4
Segmented Polyester Thermoplastic Elastomers
W. K. WITSIEPE
1
Downloaded by EAST CAROLINA UNIV on March 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch004
E . I. du Pont de Nemours and Co., Inc., Elastomer Chemicals Department, Experimental Station, Wilmington, Del. 19898
The
preparation
and physical properties
polyether-polyester
of a group of
copolymers are described.
Where the
polyester component has a high homopolymer melting point, the resulting copolyesters are tough, resilient, thermoprocessable elastomers.
Polymer hardness and modulus character-
istics may be varied from a fairly soft elastomer to an impact-resistant plastic by varying the relative amounts of polyether (soft segment) and polyester (hard segment).
The
general characteristics of these polymers suggest that these materials have a continuous amorphous polyether
phase
tied together with crystalline hard segment domains.
Prop-
erties such as tear strength, flex resistance, and oil resistance may be modified
by incorporating
a second ester
component; in these latter polymers, the crystalline phase contains one, but not both, of the hard segment ester components.
Melting
points of the copolymers depend
upon
the mole fraction of crystallizable hard segment.
n p h i s r e p o r t deals w i t h t h e synthesis a n d c h a r a c t e r i z a t i o n o f c o p o l y esters d e r i v e d f r o m p o l y a l k y l e n e ether glycols, a r o m a t i c d i c a r b o x y l ates, a n d s h o r t - c h a i n a l i p h a t i c diols.
M o d i f i c a t i o n of p o l y e t h y l e n e tere-
p h t h a l a t e b y use of u p to 20 w t % of h i g h - m o l e c u l a r - w e i g h t ether
glycol
w a s first r e p o r t e d
S n y d e r ( 2 ) to y i e l d p o l y m e r i c
independently fibers
(J)
and
having improved d y e receptivity
a n d m o i s t u r e r e g a i n , as w e l l as greater unmodified polymer.
polyethylene
by Coleman
flexibility,
compared
with the
M e l t i n g p o i n t a n d t e n a c i t y of the m o d i f i e d p o l y
mers w e r e s i m i l a r to those o f u n m o d i f i e d p o l y m e r s .
C o l e m a n ( 3 ) also
r e p o r t e d that t h e p o l y e t h e r d i d n o t interfere w i t h t h e c r y s t a l l i n i t y of polyethylene
terephthalate, a n d that t h e p o l y e t h e r
resided wholly i n
Present address: E. I. du Pont de Nemours and Co., Inc., Elastomer Chemicals Dept., P.O. Box 1378, Louisville, Ky. 40201 1
39 Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
40
POLYMERIZATION REACTIONS A N D N E W POLYMERS
280 O 240 < 200 I X ~ 160
Plastic Flow
I-
z
Downloaded by EAST CAROLINA UNIV on March 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch004
£l20 e> § 80 UJ 5 40 _l_
0 10 20 30 40 50 60 70 80 90 100 POLYETHYLENE TEREPHTHALATE HARD SEGMENT, Wt.% Figure 1. Melting point (x-ray) of segmented polyesters having a 4000 M polyether glycol soft segment and a polyethylene terephthalate hard segment (5) n
a m o r p h o u s regions of t h e s e m i c r y s t a l l i n e
fibers.
Copolymers containing
30% p o l y e t h e r h a d l i m i t e d elasticity. J . C . Shivers ( 4 , 5 ) b r o a d e n e d this a p p r o a c h to i n c l u d e other p o l y a l k y l e n e ether glycols a n d polyester h a r d segments.
C h a r a c t e r i z a t i o n of
p o l y m e r s h a v i n g a m u c h b r o a d e r range of ether content s h o w e d that a w i d e v a r i e t y of p r o d u c t s — r a n g i n g f r o m h a r d plastics to s e m i c r y s t a l l i n e elastomers a n d , at h i g h ether content, to soft elastic g u m s — c o u l d b e obtained
(Figure 1).
T h e elastomers d e s c r i b e d b y Shivers w e r e r e
p o r t e d to h a v e excellent stress decay a n d tensile r e c o v e r y w h e n tested as d r a w n
fibers.
S u b s e q u e n t l y , other w o r k e r s i n v e s t i g a t e d t h e use of
p o l y e t h e r esters i n various 8, 9, 10).
fiber,
film,
a n d adhesive a p p l i c a t i o n s (6, 7,
C e r t a i n c h a r a c t e r i s t i c properties of a r o m a t i c polyesters s u c h
as h i g h m e l t i n g p o i n t , i n s o l u b i l i t y i n most solvents, excellent m e l t sta b i l i t y , a n d h i g h strength m a k e t h e m of interest as h a r d segments i n thermoprocessable
elastomers.
Experimental C a t a l y s t . M a g n e s i u m m e t a l (1.41 grams, 0.058 gram-atom) is a d d e d to 300 m l of d r y 1-butanol a n d the b u t a n o l refluxed f o r a b o u t f o u r hours i n t h e absence of moisture. T h e m a g n e s i u m reacts to f o r m a gelatinous mass after; 36.0 grams (0.106 m o l e ) of t e t r a b u t y l t i t a n a t e is t h e n a d d e d a n d reflux c o n t i n u e d f o r a n a d d i t i o n a l h o u r . T h e r e s u l t i n g h o m o g e n e ous s o l u t i o n is c o o l e d a n d b o t t l e d u n t i l r e q u i r e d .
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by EAST CAROLINA UNIV on March 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch004
4.
WITSIEPE
Polyester Thermoplastic
41
Elastomers
P o l y m e r i z a t i o n . T h e s e materials are p l a c e d i n a 3 0 0 - m l d i s t i l l a t i o n flask fitted for d i s t i l l a t i o n : p o l y t e t r a m e t h y l e n e ether g l y c o l ( P T M E G ) , n u m b e r - a v e r a g e m o l e c u l a r w e i g h t a b o u t 1000 (35.0 grams, 0.035 m o l e ) ; 1,4-butanediol ( 4 G ) (25.0 grams, 0.28 m o l e ) ; d i m e t h y l t e r e p h t h a l a t e ( D M T ) (40.0 grams, 0.21 m o l e ) ; s y m - d i - / ^ n a p h t h y l - p - p h e n y l e n e d i a m i n e (0.15 g r a m ) . A stainless-steel stirrer w i t h a p a d d l e cut to c o n f o r m w i t h the i n t e r n a l r a d i u s of the flask is p o s i t i o n e d about % i n c h f r o m the b o t t o m of the flask a n d a g i t a t i o n is started. T h e flask is p l a c e d i n a n o i l b a t h at 2 0 0 ° C , a g i t a t e d for five m i n u t e s , a n d 0.3 m l of catalyst is a d d e d . M e t h a n o l d i s t i l l a t i o n starts almost i m m e d i a t e l y , a n d d i s t i l l a t i o n is p r a c t i c a l l y c o m p l e t e i n 20 m i n u t e s . T h e t e m p e r a t u r e of the o i l b a t h is m a i n t a i n e d for one h o u r after the a d d i t i o n of catalyst. T h e t e m p e r a t u r e of the b a t h is t h e n increased to 2 6 0 ° C d u r i n g about 30 m i n u t e s . T h e pressure o n the system is t h e n r e d u c e d to 0.5 m m H g or less ( a b o u t 0.1 m m H g m e a s u r e d w i t h a M c L e o d gauge at the p u m p ) a n d d i s t i l l a t i o n at r e d u c e d pressure is c o n t i n u e d for about 90 m i n u t e s . T h e r e s u l t i n g viscous, m o l t e n p r o d u c t is s c r a p e d f r o m the flask i n a n i t r o g e n ( w a t e r a n d o x y g e n - f r e e ) atmosphere a n d a l l o w e d to cool. M a t e r i a l s . E x c e p t for the s h o r t - c h a i n d i o l s , a l l of the reagents w e r e of c o m m e r c i a l q u a l i t y a n d u s e d as r e c e i v e d . T h e s h o r t - c h a i n diols ( E a s t m a n ) w e r e d i s t i l l e d f r o m a s m a l l q u a n t i t y of s o d i u m before use. T e s t M e t h o d s . Inherent viscosities w e r e d e t e r m i n e d at a c o n c e n t r a t i o n of 0.1 g / d l i n m-cresol at 3 0 ° C a n d are r e p o r t e d i n d l p e r g r a m . M e l t i n g points a n d glass t r a n s i t i o n temperatures w e r e d e t e r m i n e d i n the u s u a l w a y b y use of a d i f f e r e n t i a l s c a n n i n g c a l o r i m e t e r ( D u p o n t M o d e l 900). H e a t i n g rate was 11° C / m i n . T o d e t e r m i n e m e c h a n i c a l properties, unless otherwise n o t e d , a l l specimens w e r e pressed at a b o u t 2 0 ° C a b o v e t h e i r m e l t i n g p o i n t , h e l d at this t e m p e r a t u r e , a n d t h e n c o o l e d u n d e r pressure over five to 10 minutes to r o o m t e m p e r a t u r e . T h e y w e r e t h e n c o n d i t i o n e d at 24 ° C a n d 50% r e l a t i v e h u m i d i t y for at least t w o days before testing. T e s t methods u s e d w e r e : A S T M D2240 A S T M D412
H a r d n e s s , Shore T e n s i l e strength E l o n g a t i o n at b r e a k Tensile modulus T e a r strength
A S T M D412, D i e C A S T M D412 A S T M D 1 9 3 8 at 50 i n . / m i n
Torsional modulus (Clash-Berg)
A S T M D1043
C o m p r e s s i o n set
A S T M D395-55, method B , 22 h r / 7 0 ° C
Brittle point
A S T M D746
Discussion The
copolyesters
may be
considered
as h a v i n g b e e n d e r i v e d
r a n d o m l y j o i n i n g , h e a d - t o - t a i l , soft a n d h a r d segments.
by
A generalized
structure is:
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
42
POLYMERIZATION REACTIONS A N D N E W POLYMERS
(0—CH CH CH CH ) OC—AR—C-2
2
2
2
x
II 0
--0D0—C—AR—CII o
N o
Downloaded by EAST CAROLINA UNIV on March 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch004
Soft Segment
II o
H a r d Segment
A R = the a r o m a t i c m o i e t y of the d i c a r b o x y l a t e D = the a l k y l e n e p o r t i o n of a s h o r t - c h a i n d i o l x = the n u m b e r of t e t r a m e t h y l e n e ether units i n the p o l y t e t r a m e t h y l e n e ether g l y c o l Copolyesters h a v e b e e n p r e p a r e d f r o m d i m e t h y l terephthalate, p o l y tetramethylene
ether
glycol
(molecular
weight,
1000)
and
various
s h o r t - c h a i n d i o l s , e s p e c i a l l y 1,4-butanediol a n d ethylene g l y c o l .
With
1,4-butanediol, the c r y s t a l l i n e h a r d segments ( w h i c h p r o d u c e the h i g h modulus tie-point domains)
consist of consecutive units of t e t r a m e t h
y l e n e t e r e p h t h a l a t e ( 4 G T ) ; w i t h ethylene g l y c o l , these segments consist of ethylene t e r e p h t h a l a t e ( 2 G T ) .
T h e a m o r p h o u s phase contains units
of p o l y t e t r a m e t h y l e n e ether g l y c o l t e r e p h t h a l a t e ( P T M E G - T ) . Copolyesters
containing two
b e e n s y n t h e s i z e d , too.
aromatic carboxylate
residues
have
F o r e x a m p l e , 1,4-butanediol has b e e n u s e d w i t h
d i m e t h y l t e r e p h t h a l a t e i n c o m b i n a t i o n w i t h a n u m b e r of d i m e t h y l esters, i n c l u d i n g d i m e t h y l phthalate ( 4 G P ) , d i m e t h y l isophthalate ( 4 G I ) , d i m e t h y l sebacate ( 4 G 1 0 ) ,
and dimethyl m-terphenyl-4,4"-dicarboxylate
(4GTP). F o r convenience, p o l y m e r compositions w i l l b e specified a c c o r d i n g to t h e i r h a r d segment w e i g h t p e r c e n t a g e a n d soft segment c o m p o s i t i o n . F o r e x a m p l e , 44% 4 G T / P T M E G - T
is a r a n d o m segmented
copolymer
c o n t a i n i n g 44% b y w e i g h t of t e t r a m e t h y l e n e terephthalate segments a n d 56% b y w e i g h t of p o l y t e t r a m e t h y l e n e ether terephthalate.
U n l e s s other
w i s e specified, a l l d a t a refer to p o l y t e t r a m e t h y l e n e ether g l y c o l h a v i n g a n u m b e r - a v e r a g e m o l e c u l a r w e i g h t of 980.
Synthesis T h e p o l y e t h e r esters are m a d e b y t y p i c a l m e l t p o l y m e r i z a t i o n p r o cedures. A p r e p o l y m e r is first p r e p a r e d b y i n t e r c h a n g e of t h e m e t h y l ester of one or m o r e a r o m a t i c d i c a r b o x y l i c acids w i t h a m i x t u r e of a p o l y m e r i c d i o l a n d e n o u g h s h o r t - c h a i n d i o l for a n o v e r a l l 50% excess of h y d r o x y l f u n c t i o n a l i t y ( F i g u r e 2 ) . A titanate catalyst is g e n e r a l l y u s e d . M e t h a n o l is f r a c t i o n a t e d f r o m the r e a c t i o n m i x t u r e to a v o i d loss of
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
WITSIEPE
Polyester Thermoplastic
0
0
11
/ ^ \ 'I
43
Elastomers
3H0R0H
2MeOC-/ O )-C0Me A
•
2 0 0 ° C , catalyst
0
0
Downloaded by EAST CAROLINA UNIV on March 7, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch004
HOROC-^(^LO
COROH
250°C,
ii TT^VII
H
+
4MeOHf