h d i e t h y l a l u m i n u m
c h l o r i d e as catalyst f o r the p o l y m e r i z a t i o n of m e t h y l e n e c y c l o b u t a n e . this case, the N M R spectra of the p o l y m e r s are v e r y s i m p l e .
In
Between
8 = 4 . 6 a n d 4.8 p p m lies a singlet c o r r e s p o n d i n g to the resonance v i n y l i d e n e protons.
of
B e t w e e n 8 = 1.85 a n d 2.10 p p m , a s i g n a l reveals the
protons of a m e t h y l e n e groups f r o m a d o u b l e b o n d , a n d at 8 = 1.25 p p m , a p e a k corresponds to protons of m e t h y l e n i c groups. shows no a b s o r p t i o n at 920 presence
of
a
cyclobutane
cm
1
a n d 1240
structure.
stretching vibrations.
The
structure
CH —CRiR 2
a n d 1640
A strong a b s o r p t i o n at 1450
sponds to s t r e t c h i n g v i b r a t i o n s of the C - H bonds of the groups. At
790
T h e a b s o r p t i o n of m e t h y l groups at 1370 c m c m , the C H 1
2
the
- 1
i n d i c a t e d b y v i b r a t i o n of the C - H b o n d s at 890 C=C
T h e IR spectrum
c m , w h i c h excludes cm
cm
is
2
for
- 1
corre-
- 1
methylene
is v e r y w e a k .
- 1
r o c k i n g v i b r a t i o n becomes apparent, thus c o n -
f i r m i n g the succession of three - C H - groups. 2
of c y c l o p r o p a n e structure appears.
N o characteristic s i g n a l
So it m a y b e c o n c l u d e d that p o l y m -
e r i z a t i o n b y this t y p e of c o m p l e x leads to the f o r m a t i o n of a p u r e " i s o p o l y i s o p r e n e " f o r m i n w h i c h the c a r b o n - c a r b o n d o u b l e b o n d is i n the exo p o s i t i o n w i t h respect to the c h a i n . Under
a
vanadium
triacetylacetonate
organoaluminum
catalyst
( C H C O C H = C O - C H ) 3 V - E t A l C l , m e t h y l e n e c y c l o b u t a n e gives a p o l y 3
3
2
m e r i n w h i c h the i s o p o l y i s o p r e n e structure ( P b ) is p r e d o m i n a n t — t h a t is, 9
85 to 95%.
H o w e v e r , N M R spectra s h o w characteristic signals of c y c l o -
p r o p a n e structures b e t w e e n 0 a n d 0.2 p p m . of 5 to 15% of this t y p e of structure.
Integration give a proportion
T h i s is c o n f i r m e d b y i n f r a r e d
b a n d s at 3080 a n d 1015 c m " . 1
T e r n a r y catalysts, s u c h as E t A l C l / T i C l / E t N or E t A l / T i C l / P h P 2
have been used.
4
3
3
nent of the ternary catalyst, p o l y m e r s of P , Pgd, a n d P 9 b
obtained.
4
3
A c c o r d i n g to the v a r i o u s p r o p o r t i o n s of e a c h c o m p o 9 e
structures are
H o w e v e r , i n some cases, especially w h e n the ratio P h P / 3
T i C l = 1, m e t h y l e n e c y c l o b u t a n e gives a p u r e a n d l i n e a r " i s o p o l y i s o p r e n e " 4
structure
(P ), 9 b
i n w h i c h c y c l i z e d t y p e structures
and cyclopropanic
groups are e x c l u d e d . POLYMERIZATION
OF BICYCLOPROPYLE.
Bicyclopropyle
has
already
been synthesized i n small yields f r o m butadiene w i t h a methylene iodide and
a z i n c - c o p p e r c o u p l e (26,
27),
a n d b y r e d u c t i o n of 2,2,2',2'-tetra-
10.
Opening of Carbon
PINAZZI E T A L .
h a l o b i c y c l o p r o p y l e (28,
29).
159
Rings
B i c y c l o p r o p y l e also has b e e n o b t a i n e d
via
a n e w route f r o m b u t a d i e n e b y successive carbenations a n d r e d u c t i o n s . The
dichlorocarbene
a d d e d to b u t a d i e n e
or v i n y l c y c l o p r o p a n e is
ob-
t a i n e d b y r e a c t i o n of a strong base ( s o d i u m t e r a m y l a t e ) w i t h c h l o r o f o r m , a n d r e d u c i n g the g e m - d i c h l o r o c y c l o p r o p y l b y a s o d i u m - h y d r a t e d m e t h a n o l system.
E q u a t i o n 18 depicts the synthesis.
T h e overall yield
of the synthesis f r o m b u t a d i e n e is a b o u t 20%.
ci CH //
CH
CC1
C l \ - _
\ /
2
CH
2
CI
C l - V ^
2
Na/CH OH
\7
3
CH
2
2
CC1
(18)
2
Na/CH OH 3
Mi, Electron
d i f f r a c t i o n studies
have
shown
(30)
that, i n its
vapor
phase, the b i c y c l o p r o p y l e m o l e c u l e possesses t w o i s o m e r i c
conformations:
a n o n r i g i d s-trans f o r m ( A ) a n d a n o n r i g i d left f o r m ( B )
(Equation
19)
a b l e to oscillate respectively f r o m ± 8 0 ° to ± 18° a r o u n d a n e q u i l i b r i u m position.
B We
have
c o n f i r m e d this p o i n t of v i e w b y testing
f r o m i n its l i q u i d p h a s e b y N M R .
bicyclopropyle
T h e existence of the t w o
conformers
160
POLYMERIZATION REACTIONS A N D N E W POLYMERS
is c o n f i r m e d b y a n i m p o r t a n t s p l i t t i n g of the characteristic signals of t h e f o u r h y d r o g e n s H„ (8 = (8
- 0 . 1 6 to 0.13 p p m ) ; t h e f o u r h y d r o g e n s H
= 0.17 to 0.49 p p m ) ; a n d the f o u r h y d r o g e n s H
c
f t
(8 = 0.57 to 0.95
ppm). W i t h s u i t a b l e initiators, the t w o conformers m a y y i e l d p o l y m e r s of different structures.
T h e existence of a p s e u d o c o n j u g a t i o n b e t w e e n t h e
t w o c y c l o p r o p a n e s , w h i c h m a y b e c o m p a r e d w i t h those of the b u t a d i e n e orbitals, t h e o r e t i c a l l y favors a p o l y m e r i z a t i o n b y s i m u l t a n e o u s o p e n i n g of t h e t w o c o n j u g a t e d orbitals. CATIONIC
POLYMERIZATION
OF BICYCLOPROPYLE.
Polymerization
of
b i c y c l o p r o p y l e b y v a r i o u s L e w i s acids w a s c a r r i e d o u t i n m e t h y l e n e c h l o r i d e w i t h a constant c a t a l y s t / m o n o m e r ratio to b r i n g o u t t h e effects of t h e other p a r a m e t e r s — n a m e l y , A1C1 ), 3
temperature
hours).
t h e n a t u r e of t h e catalyst
( - 7 8 ° to 1 2 0 ° C ) ,
(SnCl 4
a n d r e a c t i o n t i m e ( 3 t o 24
T h e h i g h e s t c o n v e r s i o n (85%) w a s o b t a i n e d at a t e m p e r a t u r e
b e t w e e n 7 0 ° a n d 80 ° C , w i t h a l u m i n u m c h l o r i d e as i n i t i a t o r .
Infrared
spectroscopy o f t h e p o l y m e r s o b t a i n e d shows n o characteristic s i g n a l f o r c y c l o p r o p a n e groups at 860, 1020, 1040, a n d 3080 c m , b u t gives a w e a k 1
broad band between tetra-substituted
1620 a n d 1700 c m , i n d i c a t i n g t h e presence of 1
C = C bonds.
N M R indicates
the existence
of t w o
m e t h y l s (signals at 8 = 0.90 p p m ) , three methylenes, a n d a t e r t i a r y h y d r o g e n (8 = 1.22 to 1.27 p p m ) situated i n the a p o s i t i o n f r o m a s a t u r a t e d carbon.
I t also indicates the presence of t w o methylenes (8 = 1.80 p p m )
a n d a m e t h y l (8 = 1.54 to 1.60 p p m ) s i t u a t e d i n t h e a p o s i t i o n f r o m tetrasubstituted d o u b l e b o n d s . T h e s e results s h o w that p o l y m e r i z a t i o n occurs b y o p e n i n g o f t h e t w o c y c l o p r o p y l groups, a n d the existence m o n o m e r units suggests a c y c l i z a t i o n r e a c t i o n .
of a C = C b o n d f o r t w o T h e s e l e a d to a p o l y m e r
structure c h a r a c t e r i z e d b y s u b s t i t u t e d cyclohexene groups i n t h e c h a i n . T w o i s o m e r i c structures agree w i t h these assignments Equation 20).
Structure ( P
1 0 a
(Pi
0 a
a n d P b of 10
) is the most l i k e l y , b e i n g s i m i l a r to those
o b t a i n e d b y i n t r a m o l e c u l a r c y c l i z a t i o n of p o l y - l , 4 - i s o p r e n e i n presence of Et AlCl-H 0. 2
2
CH
3
C H
3
10.
Opening of Carbon
PINAZZI E T A L .
161
Rings
O s m o m e t r i c d e t e r m i n a t i o n of m o l e c u l a r w e i g h t s was not p o s s i b l e because of the l o w s o l u b i l i t y of the p o l y m e r i n solvents at r o o m t e m p e r a ture.
H o w e v e r , N M R spectra c o u l d b e o b t a i n e d b y s w e l l i n g the p o l y
mer i n carbon tetrachloride. POLYMERIZATION
OF BICYCLOPROPYLE
BY
TRANSITION
METAL
COM
P L E X E S . Heterogeneous-phase p o l y m e r i z a t i o n of b i c y c l o p r o p y l e w i t h Z i e g l e r - N a t t a catalysts was c a r r i e d out i n n-hexane b e t w e e n —30° a n d 1 2 0 ° C over 24 hours.
T h e s e systems, i n d e c r e a s i n g o r d e r of r e a c t i v i t y g i v e
p o l y m e r s h a v i n g spectral characteristic s i m i l a r to those of p o l y m e r s o b tained b y cationic initiation: S n C l / E t A l C l , S n C l / E t A l C l , S n C l / E t A l , 4
TiCl /Et AlCl, WCl /Et Al. 4
2
G
2
4
2
4
3
T h e same structures of cyclohexene m o n o
3
m e r units separated b y three methylenes i n c h a i n are p r o p o s e d
(struc
tures Pioa a n d P b of E q u a t i o n 2 0 ) . 10
B y contrast, w e c o u l d give e v i d e n c e f o r different structures w h e n the T i C l - E t A l c o m p l e x is u s e d ( T i / A l = l ) . 4
addition
I n f r a r e d spectra s h o w , i n
3
to the
peaks
already observed i n previous polymerizations,
a b s o r p t i o n bands at 860, 1020, 1040, 1780, a n d 3080 c m , 1
characteristic
of c y c l o p r o p a n i c groups, a n d b a n d s at 770 a n d 780 c m , w h i c h c a n b e 1
a t t r i b u t e d to b i m e t h y l e n i c b l o c k s - C H - C H 2
results.
N M R confirms these
2
T h e c y c l o p r o p a n e protons a p p e a r at δ = 0 . 0 2 a n d 0.44 p p m , a n d
m e t h y l e n i c h y d r o g e n s of a l i n e a r c h a i n are c h a r a c t e r i z e d b y a s i g n a l at δ = 1.27 p p m .
T h e s e s p e c t r o g r a p h i c d a t a a n d the s i m i l a r i t i e s w i t h those
of p o l y v i n y l c y c l o p r o p a n e (31)
suggest that the c h a i n structure is c o m
p o s e d of units of u n d e s c r i b e d l i n e a r structure consisting of m e t h y l e n e groups i n the m a i n c h a i n of c y c l o p r o p a n e groups i n side c h a i n ( structure Pioc).
A s t u d y of this t y p e of p o l y m e r i z a t i o n shows that over a w i d e
r a n g e of r e a c t i o n temperatures ( 2 0 ° to 1 2 0 ° C ) , the l i n e a r f o r m p r e d o m i nates see
( f r o m 55 to 70%),
40 to 30% b e i n g c y c l i z e d ( P
1 0 a
, Pmb, P i o c ) ;
E q u a t i o n 20. C a t i o n i c i n i t i a t i o n thus opens the t w o c y c l o p r o p a n e structures
to
g i v e p o l y m e r s i n w h i c h the t r i m e t h y l c y c l o h e x e n e rings are separated b y three methylenes
i n the c h a i n .
W i t h T i C l - E t A l , the p o l y m e r i z a t i o n 4
3
process is different, a n d the r e a c t i o n i n v o l v e s the o p e n i n g of one of the m o n o m e r .
The
p o l y m e r o b t a i n e d has
ring
a m o l e c u l a r w e i g h t of
a b o u t 5000, a n d consists of b l o c k s i d e n t i c a l to the f o r e g o i n g structures (P
1 0 a
a n d Piob) a n d of b l o c k s f o r m e d of m o n o m e r units w i t h p e n d a n t
c y c l o p r o p a n e groups ( P
1 0 c
)·
T h e results o b t a i n e d w i t h b i c y c l o p r o p y l e are q u i t e different f r o m those o b t a i n e d w i t h spiropentane, w h i c h , w h a t e v e r the t y p e of catalyst used, y i e l d s c y c l i z e d b l o c k s s i m i l a r to those o b t a i n e d w i t h p o l y - 1 , 4 - or 3,4-isoprene.
162
POLYMERIZATION REACTIONS A N D N E W POLYMERS
Polymerization The
of gem-Dihalocyclopropanic
gem-dihalocyclopropane
Systems
t y p e of structure,
considered highly
stable, is a t t a c k e d b y c e r t a i n e l e c t r o p h i l i c reagents or s i m p l y b y h e a t i n g , and
rearranges
by ring opening.
T h u s , w i t h L e w i s - a c i d catalysts,
the
d i h a l o c y c l o p r o p a n e d e r i v a t i v e opens w i t h f o r m a t i o n of a h a l o a l l y l i c carb o c a t i o n (32)
w h i c h , i n presence of a n u c l e o p h i l i c i o n , gives either a
h a l o a l l y l i c d e r i v a t i v e or a 1,3-diene. P y r o l y s i s of d i h a l o c y c l o p r o p a n e s was s t u d i e d a l o n g w i t h the effects of e l e c t r o p h i l i c reagents, a n d confirms the f o r e g o i n g results (33-37).
In
m a n y cases, those authors o b s e r v e d that p o l y m e r i c residues, i n a d d i t i o n to a l l y l i c a n d d i e n e - t y p e p r o d u c t s , w e r e present at the e n d of p y r o l y s i s . T h e f o r m a t i o n of these p o l y m e r s confirms the hypothesis that the d i halocyclopropanes
are
monomers
that
can be
p o l y m e r i z e d either
by
c a t i o n i c processes or b y the a c t i o n of t r a n s i t i o n - m e t a l c o m p l e x catalysts.
(21)
X
X'
1, l - d i m e t h y l - 2 , 2 - d i c h l o r o c y c l o p r o p a n e ( M u ) ( R i = R2 = C H ; R3 = H ; X = X ' = CI) 3
1,1,3-trimethyl-2,2-dichlorocyclopropane (Ri
= R
2
= R
3
(M ) i 2
= C H ; X = X ' = CI) 3
1, l - d i m e t h y l - 2 - c h l o r o - 2 - b r o m o c y c l o p r o p a n e (R
1 =
R
2
= CH ; R 3
3
(M13)
= H ; X = Cl;X' =
Br) These
Polymerization of Alkyl gem-Dihalocyclopropanes. mers ( E q u a t i o n 21)
responding ethylenic compounds—that and
mono-
are p r e p a r e d b y a d d i n g dihalocarbenes to the cor-
2-methyl-2-butene
for M . 12
is, isobutene for M
X1
and M i , 3
T h e carbenes are p r o d u c e d b y
basic
a e l i m i n a t i o n of h a l o f o r m s i n the presence of a strong base s u c h s o d i u m teramylate esters.
(15),
or b y basic
a e l i m i n a t i o n of
I n f r a r e d d a t a of these c o m p o u n d s s h o w a b s o r p t i o n b a n d s
3040 c m a n d 1020 c m
1
for c y c l o p r o p y l groups.
as
trichloroacetic at
N M R gives signals at
1.2 a n d 1.3 p p m . M 13
were
treated w i t h L è w i s - a c i d catalysts s u c h as A1C1 , T i C l , a n d S n C l .
CATIONIC
POLYMERIZATION.
Monomers
M
The
3
n
,
M
1 2
, and
4
p o l y m e r s o b t a i n e d give a b s o r p t i o n b a n d s ( 1650 a n d 850 c m
4
- 1
) and N M R
10.
Opening of Carbon
PINAZZI E T A L .
163
Rings
peaks (1.1 a n d 5.5 p p m ) , i n d i c a t i n g the presence of a c h l o r i n a t e d d o u b l e b o n d a n d m e t h y l g r o u p protons o n a saturated c a r b o n a t o m , r e s p e c t i v e l y . T h e i n f r a r e d b a n d s c o r r e s p o n d i n g to c y c l o p r o p a n e have c o m p l e t e l y dis appeared.
M i c r o a n a l y t i c a l determinations
CI
give an empirical formula
CI
Mu
CH
3
Cl
H
CH
Φ
Η
3
Η
CH
CH
Cl
H
Cl
3
Η
3
Η
3
(22)
Cl
CH
3
Φ
H
CH
CH
3
1 H
Cl
CH
CH Pu
3
3
3
164
POLYMERIZATION REACTIONS A N D N E W POLYMERS
that indicates
e l i m i n a t i o n of one h y d r o h a l i d e m o l e c u l e p e r
u n i t of the c h a i n .
monomer
T h e s e results suggest the o p e n i n g of a t h r e e - c a r b o n
r i n g a n d a d e h y d r o h a l o g e n a t i o n ' s o c c u r r i n g d u r i n g the p o l y m e r i z a t i o n . T h e f o l l o w i n g m e c h a n i s m m a y be p r o p o s e d ( i n the case of
M ): lt
attack b y the c a t i o n i c i n i t i a t o r i n v o l v e s the t r i c e n t r i c r i n g o p e n i n g . c a r b o c a t i o n f o r m e d m a y b e d r a w n i n several resonant f o r m s .
The
Attack on
a f u r t h e r m o n o m e r m o l e c u l e gives a p o l y m e r of structure P n , h a v i n g a chlorinated double bond and a gem-dialkyl group.
T h i s s t r u c t u r e is i n
agreement w i t h the e x p e r i m e n t a l results ( E q u a t i o n 2 2 ) . H o w e v e r , the r e a c t i o n m a y d e v e l o p i n other w a y s .
F o r example,
d e p r o t o n a t i o n of a m e t h y l g r o u p i n the c h l o r o a l l y l i u m g r o u p c a n y i e l d 2-methyl-3-chloro-l,3-butadiene,
w h i c h , u n d e r the e x p e r i m e n t a l c o n d i -
tions u s e d , c a n easily p o l y m e r i z e to g i v e several structures
(Equation
2 3 ) , d e p e n d i n g o n w h e t h e r p o l y m e r i z a t i o n is of the 1,2,3,4, or 1,4 t y p e . N M R
s p e c t r o g r a p h y makes it possible to e l i m i n a t e this e v e n t u a l i t y be-
cause of the absence of peaks c o r r e s p o n d i n g to protons of an a m e t h y l g r o u p f r o m the d o u b l e b o n d a n d m e t h y l e n e g r o u p i n the c h a i n .
R
X
3
Ri
L R P\\ ( R i — R2 P u (Ri = R The
2
=
(23)
2
CH ; R 3
= CH ; R
reaction temperature
3
= H j X = X ' = CI)
3
3
= H ; X = CI)
is q u i t e i m p o r t a n t .
A t 20 ° C , there is
p r a c t i c a l l y n o r e a c t i o n ; at 8 0 ° C , the degree of c o n v e r s i o n is b e t w e e n 15 a n d 20%. POLYMERIZATION BY TRANSITION-METAL
M
1 2
, and M
1
3
COMPLEX
have been polymerized by E t A l / T i C l 3
4
CATALYSTS.
catalysts
M
1U
between
5 0 ° a n d 8 0 ° C i n n-hexane, the r e a c t i o n times r a n g i n g f r o m a f e w hours to several d a y s .
T h e p o l y m e r s o b t a i n e d h a v e the same structure
those o b t a i n e d b y c a t i o n i c p o l y m e r i z a t i o n . p r o p o s e d i n the literature (38, 39),
as
B y analogy w i t h mechanisms
the structure s h o w n i n E q u a t i o n 24
m a y b e p r o p o s e d for the a c t i v e center. T h e f o r m a t i o n of H X i n a s t o i c h i o m e t r i c a m o u n t w i t h respect to the m o n o m e r p r o b a b l y i n v o l v e s the d i s a p p e a r a n c e of m a n y a c t i v e centers.
T h i s explains the r e l a t i v e l y large a m o u n t of catalyst r e q u i r e d f o r
p o l y m e r i z a t i o n to take p l a c e .
F u r t h e r m o r e , the p o l y m e r i z a t i o n degree
remains l o w , a n d the p o l y m e r s o b t a i n e d h a v e l o w m o l e c u l a r w e i g h t s (for
example,
1000
to 3 0 0 0 ) .
Temperature
is s t i l l a d e c i s i v e
factor.
10.
piNAZZi E T A L .
Opening of Carbon
CH
R
CH
3
CI
(24)
CI
Ti
A
CI
165
3
CI CI
Rings
CI
C o n v e r s i o n degrees b e c o m e a p p r e c i a b l e a b o v e 5 0 ° C .
I n a d d i t i o n , the
c o n v e r s i o n degree increases as the a m o u n t of catalyst increases. I n s u m m a r y , the p o l y m e r i z a b i l i t y of g e r a - d i h a l o c y c l o p r o p a n e s
de-
creases f r o m M u to M i , a n d becomes zero i n t h e case of 1,1,2,2-tetra2
methyl-3,3-dichlorocyclopropane,
w h i c h does not react i n the presence
of the p o l y m e r i z a t i o n catalysts u s e d .
T h e t y p e of s u b s t i t u t i o n of c y c l o -
p r o p a n e therefore seems to b e a n i m p o r t a n t factor. e r i z a t i o n i m p l i e s o p e n i n g of the t h r e e - c a r b o n genation of each u n i t . b y h i g h temperatures,
I n a l l cases, p o l y m -
ring
and
dehydrohalo-
P o l y m e r i z a t i o n of these c o m p o u n d s is f a v o r e d above 2 0 ° C ,
a n d catalyst
h i g h e r t h a n i n olefin p o l y m e r i z a t i o n s .
concentrations
much
T h e m o l e c u l a r w e i g h t s are
of
the o r d e r of 1000 to 3000, a n d the oligomers, s o l u b l e i n the u s u a l o r g a n i c solvents, are w h i t e p o w d e r s m e l t i n g a b o v e 1 5 0 ° C . Polymerization of Group.
Dihalocyclopropane with an Adjacent Phenyl
T h e m o n o m e r s s h o w n i n E q u a t i o n 25 are p r e p a r a t e d b y adding
X
V
H
u
(25)
H
M M
CI
(R = H ; X = H )
M
1
1
5
6
(R = C H ; X = H ) 3
(R = C H ; X = CI) 3
CI
2 - p h e n y l - l , 1-dichlorocyclopropane
(M ) i 4
(R = H ; X =
H)
l-phenyl-l-methyl-2,2-dichlorocyclopropane (R = C H ; X 3
=
(Mi ) 5
H)
l-p-chlorophenyl-l-methyl-2,2-dichlorocyclopropane (R = C H ; X = 3
CI)
(Mi ) 6
166
POLYMERIZATION REACTIONS A N D N E W POLYMERS
dichlorocarbenes
to styrene, α-methylstyrene, a n d p - c h l o r o - a - m e t h y l s t y -
rene. CATIONIC POLYMERIZATION.
pseudoconjugation mum
between
I n the
c o m p o u n d s of E q u a t i o n 25,
the
the p h e n y l a n d the c y c l o p r o p a n e is m a x i
w h e n the t w o rings are p e r p e n d i c u l a r (40).
P o l y m e r i z a t i o n , ca
t i o n i c or b y t r a n s i t i o n - m e t a l c o m p l e x catalysts, indicates the p a r t i c i p a t i o n of the p h e n y l g r o u p . C a t i o n i c p o l y m e r i z a t i o n y i e l d s oligomers that h a v e a structure s i m i lar to that of the p o l y m e r s p r e v i o u s l y d e s c r i b e d .
S p e c t r o g r a p h i c studies
and
m i c r o a n a l y t i c a l results i n d i c a t e t h e d i s a p p e a r a n c e of the three-car
bon
r i n g a n d e l i m i n a t i o n of one m o l e c u l e of H C 1 p e r m o l e c u l e of m o n o
mer.
T h e s e results
agree w i t h a structure that w o u l d result f r o m a
p o l y m e r i z a t i o n m e c h a n i s m s i m i l a r to that p r o p o s e d i n the p r e v i o u s case. H o w e v e r , the presence of a n N M R p e a k (1.6 p p m ) indicates p a r t i c i p a t i o n of the p h e n y l g r o u p d u r i n g p o l y m e r i z a t i o n i n p a r a p o s i t i o n , g i v i n g the structure d e s c r i b e d i n E q u a t i o n 25. as w i t h m o n o m e r s M
6
W i t h the same r e a c t i o n c o n d i t i o n s
and M , monomer M 7
8
( i n w h i c h the p a r a p o s i t i o n
is s u b s t i t u t e d b y a c h l o r i n e a t o m ) does not g i v e any p o l y m e r . POLYMERIZATION
BY
ZIEGLER-NATTA
CATALYSTS.
Under
heteroge
neous Z i e g l e r - N a t t a t y p e catalysis w i t h E t A l - T i C l , E t , A l - S n C l , E t A l C l 3
4
4
2
T i C l , E t o A l C l - S n C L , E t A l C l - S n C l , E t A l C l - T i C l , i - B u A l - T i C l , and 4
2
i-Bu Al-SnCl 3
4
4
4
3
4
i n hexane, the p o l y m e r s h a v e the same characteristics
those o b t a i n e d w i t h c a t i o n i c catalysts. z a t i o n parameters temperature,
2
as
T h e effects of v a r i o u s p o l y m e r i
w e r e s t u d i e d , ( c o n c e n t r a t i o n of catalyst, A l / M r a t i o ,
p o l y m e r i z a t i o n t i m e , etc.)
Temperature
is a factor
that
favors a n increase i n the c o n v e r s i o n degree, w i t h a m a x i m u m at 8 0 ° C . T h e polymers obtained from M
l4
are o n l y s l i g h t l y s o l u b l e i n c o m m o n
o r g a n i c solvents, whereas p o l y m e r s o b t a i n e d f r o m M i n the same solvents.
linkages that cannot h a p p e n i n the case of M of m e t h y l groups. tion
1
are h i g h l y s o l u b l e
5
T h i s difference m a y b e a t t r i b u t e d to i n t e r c h a i n 7
b e c a u s e of the presence
T h e m o l e c u l a r w e i g h t s are l o w ; M
n
~
2000 ( E q u a
26).
R
R
(26) Pu
R
H
Pl5
R
CH
3
10.
Opening of Carbon
PINAZZI E T A L .
Polymerization
Rings
167
2-Methyl-2-vinyl-l,l-dichlorocyclopropane.
of
case of v i n y l c y c l o p r o p a n e c o m p o u n d s is of p a r t i c u l a r interest
The
because
of the c o n j u g a t i o n b e t w e e n the c y c l o p r o p a n e a n d the C = C d o u b l e b o n d , a n d the a n a l o g y b e t w e e n these c o m p o u n d s a n d 1,3-dienes (41, 42).
The
p o l y m e r i z a t i o n of 2 - m e t h y l - 2 - v i n y l - 1 , 1 - d i c h l o r o c y c l o p r o p a n e
was
therefore s t u d i e d .
(M ) 17
T h i s m o n o m e r is p r e p a r e d b y a d d i n g d i c h l o r o c a r b e n e
to isoprene.
(27)
CH
3
CI
ci
M
CATIONIC
1
7
POLYMERIZATION.
Use
of
TiCl , 4
SnCl , 4
and
WC1
6
as
catalysts y i e l d s oligomers w i t h average m o l e c u l a r w e i g h t s of a b o u t 5000. T h e c o n v e r s i o n degree is a f u n c t i o n of temperature, the m a x i m u m b e i n g at 8 0 ° C .
A n a l y s i s indicates a n e m p i r i c a l f o r m u l a c o r r e s p o n d i n g to the
r e m o v a l of one m o l e c u l e of H C 1 p e r m o n o m e r u n i t , as i n the p r e v i o u s cases.
I n f r a r e d spectroscopy
the c y c l o p r o p a n e g r o u p . eliminated.
a n d N M R c o n f i r m the d i s a p p e a r a n c e
A 1,5-type of p o l y m e r i z a t i o n (43-46)
of
can be
O n the other h a n d , a 1 , 2 - p o l y m e r i z a t i o n of the d o u b l e b o n d
alone cannot b e a s s u m e d since the g e m - d i c h l o r o c y c l o p r o p y l g r o u p has completely
disappeared.
T h i s is p r o v e d b y spectroscopic
data.
p o l y m e r s o b t a i n e d g i v e i n f r a r e d a b s o r p t i o n b a n d s at 1615 c m cm , - 1
- 1
The
a n d 890
a n d N M R peaks at 0.95 a n d 1.2 p p m . In
fact, a c y c l o p r o p y l c a r b i n y l i o n is f o r m e d as the result of
attack b y the c a t i o n i c i n i t i a t o r . intermediate binyl ion.
the
T h i s c a r b o c a t i o n m a y rearrange, t h r o u g h
b i c y c l o b u t o n i u m ions, to g i v e c y c l o b u t y l i u m or a l l y l c a r T h e basic units o b t a i n e d f r o m s u c h rearrangements
structure that is either c y c l o b u t e n i c or a l l y l i c . tures of the p o l y m e r s are Pn
a
have a
T h e p r e d o m i n a n t struc-
a n d Pub of E q u a t i o n s 28 a n d 29.
POLYMERIZATION BY ZIEGLER-NATTA CATALYSTS.
Polymerization
by
t r a n s i t i o n - m e t a l c o m p l e x catalysts gives oligomers of the same structures as those o b t a i n e d c a t i o n i c a l l y , w i t h d i s t i n c t l y h i g h e r c o n v e r s i o n degrees (Equation
29).
168
P O L Y M E R I Z A T I O N
R E A C T I O N S
A N D
N E W
P O L Y M E R S
10.
Opening of Carbon
PINAZZI E T A L .
Rings
169
T h e r e a c t i v i t y of this v i n y l c y c l o p r o p a n e c o m p o u n d t o w a r d c a t i o n i c or Z i e g l e r - N a t t a initiators is greater t h a n that of p u r e l y type monomers.
cyclopropane-
T h i s stems f r o m the c o n j u g a t i o n of the t w o u n s a t u r a t e d
systems; the results o b t a i n e d agree w i t h w o r k c a r r i e d out o n the p o l y m e r i z a t i o n of v i n y l c y c l o p r o p a n e itself. Polymerization of cyclenes ( M
1 8
to M
2
5
These
gem-Dihalobicyclo[n.l.O]alkanes.
mers are p r e p a r e d b y a d d i t i o n of d i c h l o r o c a r b e n e to the of E q u a t i o n 3 0 ) .
mono
corresponding
T h e t r i c e n t r i c r i n g - o p e n i n g reac
tions of the g e m - d i h a l o b i c y c l i c c o m p o u n d s has b e e n s t u d i e d b o t h b y u s i n g e l e c t r o p h i l i c reactants a n d b y p y r o l y s i s .
I n a l l cases, o p e n i n g of
the
t h r e e - c a r b o n r i n g is m a d e b y r u p t u r e of the b o n d c o m m o n to b o t h r i n g s .
η
CI
=
4
CI η
=
5
Mis
(R =
Η)
Μ
1 9
(R = C H )
Μ
2 0
3
(R =
Η)
(R = C H )
Μ
3
Ά
(30) η
=
6
Μ
(R =
Μ
(R = C H )
η
3
η
(CH ), 2
η
CATIONIC A1C1
3
=
7
POLYMERIZATIONS.
Η)
Μ
2 4
(R =
Μ
2 5
(R = C H )
Η) 3
Catalysts
s u c h as T i C l , 4
SnCl , 4
and
g i v e p o l y m e r s w h o s e spectroscopic d a t a s h o w N M R signals at 0.9,
1.6, a n d 2.1 p p m , c o r r e s p o n d i n g r e s p e c t i v e l y to m e t h y l protons o n satu rated
carbon
atom,
to
methylene
protons
α-methylene g r o u p f r o m C ^ C d o u b l e b o n d . η η η
= 3 = 4
Pis Pu
= 5
P20 P21 Ρ22
k
(CH ) 2
η
=
6
η
=
9
η
=
10
n
Ρ23
o n the
ring,
a n d to
(R (R (R (R (R (R
= = = = = =
Η) CH ) Η) CH ) H) CH ) 3
3
3
(R = H ) ρ
2 5
one
T h e i n t e g r a t i o n ratio gives
(R = C H ) 3
(31)
170
a
POLYMERIZATION REACTIONS A N D N E W POLYMERS
p r o p o r t i o n of o n e m e t h y l
group
per monomer
unit of polymer.
M i c r o a n a l y t i c a l results g i v e e v i d e n c e o f t h e loss o f o n e H C 1 m o l e c u l e per monomer unit.
A c c o r d i n g t o these results, t h e s t r u c t u r e o f this
p o l y m e r is as s h o w n i n E q u a t i o n 3 1 . T h e i m p o r t a n c e of t h e size o f t h e r i n g f u s e d t o t h e c y c l o p r o p a n e is d e m o n s t r a t e d b y systematic studies c a r r i e d o u t w i t h a great n u m b e r of i n i t i a t o r s .
I n p a r t i c u l a r , a l t h o u g h t h e size o f t h e r i n g does n o t a p p e a r
to affect t h e c o n v e r s i o n degree, i t seems that t h e m o l e c u l a r w e i g h t o f the p o l y m e r o b t a i n e d increases as r i n g size decreases. POLYMERIZATION
catalysts above.
BY ZIEGLER-NATTA
CATALYSTS.
The
Ziegler-Natta
h a v e b e e n u s e d w i t h t h e s a m e c o n d i t i o n s as those d e s c r i b e d P o l y m e r s o b t a i n e d u n d e r s u c h c o n d i t i o n s present t h e same struc
tures as those o f p o l y m e r s o b t a i n e d b y c a t i o n i c p o l y m e r i z a t i o n . Polymerization [6.1.0]non-4-ene. non-4-ene
of Bicyclo[6.1.0]non-4-ene Bicyclo[6.1.0]non-4-ene
a n d 9,9-Dihalobicyclo-
a n d 9 , 9 - d i h a l o b i c y c l o [6.1.0]-
( Λ ί , E q u a t i o n 3 2 ) h a v e t h e s p e c i a l feature o f h a v i n g t w o 26
u n s a t u r a t e d sites that c a n react separately o r s i m u l t a n e o u s l y — t h a t is, o n e C = C
double b o n d and a cyclopropane (47-50);
9,9-dihalobicyclo[6.1.0]-
non-4-ene was s y n t h e s i z e d b y a d d i n g d i h a l o c a r b e n e t o 1,5-cyclooctadiene ( y i e l d 56%).
R e d u c t i o n of t h e d i h a l o c y c l o p r o p a n e g r o u p w i t h a N a /
h y d r a t e d m e t h a n o l system y i e l d e d b i c y c l o [ 6 . 1 . 0 ] n o n - 4 - e n e
( y i e l d 85%).
I n t h e presence o f c a t i o n i c i n i t i a t o r s , these m o n o m e r s p o l y m e r i z e via P
2 6 B L
a t r a n s a n n u l a r m e c h a n i s m t o g i v e p o l y m e r s of structures P f o r t h e bicyclo[6.1.0]non-4-ene,
2 6 a
i and
a n d dihalo-9,9-bicyclo[6.1.0]non-4-
ene, r e s p e c t i v e l y ( E q u a t i o n 3 3 ) . I n t h e presence o f Z i e g l e r - N a t t a catalysts, t h e t w o sites p a r t i c i p a t e i n t h e r e a c t i o n , b u t t h e structures of t h e p o l y m e r s o b t a i n e d are s l i g h t l y different: P
2 6 a
2 and P b2, respectively. 2 6
H o w e v e r , i n presence o f W C l - E t A l C l 6
ture
( m o l a r r a t i o M / W = 800,
2
i n b e n z e n e at r o o m t e m p e r a
m o l a r r a t i o A l / W = 8 ) , 50% c o n v e r s i o n
p o l y m e r s h a v i n g m o l e c u l a r w e i g h t s b e t w e e n 2500 a n d 6500 w e r e o b tained.
T h e N M R spectra of these p o l y m e r s s h o w some s i m i l a r i t y w i t h
those o f t h e m o n o m e r .
I n b o t h cases, t w o signals at δ = 5.35 p p m a n d
2.1 p p m i n d i c a t e that a d o u b l e b o n d is s i t u a t e d b e t w e e n t w o m e t h y l e n e g r o u p s : at 8 = 0.62 p p m a n d —0.26 p p m , t w o peaks a p p e a r c o r r e s p o n d i n g to c y c l o p r o p a n e protons. b y methylene
T h e s i g n a l at 6 = 1.35 p p m c a n b e g i v e n
a protons f r o m t h e c y c l o p r o p a n e .
I n t h e case o f t h e
10.
Opening of Carbon
PINAZZI ET A L .
CH
Rings
171
3
(33)
CH
3
26b2
26bl
m o n o m e r , because of the effect of the r i n g , this p e a k is d i v i d e d i n t w o at 8 = 2 . 1
p p m a n d 1.30 p p m .
p o l y m e r spectra
suggest a
T h e s e results a n d the i n t e g r a t i o n of the
1,4-polybutadiene
type structure
Ρ α3, i n :26
w h i c h one o u t of t w o d o u b l e b o n d s is r e p l a c e d b y a c y c l o p r o p a n e g r o u p (Equation
34).
(34)
X
—
H
X
= CI, Br
P 6a3 2
PMW
172
POLYMERIZATION REACTIONS A N D N E W POLYMERS
I n f r a r e d spectroscopy confirms this hypothesis.
T h e cyclopropane
groups are c l e a r l y c h a r a c t e r i z e d b y peaks at 3070 c m a n d 1030 c m
- 1
, and
the 1,4-polybutadiene structure is v e r i f i e d b y bands at 1660, 1410, 1310, a n d 1080 c m " . 1
Polymerization
of 9,9-dichlorobicyclo[6.1.0]non-4-ene
gives
a 30%
c o n v e r s i o n p o l y m e r h a v i n g a m o l e c u l a r w e i g h t of 2000 ( c a t a l y s t : W C 1 6
E t A l C L ; s o l v e n t : benzene; m o l a r r a t i o M / W = 300, m o l a r r a t i o A l / W = 8 ) . T h e spectroscopic d a t a m a y b e c o m p a r e d w i t h those of the b i c y c l o [ 6 . 1 . 0 ] non-4-ene p o l y m e r s . and
T h e N M R spectra s h o w t w o peaks at δ = 5 . 4 5 p p m
2.2 p p m , i n d i c a t i n g the existence of a d o u b l e b o n d b e t w e e n t w o
m e t h y l e n e g r o u p s ; a peak at δ = 1.5 p p m m a y b e a t t r i b u t e d t o m e t h y l e n e a protons f r o m a g e m - d i h a l o c y c l o p r o p a n e
T h e tertiary
(51).
protons
c a r r i e d b y this g r o u p are c h a r a c t e r i z e d b y a s h o u l d e r at δ = 1.3 p p m . T h e s e results, together w i t h i n t e g r a t i o n of t h e spectra, suggest t h e exist ence of structure P b3 s i m i l a r to structure P 26
2Ga
3 i n E q u a t i o n 34.
F u r t h e r m o r e , m i c r o d e t e r m i n a t i o n s of c h l o r i n e ( C a l c d . , 37.12%; f o u n d , 35.26%)
a n d I R spectroscopy
groups at 3070 a n d 1030 c m
1
(characteristic
bands
for cyclopropane
a n d f o r C - C l at 805 c m " ) c o n f i r m these 1
conclusions. Polymerization
of b i c y c l o [ 6 . 1 . 0 ] n o n - 4 - e n e
[6.1.0]non-4-ene i n t h e presence of W C l - E t A l C l e
a n d 9,9-dichlorobicyclo 2
catalyst y i e l d s m a i n l y
p o l y m e r s of 1 , 4 - p o l y b u t a d i e n e - t y p e structures, w h o s e m o n o m e r units are rigorously
alternating, containing a double b o n d a n d a cyclopropane
g r o u p separated b y t w o m e t h y l e n e groups l i n k e d together. propanes,
w i t h o r w i t h o u t substituents,
p o l y m e r i z a t i o n process.
T h e cyclo-
take v i r t u a l l y n o p a r t i n t h e
M o r e i n f o r m a t i o n has a l r e a d y b e e n p u b l i s h e d
(52-58).
Acknowledgment This work was done i n collaboration w i t h F . Clouet, G . Clouet, J . C . Soutif, a n d J . P . V i l l e t t e .
Literature 1. 2. 3. 4. 5. 6. 7. 8. 9.
Cited
Bernett, W. Α.,J.Chem. Educ. (1967) 44, 17. Walsh, A. D., Trans. Faraday Soc. (1949) 45, 179. Hoffmann, R.,J.Chem. Phys. (1964) 40, 2480. Coulson, C. Α., Moffitt, W. E., Phil. Mag.(1949)49,1. Ingrham, L. L., "Steric Effects in Organic Chemistry," (1965). Coulson, C. Α., Goodwin, T. H.,J.Chem. Soc. (1962) 1285. Randic, M., Maksic, Z., Theor. Chim. Acta (1965) 3, 59. Tipper, C. F. H., Walker, D. Α.,J.Chem. Soc. (1959) 1352. Brossas, J., Thèse de Doctorat d'Etat, Laboratoire de Chimie Macromoléculaire, Collège Scientifique Universitaire du Mans (1969).
10.
FINAZZI E T A L .
Opening of Carbon
Rings
173
10. Ketley, A. D.,J.Polym.Sci.(1963)B1,313. 11. Naegele, W., Haubenstock, H., Tetrahedron Lett. (1965) 48, 4283. 12. Aoki, S., Harita, Y., Otsu, J., Imoto, M., Bull. Soc. Chim. Jap. (1966) 39, 889. 13. Yanagita, M., Yamado, Α., Suzuki, M., Rika Gaku Kenkyusho Hokoku (1967) 37, 429. 14. Simmons, Η. E., Smith, R. D.,J.Amer. Chem. Soc. (1959) 81, 4256. 15. Hine, J., Ehrenson, S. J.,J.Amer. Chem. Soc. (1958) 80, 824. 16. Doering, W. E., Hoffmann, A. K.,J.Amer. Chem. Soc. (1954) 76, 6162. 17. Natta G., Danusso, F., "Stereoregular Polymers and Stereospecific Polymerizations," Vol. 1. p. 296, 1967. 18. Ketley, A. D., Ehrig, R. J.,J.Polym. Sci. (1964) A2, 4461. 19. Pinazzi,C.,Brossas, J., Die Makro. Chem. (1969) 122, 105. 20. Gaylord, N.G.,Kossler, I., Stolka, M., Vodehnal, J.,J.Polym. Sci. (1964) A2 3969 21. Stolka, M., Vodehnal, J., Kossler, I.,J.Polym. Sci. (1964) A2, 987. 22. Golub, Μ . Α., Heller, J., Can. J. Chem. (1963) 41, 937. 23. Fanta, G. F., Ph.D. thesis, University of Illinois (1960). 24. Pinazzi,C.,Reyx, D.,Bul.Soc. Chim. Fr. (1972) 3930. 25. Roberts, J. D., Mazur, R. H.,J.Amer. Chem. Soc. (1951) 73, 2509. 26. Overberger, C.G.,Malek, G. W., J. Org. Chem. (1963) 28, 867. 27. Wittig,G.,Wingler, F., Ann. Chem. (1964) 97, 2139. 28. Schrumpf,G.,Luttke, W., Liebigs Ann. Chem. (1969) 730, 100. 29. Skattebøl, L.,J.Org. Chem. (1964) 29 (10), 2951. 30. Bastiansen, O., de Meijere, Α., Angew. Chem. Internat. Edit. (1966) 5 (1), 124. 31. Ermakova, I. I., Kropacheva, E. M., Kol'tsov, A. I., Dolgoplosk, Β. Α., Vysokomol. Soedin. (1969) 11 (7), 1639. 32. Skattebøl, L. Boulette, Β.J.Org. Chem. (1966) 31, 81. 33. Neureiter, N. P.,J.Org. Chem. (1959) 24, 2044. 34. Ellis, R. J., Frey, Η. M., J. Chem. Soc. (1964) 959. 35. Winberg, Η. E., J. Org. Chem. (1959) 24, 264. 36. Robinson, G.C.,J.Org. Chem. (1964) 29, 3433. 37. Ketley, A. D., Berlin, A. J., Gorman, E., Fischer, L. P.,J.Org. Chem. (1966) 31, 305. 38. Natta,G.,Mazzanti,G.,Tetrahedron (1960) 8, 86. 39. Cossee, P.,J.Catal. (1964) 3, 80. 40. Roberston, W. W., Music, J. F., Matsen, F. Α.,J.Amer. Chem. Soc. (1950) 72, 5260. 41. Overberger, C .G.,Borchert, A. E., J. Amer. Chem. Soc. (1969) 82, 1007. 42. Flowers, M.G.,Frey, H. M., J. Chem. Soc. (1961) 3547. 43. Takahashi, T., Yamashita, I., Miyakawa, T., Bull. Chem. Soc. Jap. (1964) 37, 131 44. Takahashi, T., Yamashita, I.,J.Polym. Sci. (1965) B-3, 251. 45. Takahashi, T., Yamashita, I., Kogyo Kagaku Zasshi (1965) 68, 869. 46. Takahashi, T.,J.Polym. Sci., PartA-1,(1968)6, 403. 47. Natta, G., Dall'asta, G., Bassi, I. W., Carella, G., Makromol. Chem. (1966) 91, 87. 48. Calderon, N., Ofstead, Ε. Α., Judy, W. Α.,J.Polym. Sci., Part A-1 (1967) 5, 2209. 49. Scott, K. W., Calderon, N., Ofstead, Ε. Α., Judy, W. Α., Ward, J. P., ADVAN. C H E M . SER. (1969) 91, 26, 399.
50. Ofstead, Ε. Α., Synth. Rub. Symp., London (1969). 51. Pinazzi, C. P., Reyx, D., unpublished paper. 52. Pinazzi, C. P., Levesque, G., Reyx, D., Brosse, J. C., Pleurdeau, Α., ADVAN. C H E M . SER. (1969) 91, 27, 419.
POLYMERIZATION REACTIONS A N D N E W POLYMERS
174
53. Pinazzi, C. P., Pleurdeau, Α., Brosse, J. C., Die Makromol. Chem. ( 1 9 7 1 ) 142, 259.
54. Pinazzi, C. P., Brosse, J.C.,Pleurdeau, Α., Die Makromol. Chem. ( 1 9 7 1 ) 142, 273.
55. Pinazzi, C. P., Brosse, J.C.,Pleurdeau, Α., Die Makromol. Chem. ( 1 9 7 1 ) 144, 155.
56. Pinazzi, C. P., Brossas, J., Die Makromol. Chem. ( 1 9 7 1 ) 147, 15. 57. Pinazzi, C. P., Brossas, J., Clouet, G., Die Makromol. Chem. ( 1 9 7 1 ) 148, 81.
58. Pinazzi, C. P., Legeay,G.,Brosse, J.C.,C.R. Acad. Sci., Paris ( 1 9 7 1 ) 2 7 3 (C), 797.
R E C E I V E D April 13, 1972.