11
Polymerization of Pivalolactone
N. R. M A Y N E
Downloaded via UNIV OF BATH on June 17, 2018 at 22:42:14 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Koninklijke/Shell-Laboratorium, Amsterdam, The Netherlands
Pivalolactone
(α,α-dimethyl-β-propiolactone)
can be polym
erized via a "living" anionic mechanism to yield a linear polyester exhibiting properties suitable for use as a textile fiber or as an engineering plastic. polymerization
Two process for the
have been successfully developed
to the pilot-plant stage.
by Shell
The first is a continuous melt-bulk
process in which the monomer is rapidly polymerized in a gear-pump reactor under almost adiabatic conditions.
The
molten polymer is directly degassed, cooled, and cut into nibs.
The second
process involves
polymerization
slurry system with a heterogeneous initiator. is, in fact, "living" low-molecular-weight
in a
The initiator polymer,
and
yields a free-flowing powder with a high bulk density. Development
and chemical background of these two proc
esses are described here and some typical mechanical prop erties of the product are briefly discussed.
TJivalolactone
(α,α-dimethyl-^-propiolactone)
is a colorless l i q u i d that
c a n b e p r e p a r e d f r o m p i v a l i c a c i d via c h l o r i n a t i o n a n d s u b s e q u e n t r i n g closure of the s o d i u m salt of t h e c h l o r o a c i d . CH CH
3
0
CH Cl,
3
CH,
3
CH
3
C I CH C1
ο
I •C
3
(
I
OH
CH
I
CH
3
X
CH C1 2
CH C H Ν
3
— C
I
3
C
I
ONa
I
CH —Ο
2
2
175
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
OH
176
POLYMERIZATION REACTIONS A N D N E W POLYMERS
B e c a u s e o f t h e h i g h l y s t r a i n e d r i n g system, p o l y m e r i z a t i o n r e a d i l y occurs via r i n g o p e n i n g , y i e l d i n g a l i n e a r p o l y e s t e r t h a t e x h i b i t s p r o p e r ties s u i t a b l e f o r use as a textile fiber o r as a n e n g i n e e r i n g p l a s t i c .
CH
I
η C H
3
3
Ο
— C
/
C
I
CH3
- ^ C H
I
2
— C
reaction
II
\
C — O-j-
I
CH:
CH2-0 The
Ο
I
is e x o t h e r m i c ,
k j / m o l e (18.4 k c a l / m o l e ) .
w i t h a heat of p o l y m e r i z a t i o n of 77
T h i s v a l u e i n c l u d e s the heat of c r y s t a l l i z a t i o n
of 12.1 k j / m o l e (2.9 k c a l / m o l e ) . Before has
d i s c u s s i n g i n d e t a i l the t w o p o l y m e r i z a t i o n processes S h e l l
d e v e l o p e d u p to t h e p i l o t - p l a n t stage, w e w i l l c o n s i d e r h e r e t h e
c h e m i s t r y of t h e p o l y m e r i z a t i o n r e a c t i o n .
Polymerization The ety
Reaction
p o l y m e r i z a t i o n of p i v a l o l a c t o n e c a n b e i n i t i a t e d b y a v a r i
of n u c l e o p h i l e s .
F o r example,
tributylphosphine
(TBP)
attacks
the m o l e c u l e e x c l u s i v e l y at t h e b e t a p o s i t i o n , c a u s i n g r i n g o p e n i n g a n d p r o p a g a t i o n via
a carboxylate ion.
T h e h i g h s t a b i l i t y of this g r o w i n g
m a c r o z w i t t e r i o n results i n a " l i v i n g " p o l y m e r i z a t i o n system. C
r · · ·
τ,
1
Initiation: Bu P\ 3
η 2 5 0 ° C L o w viscosity
Process Constraints Polymer m.p. 240°C AH = 77 k J / m o l e H i g h viscosity
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11.
MAYNE
Polymerization
of
179
Pivalolactone
I n p r i n c i p l e , t h e p o l y m e r i z a t i o n c a n b e c a r r i e d o u t either i n b u l k or w i t h a d i l u e n t present.
F o r a b u l k process, t h e most attractive r o u t e
w o u l d b e o n e i n w h i c h t h e p o l y m e r is p r o d u c e d i n t h e m o l t e n state so that i t c o u l d b e f e d d i r e c t l y to a n extruder.
Melt-Bulk Polymerization
Process
C o n s i d e r i n g t h e process constraints i n T a b l e I, t h e d e s i g n o f a m e l t b u l k p o l y m e r i z a t i o n process ( 8 ) m u s t take f o u r factors i n t o a c c o u n t : (a)
T o p r o d u c e p o l y m e r i n t h e m o l t e n state, t h e r e a c t i o n t e m p e r a ture s h o u l d b e h i g h e r t h a n 2 4 0 ° C .
Pressure m u s t t h e n b e
a p p l i e d to p r e v e n t m o n o m e r loss b y e v a p o r a t i o n . (b)
I n v i e w of a p p r e c i a b l e m o n o m e r d e c o m p o s i t i o n at these t e m peratures, i t is essential that t h e p o l y m e r i z a t i o n r e a c t i o n p r o c e e d extremely r a p i d l y .
(c)
A r a p i d p o l y m e r i z a t i o n w o u l d m a k e heat r e m o v a l f r o m t h e viscous p o l y m e r mass difficult, l e a d i n g to a n almost a d i a b a t i c reaction.
(d)
T h e a d i a b a t i c t e m p e r a t u r e rise s h o u l d n o t b e so h i g h as t o m a k e t h e w h o l e process i m p r a c t i c a l because of excessive m o n o mer decomposition.
It w a s , therefore, i m p o r t a n t t o k n o w t h e a d i a b a t i c t e m p e r a t u r e rise e x p e c t e d f o r a 100% y i e l d .
U s i n g t h e heat of p o l y m e r i z a t i o n a n d specific
heat d a t a , a v a l u e of a b o u t 3 3 0 ° C w a s c a l c u l a t e d f r o m t h e r e l a t i o n Δ Η = C · dT, a n d u s i n g m e a s u r e d a n d e x t r a p o l a t e d values of C p
p
ferent temperatures f o r b o t h m o n o m e r a n d p o l y m e r .
This 330°C
at d i f figure
w a s c o n f i r m e d b y results o b t a i n e d f r o m a d i a b a t i c b a t c h p o l y m e r i z a t i o n s
MASS TEMR °C 400 r
12
13 TIME, min
Figure 1.
Adiabatic
bulk polymerization
of
pivalolactone
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
180
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
c a r r i e d o u t i n a n a u t o c l a v e ; a m a x i m u m t e m p e r a t u r e of 3 5 0 ° C w a s r e corded ( F i g u r e 1 ).
T h e r e is a d r a m a t i c increase i n p o l y m e r i z a t i o n rate
at a b o u t 7 0 ° C , a n d t h e m a x i m u m t e m p e r a t u r e is r e a c h e d w i t h i n o n e minute. T o o b t a i n a c o n t i n u o u s p o l y m e r i z a t i o n system, transport o f t h e v i s cous p o l y m e r is r e q u i r e d .
Furthermore, the initiated monomer should
not p o l y m e r i z e u p s t r e a m o f t h e r e a c t i o n z o n e .
These requirements were
met b y c o n t i n u o u s l y i n j e c t i n g T B P - i n i t i a t e d m o n o m e r u n d e r pressure i n t o a h e a t e d gear p u m p .
T h e monomer rapidly polymerizes between
the teeth of t h e gear w h e e l s , a n d t h e viscous p o l y m e r l e a v i n g t h e gear p u m p is passed i n t o a n extruder, w h e r e t h e v o l a t i l e d e c o m p o s i t i o n p r o d ucts a r e v e n t e d off. T h e p o l y m e r strands are t h e n c o o l e d a n d c u t i n t o nibs.
A s i m p l i f i e d d i a g r a m o f t h e system is s h o w n i n F i g u r e 2. MONOMER BOOSTER
b ο
TBP
5
-10°
10-20 ATA
REACTOR
VENT GAS
b ο
240-275° T = 10-20$
1
EXTRUDER 300° V WATER BATH
CUTTER
[POLYMER NIBS| Figure 2.
Melt-bulk
polymerization
process
T h e t o t a l residence t i m e i n t h e r e a c t i o n zone is b e t w e n 10 a n d 20 seconds.
I n i t i a l experiments w e r e c a r r i e d o u t w i t h reactor p u m p s h a v
i n g capacities of 1.2 m l a n d 20 m l p e r r e v o l u t i o n , r e s p e c t i v e l y .
Figure
3 shows the i n i t i a l l a b o r a t o r y setup of the reactor system. T h e i n i t i a t o r s c o n c e n t r a t i o n determines t h e r e a c t i o n rate, y i e l d , a n d m o l e c u l a r w e i g h t of t h e p r o d u c t . i n b e n z y l a l c o h o l at 1 5 0 ° C weight.)
( T h e l i m i t i n g viscosity n u m b e r , L V N ,
is u s e d as a measure
for the molecular
A n i m p r e s s i o n of these relationships c a n b e g a i n e d f r o m
F i g u r e s 4 a n d 5. I n t h e systems tested, t h e heat losses w e r e f a r t o o great f o r a d i a b a t i c c o n d i t i o n s to b e attained, a n d t h e reactors h a d to b e h e a t e d externally. H o w e v e r ; a n increase i n reactor size c o u l d result i n a closer a p p r o a c h to the a d i a b a t i c state, l e a d i n g p e r h a p s to temperatures h i g h e r t h a n 3 0 0 ° C .
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11.
MAYNE
Polymerization
Figure 3.
of
Melt-bulk
Pivalolactone
process: initial laboratory setup
INITIATOR (TBP) CONCENTRATION, %m ON LACTONE • O.OOl A 0.002 ο 0.005 Δ 0.01 • 0.02 7 0.04 f 0.08 YIELD, % 100 ρ
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
181
182
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
LVN 2.5
2.0
1.5
1.0
0.05 Figure 5.
0.1
Melt-bulk
0.15
0.2 TBP,%m
process: MW control
A t these temperatures, t h e r e d u c t i o n i n y i e l d caused b y m o n o m e r d e composition might be considerable. u s i n g t w o reactors
i n series.
This problem can be solved b y
B y l i m i t i n g t h e c o n v e r s i o n i n t h e first
reactor, t h e t e m p e r a t u r e c a n b e k e p t l o w e n o u g h . c o m p l e t e d i n the second reactor.
Conversion can be
E v e n i f the t e m p e r a t u r e i n t h e latter
exceeds 3 0 0 ° C , d e c o m p o s i t i o n of t h e m o n o m e r w i l l b e less of a p r o b l e m t h a n i n a single reactor, as r e l a t i v e l y m u c h less m o n o m e r is exposed t o the h i g h e r t e m p e r a t u r e . T o demonstrate this p r i n c i p l e , w e u s e d a p i p e a t t a c h e d to t h e outlet of t h e gear p u m p as the second reactor.
T h e v o l u m e of this p i p e w a s
t w i c e that of the gear p u m p , so that the residence t i m e i n the latter w a s reduced b y two-thirds.
T o simulate the probable thermal situation i n
large-scale reactors, the t e m p e r a t u r e of the e l e c t r i c a l l y h e a t e d p i p e w a s r a i s e d to 3 5 0 ° C w h i l e t h e gear p u m p w a s m a i n t a i n e d at 2 4 5 ° C .
The
advantages of this a r r a n g e m e n t over a single reactor a r e s h o w n i n T a b l e II. T h e f e a s i b i l i t y of the m e l t - b u l k process has b e e n d e m o n s t r a t e d o n a p i l o t - p l a n t scale.
I n a 100 m l / r e v gear p u m p ( m a x i m u m c a p a c i t y of
60 k g / h ) c o n e c t e d to a 1 4 - m m p i p e reactor ( v o l u m e of 150 m l ) , fibergrade p o l y m e r
( L V N 0.9-1.0) w a s p r o d u c e d i n a c o n t i n u o u s
stable
o p e r a t i o n i n y i e l d s of over 90% o n intake. W e h a v e n o t s t u d i e d i n d e t a i l t h e p o s s i b i l i t y of p r o d u c i n g h i g h e r m o l e c u l a r - w e i g h t m a t e r i a l ( L V N 1.5-2.0) f o r other a p p l i c a t i o n s as a n e n g i n e e r i n g p l a s t i c ) .
(such
W i t h t h e h i g h e r m e l t viscosities a n d t h e
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11.
MAYNE
Polymerization
Table II.
Pump
Residence time, s
°C
Pipe
Pump
245 245 305 355
Two-stage
183
Pivalolactone
Melt-Bulk Process: Single vs. Two-Stage Reactor
Temperature,
Single
of
5 12 12 10
245 245 245
275 305 355
5 5 5
LVN
Yield, %
Pipe
16 16 16
75-80 92 88.5 86
1.0 0.95 0.85
93 93 93
0.99 0.99 0.95
l o w e r i n i t i a t o r concentrations r e q u i r e d ( l e a d i n g to l o w e r r e a c t i o n r a t e s ) , w e expect some difficulties i n a p p l y i n g the b u l k process to the m a n u facture of s u c h m a t e r i a l . The process,
next section
deals
w i t h the
development
of o u r
alternative
i n w h i c h the heat of p o l y m e r i z a t i o n is d i s s i p a t e d i n a s l u r r y
system b y the r e f l u x i n g d i l u e n t .
A l t h o u g h this process m a y a p p e a r not
to b e so e c o n o m i c a l l y attractive as the b u l k route, it offers m u c h m o r e flexibility
i n the r a n g e of m o l e c u l a r w e i g h t s that c a n b e m a d e .
Slurry Polymerization
Process (9)
Polypivalolactone ( P P L ) tures b e l o w 1 0 0 ° C .
is i n s o l u b l e i n most solvents at
tempera-
W e therefore e n v i s a g e d c o n d u c t i n g the p o l y m e r i -
z a t i o n i n a n inert d i l u e n t f r o m w h i c h the p o l y m e r precipitates, a n d i n w h i c h the lactone m o n o m e r a n d i n i t i a t o r m a y or m a y n o t b e s o l u b l e . T h e d i l u e n t s h o u l d b e c a p a b l e of d i s s i p a t i n g the heat of p o l y m e r i z a t i o n , a n d the m o r p h o l o g y of the p r o d u c t ( b u l k density, p o w d e r s h o u l d b e as g o o d as possible.
flow,
etc.)
I n a d d i t i o n , the r e a c t i o n rates s h o u l d b e
p r a c t i c a l , a n d the p o l y m e r s h o u l d f u l f i l l p r o d u c t r e q u i r e m e n t s
s u c h as
thermal stability. One
approach
we
t r i e d was
a suspension
process.
The
lactone
monomer
c o n t a i n i n g an i n i t i a t o r s u c h as a p h o s p h i n e was s t i r r e d
at
60°-100°C
i n a l o n g - c h a i n h y d r o c a r b o n o i l ( " S h e l l O n d i n a " o i l 33)
in
w h i c h it was essentially i n s o l u b l e .
Although polymer with a high bulk
d e n s i t y was o b t a i n e d i n q u a n t i t a t i v e y i e l d s , the particles c o n t a i n e d h y d r o c a r b o n o i l that h a d to b e r e m o v e d b y a hot o r g a n i c w a s h ( h e p t a n e ) after r e c o v e r y b y We
filtration.
also i n v e s t i g a t e d
the p o s s i b i l i t y of u s i n g a s l u r r y system
in
w h i c h the m o n o m e r , d i s s o l v e d i n a r e f l u x i n g h y d r o c a r b o n ( h e x a n e ) , w a s p o l y m e r i z e d i n the presence of a s o l u b l e i n i t i a t o r such as T B P .
It t u r n e d
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
184
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
out that the r e a c t i o n rates h a d to b e k e p t l o w on a c c o u n t of heat trans fer p r o b l e m s , a n d the p r o d u c t was o b t a i n e d as a v e r y fine p o w d e r w i t h a l o w b u l k density.
T h e s e factors c o n s e q u e n t l y
l i m i t e d the m a x i m u m
s l u r r y concentration to 10-13 % w / w . H o w e v e r , w e f o u n d that p r o d u c t s w i t h h i g h b u l k densities (0.4-0.5) c a n easily b e p r e p a r e d b y i s o l a t i n g the p r e c i p i t a t e d p o l y m e r at l o w c o n v e r s i o n , a n d subsequently u s i n g it as i n i t i a t o r i n a separate p o l y m e r i zation reaction.
This concept
polypivalolactone (prepolymer) successful
development
of u s i n g " l i v i n g "
low-molecular-weight
as a heterogeneous i n i t i a t o r l e d to the
of a s l u r r y - p o l y m e r i z a t i o n process.
Although
m e t a l salts s u c h as p o t a s s i u m p i v a l a t e c a n also b e u s e d as heterogeneous initiators to g i v e h i g h - b u l k density m a t e r i a l , the t h e r m a l s t a b i l i t y of the p o l y m e r d u r i n g processing is at a n u n a c c e p t a b l y l o w l e v e l , as a l r e a d y described. in Table
A c o m p a r i s o n of the various processes w i t h d i l u e n t is g i v e n III. Table III.
Type of process
Polymerizations in Diluents Limitations
Initiator
Suspension
Phosphine
H o t E x t r a c t i o n Step Necessary
Slurry Homogeneous Initiator
Phosphine
Low Reaction Rate Low B u l k Density L o w M a x i m u m Slurry Concentration Unacceptable Thermal Stability
M e t a l Salt Slurry Heterogeneous Initiator
Phosphine Prepolymer
T h e structure of the p r e p o l y m e r a n d its r e c o m m e n d e d
characteris
tics are s h o w n i n F i g u r e 6 .
Bu P 3
/
C
Ο
I
II
Ο
\
ι
Ν
€
f - C — C — C — 0 4 - C — C — C — Ο
Γι
ι
Λ-,
Figure 6. Slurry process: prepolymer structure Molecular weight: 2-7 X 10 (n = 18-68) s
Particle size: 10-177 μ T h e p r e p o l y m e r is p r e p a r e d i n a separate process step b y a d d i n g the lactone to a s o l u t i o n of T B P i n r e f l u x i n g pentane. T h e p a r t i c l e size
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11.
MAYNE
185
Polymerization of Pivalolactone
is g o v e r n e d b y the s t i r r i n g rate a n d the m o l e c u l a r w e i g h t b y t h e lactone/ p h o s p h i n e m o l a r ratio ( F i g u r e 7 ). A feature of the s l u r r y p o l y m e r i z a t i o n is that t h e r e a c t i v i t y of t h e c a r b o x y l a t e i o n t o w a r d the lactone r i n g is m u c h h i g h e r t h a n that o f t h e phosphine.
It has b e e n estimated that u n d e r t h e c o n d i t i o n s of p r e p o l y -
m e r p r e p a r a t i o n , t h e p r o p a g a t i o n rate is at least 600 times h i g h e r t h a n the i n i t i a t i o n rate.
A n o t h e r aspect of t h e system is t h e s t a b i l i t y of t h e
" l i v i n g " p o l y m e r c h a i n ; a l t h o u g h t e r m i n a t i o n reactions
c a n take
place,
p r e p o l y m e r remains active almost i n d e f i n i t e l y w h e n stored at r o o m t e m perature. T h e m a i n p o l y m e r i z a t i o n r e a c t i o n is d o n e b y a d d i n g lactone to a s t i r r e d s l u r r y of p r e p o l y m e r i n r e f l u x i n g hexane.
A chain-transfer agent
MWxIO
0
4
Figure 7.
8
12 16 20 LACTONE/TBP MOLAR RATIO
Slurry process: prepolymer
Table I V .
preparation
Slurry-Process Data
Prepolymer C h a i n - t r a n s f e r agent ( E A A ) Diluent Reaction temperature Monomer addition T o t a l reaction time S l u r r y cone. P o l y m e r recovery Yield B u l k density
0 . 5 % w o n lactone 0 . 1 - 0 . 2 % m o n lactone hexane 69 ° C 4 hours 7 hours 4 3 % w/w filtration 100% 0.5
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
186
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
s u c h as e t h y l acetoacetate ( Ε A A ) is a d d e d either to the m o n o m e r or to the solvent.
T a b l e I V presents p r e p a r a t i v e d a t a f o r a t y p i c a l p o l y m e r i
zation. T h e a m o u n t of chain-transfer agent r e q u i r e d to o b t a i n a g i v e n m o l e c u l a r w e i g h t depends to a c e r t a i n extent o n the monomer's p u r i t y . i n d i c a t i o n of the r e l a t i o n s h i p b e t w e e n
L V N a n d the c o n c e n t r a t i o n
An of
e t h y l acetoactate that s h o u l d b e a d d e d to the solvent is g i v e n i n F i g u r e 8.
LVN 5.0 r
4.0
3.0
2.0
0'
1
1
1
0.05
0.10
0.15
Figure 8.
Slurry process: MW
1
0.20 ΕΑΔ, %m control
T h e m o r p h o l o g y of the final p o w d e r depends m a i n l y o n t h a t of the p r e p o l y m e r ; u n d e r o p t i m a l c o n d i t i o n s , the p r o d u c t is a large-scale r e p l i c a of the p r e p o l y m e r particles. h i g h b u l k d e n s i t y (0.5)
F i g u r e 9 shows a t y p i c a l p r o d u c t w i t h a
a n d a g o o d f l o w caused b y the s p h e r i c a l s h a p e
of the particles. T h e s l u r r y p o l y m e r i z a t i o n process w i t h p r e p o l y m e r has b e e n up
from
bench-scale
(100
grams)
b a t c h e s ) w i t h o u t major difficulties.
to
pilot-plant operation
scaled
(0.5-ton
A n i m p o r t a n t aspect of this process
is the absence of reactor f o u l i n g .
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11.
MAYNE
Figure
9.
Polymerization
Slurry
of
Pivalolactone
187
process: morphology of product spaces=100 n)
Properties of Polypivalolactone
(2.8
calibration
(PPL)
A m a j o r e v a l u a t i o n , i n c l u d i n g c o n s u m e r testing, has b e e n c a r r i e d out o n t h e p o l y m e r to d e t e r m i n e its s u i t a b i l i t y f o r use as a textile
fiber.
P r o c e s s i n g comprises m e l t s p i n n i n g at 2 8 0 ° - 2 9 0 ° C f o l l o w e d b y s t r e t c h i n g b y usual procedures. diate
between
I n most m e c h a n i c a l properties, P P L is interme
polyethylene
terephthalate
( P E T ) a n d nylon-6.
Its
u n i q u e properties are its excellent elastic b e h a v i o r , h i g h e l o n g a t i o n ( 6 g/denier at 80% e l o n g a t i o n ) , a n d whiteness r e t e n t i o n .
Table V qualita
t i v e l y compares the three fibers. Table V .
Mechanical Properties PPL
Tenacity Stiffness K n o t strength Elasticity C o l o r retention Dyeability a
+ = good; db = fair; — = poor
+ + + ++ ++
α
Nylon-6
PET
+
±
+ + ± ++
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
+ ++ + ±
+ +
188
POLYMERIZATION
REACTIONS A N D N E W POLYMERS
As expected f r o m its c h e m i c a l structure P P L is h i g h l y resistant t o c h e m i c a l s , heat, a n d U V l i g h t , as s h o w n i n T a b l e V I .
Table V I .
Chemical Resistance PPL
a
Nylon-6
PET
+
±
+ + + ++ ++
Alkali Acid Solvents Heat U V light + = good; =b = fair; — = poor
a
±
+ —
+ + + ±
F o r plastic a p p l i c a t i o n s , P P L c a n b e injection m o l d e d at 2 8 0 ° C . ( N u c l e a t i n g agent s h o u l d b e a d d e d . ) good
flow,
reactions.
P r o c e s s i n g is easy b e c a u s e o f
h i g h s t a b i l i t y , a n d absence of c a r b o n i z i n g o r c r o s s l i n k i n g Its o u t s t a n d i n g p r o p e r t y as a p o t e n t i a l e n g i n e e r i n g
plastic
is its h i g h heat resistance ( s t a b l e f o r 1000 hours at 2 0 0 ° C , o r o n e y e a r at 1 5 0 ° C ) .
The
Future T h e c o m m e r c i a l f u t u r e of p o l y p i v a l o l a c t o n e is d i f f i c u l t to p r e d i c t
at the m o m e n t . competing
T h e p r o b l e m s of i n t r o d u c i n g a n e w p l a s t i c o r fiber a n d
against
well-established
materials
are n u m e r o u s .
e s p e c i a l l y t r u e i n t h e present e c o n o m i c s i t u a t i o n .
T h i s is
W e believe, however,
that there is a p l a c e f o r p o l y p i v a l o l a c t o n e i n t h e thermoplastics
field
a n d , as w e h a v e d e m o n s t r a t e d , the t e c h n o l o g y a n d expertise n o w exists to p r e p a r e i t o n a c o m m e r c i a l scale.
Acknowledgment T h e author w o u l d l i k e to a c k n o w l e d g e t h e c o n t r i b u t i o n s m a d e to this work b y numerous
colleagues
at the K o n i n k l i j k e / S h e l l - L a b o r a t o r i u m :
i n particular D . P . C u r o t t i , P . A. Desgurse, A. Klootwijk, a n d W . M . Wagner.
Literature
Cited
1. Markevich, Μ . Α., Pakhomeva, L. K., Enikolopyan, N. S., Proc. Acad. Sci. USSR, Phys. Chem. Sect. (1970) 187, 499.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
11. 2. 3. 4. 5. 6. 7. 8. 9.
MAYNE
Polymerization
of
Pivalolactone
Jaacks, V., Mathes, N., Makromol, Chem. (1970) 131, 295. Jaacks, V., Mathes, N.,Makromol.Chem. (1971) 142, 209. Letts, Ε. Α., Collie, N., Phil. Mag. (1886) 22, 183. Denney, D. B., Kindsgrab, Η. Α.,J.Org. Chem. (1963) 28, 1133. Netherlands Patent Application 7,002,062. Wiley, R. H.,J.Macromol. Sci. Chem. (1970) 4, 1797. UK Patents 1,180,044 and 1,261,153. US Patents 3,578,700; 3,558,572; 3,471,456; and 3,579,489.
R E C E I V E D December 5, 1972.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.