16 High Temperature Free-Radical Polymerizations in
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
Viscous Systems J. A. NORONHA, M. R. JUBA, H. M. LOW, and E. J. SCHIFFHAUER Eastman Kodak Company, Rochester, NY 14650
Recently, we have been studying the runaway stages of some p o l y m e r i z a t i o n r e a c t i o n s . We are t r y i n g to l e a r n more about designing equipment s a f e l y i n the event a r e a c t i o n gets out of c o n t r o l and runs away. To do t h i s we developed a computer model to p r e d i c t the k i n e t i c c o n d i t i o n s during the runaway stage. The k i n e t i c model i s used to estimate the r e a c t i o n r a t e s , temperatures, pressures, viscosities, conversions, and other v a r i a b l e s which i n f l u e n c e r e a c t o r design. To t e s t our model, we s e t up small and l a r g e - s c a l e t e s t s f o r t h e r m a l l y - i n i t i a t e d p o l y m e r i z a t i o n o f styrene. The k i n e t i c model p r e d i c t e d the observed r e a c t i o n r a t e s , pressures, r a t e s of pressure r i s e and temperature r i s e w i t h i n order-of-magnitude a c c u r a c i e s . The accuracy of the k i n e t i c model was b e t t e r f o r the l a r g e - s c a l e t e s t s . We extended the k i n e t i c model to other monomer systems such as styrene and methyl methacrylate. With these, we used common initiators such as benzoyl peroxide and a z o - b i s - i s o b u t y r o n i t r i l e . The r e s u l t s of these s i m u l a t i o n s compared c l o s e l y with some published experiments. With such modeling e f f o r t s , coupled with some s m a l l - s c a l e t e s t s , we can assess the hazards of a polymer r e a c t i o n by knowing c e r t a i n p h y s i c a l , chemical and r e a c t i o n k i n e t i c parameters. Introduction Several s t u d i e s have been published to assess the k i n e t i c s of p o l y m e r i z a t i o n r e a c t i o n s a t high temperatures. QrZ)• However, most of these s t u d i e s only d e s c r i b e experiments conducted at isothermal c o n d i t i o n s . Only a few papers are based on adiabat i c runaways (2) . This paper i s one of the f i r s t s t u d i e s based on " f i r s t p r i n c i p l e s " c h a r a c t e r i z i n g a d i a b a t i c runaway r e a c t i o n s .
0-8412-0506-x/79/47-104-339$05.50/0 © 1979 American Chemical Society Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
340
D i s c u s s i o n on
Derivation of
the Rate
Equations
The p o l y m e r i z a t i o n r a t e e q u a t i o n s a r e based on a c l a s s i c a l f r e e r a d i c a l p o l y m e r i z a t i o n ' mechanism ( i . e . , i n i t i a t i o n , p r o p a g a t i o n , and t e r m i n a t i o n o f t h e p o l y m e r c h a i n s ) . For t h e r m a l l y - i n i t i a t e d p o l y m e r i z a t i o n :
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
R
\
f M A , P _\ P// dm
!/
2
V
S
T
> /
1/2/- x2 FE/2 ( ) *P; J l m
e
For a system employing a f r e e r a d i c a l p e r o x i d e o r a z o compound:
A
(f)( di)
1 / 2
2
(VT)" (n,)
l
( 2)
1 / 2
- E P
-
E./2! d
initiator
E
exp[ t
/ 2
E
(i.e. a
E
- p- i
/ 2
'
] (2)
The f o l l o w i n g a s s u m p t i o n s and t h e o r i e s a r e used i n t h i s derivation: 1. For the t h e r m a l l y - i n i t i a t e d c a s e , the i n i t i a t i o n r a t e has a s e c o n d - o r d e r d e p e n d e n c e on monomer c o n c e n t r a t i o n as s u g g e s t e d by F l o r y L S J i n s t e a d o f a t h i r d - o r d e r dependence as s u g g e s t e d by Hui and H a m i e 1 e c [ & ] . When i n i t i a t o r s a r e u s e d , t h e i n i t i a t i o n r a t e has a f i r s t - o r d e r d e p e n d e n c e on monomer c o n c e n t r a t i o n . 2. A quasi steady-state r a d i c a l population e x i s t s . 3. The c h a i n t e r m i n a t i o n r a t e v a r i e s i n v e r s e l y w i t h t h e v i s c o s i t y o f t h e p o l y m e r i z a t i o n medium b e c a u s e o f t h e Trommsdorff E f f e c t ( i . e . , the r e d u c t i o n o f the m a c r o r a d i c a l mobility with increasing reaction viscosity). This e f f e c t s i g n i f i c a n t l y i n f l u e n c e s r e a c t i o n r a t e [6_,£, K ) ] . 4. The r a t e c o n s t a n t s have an A r r h e n i u s dependence on temperature[11]. 5. The s o l u t i o n v i s c o s i t y i s a f u n c t i o n o f t h e p o l y m e r c o n c e n t r a t i o n and m o l e c u l a r w e i g h t , and can be d e t e r m i n e d by t h e Hi 1 I y e r and L e o n a r d m e t h o d [ 1 2 ] . 6. The c h a i n t r a n s f e r r e a c t i o n p r o p o s e d by Hui and H a m i e l i c [ 6 J and O l a j e t a 1 [ ] j j , a f f e c t s t h e m o l e c u l a r w e i g h t d i s t r i b u t i o n b u t i t does n o t a f f e c t t h e r e a c t i o n r a t e . Iterative Analysis We s t a r t e d t h i s s t u d y by d e v e l o p i n g a c o m p u t e r model t o p r e d i c t t h e k i n e t i c c o n d i t i o n s d u r i n g t h e runaway s t a g e o f a reaction. The c o m p u t e r model i s based on an i t e r a t i v e a n a l y s i s which permits a step-by-step computation of various variables.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
16.
NORONHA ET AL.
Viscous
Systems
F i g u r e 1 i s a f l o w s h e e t s h o w i n g some s i g n i f i c a n t aspects of the i t e r a t i v e a n a l y s i s . The f i r s t s t e p i n t h e p r o g r a m i s t o i n p u t d a t a f o r a b o u t 50 p h y s i c a l , c h e m i c a l and k i n e t i c p r o p e r t i e s o f t h e r e a c t a n t s . Each l o o p o f t h i s a n a l y s i s i s conducted a t a s p e c i f i e d s o l u t i o n temperature T°K. Some o f t h e v a r i a b l e s computed i n e a c h l o o p a r e : t h e monomer c o n v e r s i o n , p o l y m e r c o n c e n t r a t i o n , monomer and p o l y m e r volume f r a c t i o n s , e f f e c t i v e p o l y m e r m o l e c u l a r w e i g h t , c u m u l a t i v e number a v e r a g e m o l e c u l a r w e i g h t , c u m u l a t i v e weight average molecular weight, s o l u t i o n v i s c o s i t y , polymeri z a t i o n r a t e , r a t i o o f p o l y m e r i z a t i o n r a t e s between t h e c u r r e n t and p r e v i o u s s t e p s , t h e t o t a l p r e s s u r e and t h e p a r t i a l p r e s s u r e s o f t h e monomer, t h e s o l v e n t , and t h e n i trogen. Test
Set-up
In o r d e r t o t e s t t h i s c o m p u t e r m o d e l , we c o n d u c t e d e x p e r i m e n t s on t h e r m a l l y i n i t i a t e d s t y r e n e p o l y m e r i z a t i o n i n s e a l e d p r e s s u r e v e s s e l s . We o n l y measured p r e s s u r e s and temperatures i n these experiments. We c o n d u c t e d o u r t e s t s i n two p h a s e s . In P h a s e I ( s e e F i g u r e 2) we used a 3 0 0 - c c s t a i n l e s s s t e e l p r e s s u r e v e s s e l , e q u i p p e d w i t h a 180-cc g l a s s l i n e r , i n w h i c h 100 c c c o u l d be p o l y m e r i z e d . We used a p r e s s u r e g a g e , r a t e d f r o m 0 t o \k0 pounds p e r s q u a r e i n c h . There w e r e 3 t y p e J t h e r m o c o u p l e s - one i n t h e c e n t e r o f t h e s o l u t i o n , one i n t h e r e a c t o r w a l l , and t h e t h i r d n e a r t h e h e a t e r o u t s i d e t h e r e a c t o r . The e x p e r i m e n t s w e r e c o n d u c t e d i n a h i g h p r e s s u r e bay and o b s e r v e d on c l o s e d c i r c u i t t e l e vision. The i n i t i a l p o l y m e r c o n c e n t r a t i o n s o f t h e t e s t r e a c t a n t s w e r e e i t h e r 0 o r 15 o r 30 p e r c e n t by w e i g h t . An e l e c t r i c heater c o n t r o l l e d t h e ambient temperature o f t h e n i t r o g e n - p u r g e d r e a c t o r , and s u p p l i e d h e a t t o i n i t i a t e t h e react ion. Our c o m p u t e r model p r e d i c t e d t h e P h a s e I t e s t r e s u l t s w i t h a c c u r a c y a d e q u a t e f o r s a f e t y d e s i g n even t h o u g h t h e r e were e x p e r i m e n t a l e r r o r s . To r e d u c e t h e s e e x p e r i m e n t a l e r r o r s , i n P h a s e I I , we made some e q u i p m e n t m o d i f i c a t i o n s and used a l a r g e r r e a c t o r . In P h a s e I I ( s e e F i g u r e 3) we used a 2 9 0 0 - c c p r e s s u r e v e s s e l , w i t h a 2 0 0 0 - c c g l a s s l i n e r i n w h i c h 1000 c c o f s o l u t i o n c o u l d be p o l y m e r i z e d . T h i s was a 1 0 - f o l d i n c r e a s e o v e r P h a s e I . We used a p r e s s u r e gauge s i m i l a r t o Phase I . There were 5 t y p e J thermocouples. Of t h e s e , t h e r e were k t h e r m o c o u p l e s w i t h i n t h e r e a c t o r a s compared t o o n l y 1 i n P h a s e I . Two w e r e i n t h e s o l u t i o n w i t h i n t h e g l a s s l i n e r , one was between t h e g l a s s l i n e r and r e a c t o r w a l l , and t h e
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
Define
i n c r e m e n t a l monomer c o n v e r s i o n
P h y s i c a l , C h e m i c a l and K i n e t i c P r o p e r t i e s o f t h e R e a c t i o n System
Starting
Values;
C o n c e n t r a t i o n s o f t h e monomer, s o l v e n t , polymer, and i n i t i a t o r System t e m p e r a t u r e P a r t i a l p r e s s u r e s o f t h e monomer, s o l v e n t , and n i t r o g e n Total pressure
Calculate C o n c e n t r a t i o n s o f t h e monomer, s o l v e n t , polymer, and i n i t i a t o r Solution viscosity Number a v e r a g e polymer m o l . wt. Weight a v e r a g e polymer m o l . wt. P o l y m e r i z a t i o n Rate R e a c t i o n time Heat g e n e r a t e d Heat l o s s e s S o l u t i o n Temperature P a r t i a l p r e s s u r e s o f t h e monomer, s o l v e n t , and n i t r o g e n Total pressure Rate o f p r e s s u r e and t e m p e r a t u r e rise
(Monomer cone, i n t h e n e x t s t e p ) =(Monomer cone, i n t h e p r e v i o u s s t e p ) - ( I n c r e m e n t a l monomer c o n v e r s i o n ) Figure 1.
Iterative
analysis
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
NORONHA ET AL.
Viscous
Figure
Systems
2.
Phase I test setup
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
344
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
3 / 8 " COUPLING
IOOO kPa GAUGE 3 / 8 " HIGH PRESSURE TUBING RUPTURE DISC ASSEMBLY
THERMOCOUPLE WIRES
VAPOR PHASE THERMOCOUPLE UPRIGHT ROCKER ASSEMBLY AND HEATER
REACTOR HEAD
REACTOR WALL THERMOCOUPLE WELL ASBESTOS 8 ALUMINUM FOIL
THERMOCOUPLE GLASS CAPILLARY TUBES
GLASS LINER THERMOCOUPLES REACTION MIXTURE
METAL SPRING
HEATER THERMOCOUPLE
Figure 3.
Phase II test setup
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
NORONHA ET AL.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
16.
Viscous
Systems
f o u r t h i n t e r n a l measurement was i n t h e s p a c e a b o v e t h e solution. The o n l y e x t e r n a l t e m p e r a t u r e measurement was n e a r t h e h e a t e r . We p a c k e d t h e s p a c e between t h e g l a s s l i n e r a n d t h e r e a c t o r w a l l w i t h a s b e s t o s . These Phase II m o d i f i c a t i o n s made a b i g improvement o v e r Phase I . (see T a b l e 1) 1. S i n c e t h e s o l u t i o n s were n o t a g i t a t e d i n e i t h e r P h a s e I o r P h a s e I I , t h e t e m p e r a t u r e s were n o t u n i f o r m throughout the s o l u t i o n . So i n P h a s e I I , t h e 3 a d d i t i o n a l t e m p e r a t u r e s e n s o r s w i t h i n t h e r e a c t o r gave us a b e t t e r e s t i m a t e o f t h e average s o l u t i o n temperature. 2. In P h a s e I I t h e r a t i o o f t h e r e a c t o r w a l l s u r f a c e t o t h e r e a c t i n g s o l u t i o n v o l u m e was s i x t i m e s l o w e r . T h i s r e s u l t e d i n lower p r o p o r t i o n a l heat l o s s e s which a r e d i f f i c u l t o e s t i m a t e . Hence, t h i s r e s u l t e d i n l o w e r c o m p u t a t i o n a l e r r o r s i n Phase I I. 3. The a s b e s t o s p a c k i n g s e r v e d two a d v a n t a g e s ; first, i t r e d u c e d h e a t l o s s e s a n d hence improved a c c u r a c y and s e c o n d , i t r e p l a c e d t h e v a p o r gap between t h e l i n e r and reactor w a l l . T h i s minimized t h e c o n v e c t i v e heat t r a n s f e r of the vapor, which i s a l s o d i f f i c u l t t o c a l c u l a t e . Test
Results
S i n c e o u r model s i m u l a t e d t h e P h a s e I I r e s u l t s more a c c u r a t e l y , we s h a l l o n l y d i s c u s s t h e P h a s e II r e s u l t s . Let's d i s c u s s three t e s t s i n which the i n i t i a l polystyrene c o n c e n t r a t i o n s o f t h e r e a c t a n t s w e r e 0%, 15% and 30% by weight r e s p e c t i v e l y . F i g u r e 4 shows t h e o b s e r v e d p r e s s u r e and t e m p e r a t u r e d a t a f o r T e s t 2. I n i t i a l l y , t h e e x t e r n a l e l e c t r i c h e a t e r c o n t r o l l e d t h e s y s t e m ' s t e m p e r a t u r e and s u p p l i e d h e a t t o i n i t i a t e the reaction. L a t e r , as the r e a c t i o n rate increased the r e a c t i o n i t s e l f generated heat a t a s i g n i f i c a n t l y h i g h e r r a t e than t h e h e a t e r imput. We e s t i m a t e d t h e a v e r a g e s o l u t i o n t e m p e r a t u r e a s f o l l o w s
T
av
=
3T
°- 2
+
7T
(
°' 3
3
)
The d e r i v a t i o n was based on two a s s u m p t i o n s . F i r s t , we assumed a l i n e a r r a d i a l t e m p e r a t u r e g r a d i e n t w i t h i n t h e solution. S e c o n d , we computed "T a t the radius a t which t h e r e w e r e e q u a l v o l u m e s o f s o l u t f o n s on e i t h e r s i d e o f i t . A common i n t e r p r e t a t i o n o f t h e runaway s t a g e i s when both t h e f i r s t and second d e r i v a t i v e s o f t h e average t i m e temperature curve a r e p o s i t i v e . However, b e c a u s e we had an e x t e r n a l h e a t s o u r c e i n o u r t e s t s , we had t o a c c o u n t f o r t h e external heater temperature "T, . 11
M
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
346
TABLE I
COMPARISON OF PHASE I AND PHASE I I TESTS
Phase I Tests Reactants
Volume
Surface/Volume R a t i o Temperature Measurements 1 w i t h i n Reactor
lOOcc
Phase I I Tests lOOOcc
j
6:1
1:1
j j I
1
4
! i i
!Solution Temperature 1 Measurements
Less accurate
[Radial Heat Losses
More
Less
(Radial Heat-Transfer | Calculations
Less accurate
More accurate
[Fit with K i n e t i c Model
Good
Better
More accurate
\
I
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979. 3
t
h
2
Figure 4. Observed P and T data for Test 2: (T ) temperature near heater; (T ) solution temperature—center; (T ) solution temperature liner wall; (T ) vapor temperature between liner and wall; (P) pressure.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
POLYMERIZATION REACTORS AND PROCESSES
348
We a r b i t r a r i l y c o n s i d e r e d t h e runaway s t a g e t o b e g i n when t h e computed t e m p e r a t u r e d i f f e r e n c e between t h e and the a v e r a g e t e m p e r a t u r e o f t h e s o l u t i o n goes t h r o u g h a minimum. F o r T e s t 1 ( s e e F i g u r e 5) t h i s o c c u r s when t h e a v e r a g e t e m p e r a t u r e was 100°C and T^ was 150°C. The t e m p e r a t u r e v a r i a t i o n s w i t h i n t h e s o l u t i o n were i n c r e a s e d from T e s t 1 ( i n which the i n i t i a l p o l y s t y r e n e c o n c e n t r a t i o n was 0%) t o T e s t 2 ( i n w h i c h i t was 15%) and t o T e s t 3 ( i n w h i c h i t was 30%) r e s p e c t i v e l y . The maximum t e m p e r a t u r e d i f f e r e n c e s between T and T~ were o n l y 10° i n T e s t 1, and 15° i n T e s t 2 b u t 78° i n T e s t 3. The g r e a t e r the t e m p e r a t u r e d i f f e r e n c e s , t h e g r e a t e r t h e e r r o r o f c a l c u lating T » Hence, the c o m p u t a t i o n s f o r T were d e c r e a s i n g l y a c c u r a t e i n T e s t 1, 2 and 3 r e s p e c t i v e l y . T h e r e s a n o t h e r r e a s o n why t h e computed s o l u t i o n a v e r a g e t e m p e r a t u r e had d e c r e a s i n g a c c u r a c i e s i n T e s t s 1, 2 and 3 respectively. The r e a s o n i s t h a t we s t a r t e d w i t h i n c r e a s i n g l y v i s c o u s s o l u t i o n s , which caused the response time o f the t e m p e r a t u r e measurement t o i n c r e a s e r a p i d l y . T h i s response t i m e becomes e v e n more s i g n i f i c a n t b e c a u s e as t h e s o l u t i o n v i s c o s i t y i n c r e a s e s t h e r e a r e s i g n i f i c a n t r i s e s i n the r e a c t i o n r a t e s and t e m p e r a t u r e s . Now l e t ' s d i s c u s s t h e p r e s s u r e c o m p u t a t i o n s . The o b s e r v e d r e a c t o r p r e s s u r e i s a sum o f t h e p a r t i a l p r e s s u r e s o f n i t r o g e n and t h e s t y r e n e monomer v a p o r . The v a p o r p r e s s u r e o f t h e s t y r e n e v a p o r i s an i n c r e a s i n g f u n c t i o n o f t e m p e r a t u r e and d e c r e a s i n g f u n c t i o n o f c o n v e r s i o n . T h i s i s e x p l a i n e d by the F l o r y - H u g g i n s r e l a t i o n s h i p ( 8 ) . S i n c e we d i d n o t measure t h e c o n v e r s i o n d u r i n g t h e e x p e r i m e n t , we computed t h e e q u i l i b r i u m v a p o r p r e s s u r e a t the a v e r a g e s o l u t i o n t e m p e r a t u r e . We b e l i e v e t h a t , f o r s a f e t y d e s i g n , t h e e q u i l i b r i u m v a p o r p r e s s u r e i s an a d e q u a t e e s t i m a t e o f t h e s t y r e n e v a p o r p r e s s u r e . F o r e x a m p l e , even a t a 50% c o n v e r s i o n , t h e d i f f e r e n c e i s o n l y 10% a t t h e experimental temperatures. F i g u r e s 6, 7 and 8 compared t h e o b s e r v e d p r e s s u r e s w i t h t h e computed t o t a l p r e s s u r e s . The l a t t e r w e r e b a s e d on t h e e q u i l i b r i u m v a p o r p r e s s u r e . As e x p e c t e d , t h e r e w e r e i n c r e a s i n g v a r i a t i o n s i n T e s t s 1, 2 and 3 r e s p e c t i v e l y because o f t h e i r h i g h e r i n i t i a l c o n v e r s i o n s . From t h e s e f i g u r e s we can v e r i f y t h a t o u r p r e s s u r e and t e m p e r a t u r e measurements w e r e i n p h a s e w i t h r e s p e c t t o t i m e . We n e x t e s t i m a t e d t h e c o n v e r s i o n s by u s i n g t h e o b s e r v e d p r e s s u r e s and t e m p e r a t u r e s and t h e F l o r y - H u g g i n s r e l a t i o n s h i p . Since the Flory-Huggins r e l a t i o n s h i p i s less accurate at h i g h e r c o n v e r s i o n s , we c a n e x p e c t t h e s e e s t i m a t e s o f c o n v e r s i o n s t o be o f d e c r e a s i n g a c c u r a c y i n T e s t s 1, 2 and 3 respectively.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
?
a v
g v
1
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
NORONHA ET AL.
Systems
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
Viscous
0
20
4 0
6 0
80
minutes
Figure 5. T and T k
av
100
120
for Test 1
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
100
200
300
400
500
600
-
700 r -
Figure
30
6.
60
Test 1 (observed
45
and computed
minutes
75
90
pressures)
J
105
1
120
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
I
135
I
150
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979. Figure
7.
Test 2 (observed
and computed
minutes
pressures)
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
352
Î V.
SX
I
ο
so
ε
s ο
CO
i οό
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
16.
NORONHA ET AL.
Viscous
Systems
L e t ' s d i s c u s s t h e r e a c t i o n r a t e c o m p u t a t i o n s b a s e d on t h e k i n e t i c model w i t h t h o s e d e r i v e d f r o m t h e e x p e r i m e n t s . A t a given i n s t a n t , these c a l c u l a t i o n s a r e e s s e n t i a l l y " p o i n t " f u n c t i o n s s i n c e they a r e independent o f t h e path t h e r e a c t i o n s y s t e m has t a k e n up t o t h a t g i v e n i n s t a n t . The k i n e t i c model r e a c t i o n r a t e i s computed p e r e q u a t i o n (1) o r e q u a t i o n (2) u s i n g t h e computed a v e r a g e s o l u t i o n t e m p e r a t u r e (T ) and t h e e s t i m a t e d c o n v e r s i o n ( s ) . The c a l c u l a t i o n s f o r t h e e x p e r i m e n t a l r e a c t i o n r a t e s a r e b a s e d on an u n s t e a d y s t a t e h e a t t r a n s f e r a n a l y s i s . We computed t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t o f t h e s y s t e m and e s t i m a t e d t h e e x p e r i m e n t a l r a t e s a s f o l l o w s : dT exp
dt '
av'
x
V
To s i m p l i f y t h e e q u a t i o n (4) c a l c u l a t i o n s d u r i n g t h e runaway s t a g e we drew t h e m a g n i f i e d p l o t s o f T e s t 1 d u r i n g t h e 68 t o 76 m i n u t e s ( F i g u r e 9) and f o r t h e 75 t o 80 m i n u t e p e r i o d (Figure 10). We computed t h e p e r c e n t a g e e r r o r s between t h e r e a c t i o n r a t e c o m p u t a t i o n s b a s e d on t h e e x p e r i m e n t s w i t h t h o s e based on t h e k i n e t i c m o d e l . N o t e t h a t , l i k e t h e p r e s s u r e and temperature comparisons, the accuracy o f the c a l c u l a t i o n s f o r r e a c t i o n r a t e s d e c r e a s e s a s we compare T e s t 1 w i t h T e s t 2 and T e s t 3. In T e s t 1 t h e e r r o r r a n g e s f r o m 3 t o 2 1 % , i n T e s t 2 i t was 10 t o 2 1 % , i n T e s t 3 i t ranged f r o m 5 t o 36%. In e a c h t e s t , t h e e r r o r s w e r e i n t h e l o w e r o r d e r o f i t s range d u r i n g t h e e a r l i e r s t a g e s o f t h e runaway r e a c t i o n , and i n t h e h i g h e r o r d e r o f i t s range d u r i n g t h e l a t e r s t a g e s . We c a n e x p l a i n why t h i s d e c r e a s i n g a c c u r a c y o c c u r s . The e x p e r i m e n t a l r e a c t i o n r a t e c o m p u t a t i o n s based on e q u a t i o n (k) a r e p r i m a r i l y f u n c t i o n s o f t h e computed a v e r a g e s o l u t i o n t e m p e r a t u r e (T ) . The k i n e t i c model r a t e c o m p u t a t i o n s b a s e d on e q u a t i o n (1) o r (2) a r e p r i m a r i l y f u n c t i o n s o f b o t h "T " a s w e l l a s t h e e s t i m a t e d c o n v e r s i o n ( s ) . E a r l i e r we e x p l a i n e d why we e x p e c t e d d e c r e a s i n g a c c u r a c i e s o f e s t i m a t i n g b o t h t h e c o n v e r s i o n s and t h e a v e r a g e s o l u t i o n t e m p e r a t u r e i n T e s t s 1, 2 and 3 r e s p e c t i v e l y . O t h e r Monomer S y s t e m s - C o m p a r i s o n W i t h 01her
StudIes
The t h e r m a l l y - i n i t i a t e d s t y r e n e s y s t e m i s c o n s i d e r a b l y s i m p l e r t h a n most i n d u s t r i a l a p p l i c a t i o n s . Though t h e s e e x p e r i m e n t s p r o v i d e d u s e f u l g u i d e l i n e s , i t was d i f f i c u l t t o develop broadly a p p l i c a b l e design c r i t e r i a without c a r e f u l l y e v a l u a t i n g a b r o a d range o f monomer, p o l y m e r and i n i t i a t o r systems. Hence we e x t e n d e d o u r k i n e t i c model t o some o t h e r monomer s y s t e m s s u c h a s s t y r e n e and m e t h y l m e t h a c r y l a t e u s i n g common i n i t i a t o r s s u c h a s b e n z o y l p e r o x i d e (BPO) and
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
POLYMERIZATION REACTORS AND PROCESSES
Figure 10.
T
av
and T for Test 1 (75-80 h
min)
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
16.
NORONHA ET AL.
Viscous
Systems
a z o - b i s - i s o b u t y r o n i t r i l e (AIBN). The r e s u l t s o f t h e s e m o d e l s compared q u i t e f a v o r a b l y w i t h some p u b l i s h e d e x p e r i ments. Most p u b l i s h e d s t u d i e s r e l a t e o n l y t o i s o t h e r m a l e x p e r i ments. Hence, i n o r d e r t o make s u c h c o m p a r i s o n s we m o d i f i e d o u r c o m p u t a t i o n s t o assume i s o t h e r m a l c o n d i t i o n s . F i g u r e 11 compares o u r k i n e t i c model w i t h d a t a by Hui and H a m i e l e c (6) f o r s t y r e n e t h e r m a l p o l y m e r i z a t i o n a t 140°C. F i g u r e 12 compares o u t k i n e t i c model w i t h d a t a by B a l k e and H a m i e l e c (7) f o r MMA a t 90°C u s i n g 0.3% AIBN. F i g u r e 13 compares o u r k i n e t i c model w i t h d a t a by L e e and T u r n e r (5) f o r MMA a t 70°C u s i n g 2% BPO. Our model compares q u i t e f a v o r a b l y w i t h these published experiments. The p e r c e n t e r r o r was l e s s t h a n 5% i n most o f t h e r a n g e s o f c o n v e r s i o n s . L i mi t a t i o n s 1. The r e s u l t s o f t h e model s h o u l d be a p p l i e d o n l y t o t h e runaway c o n d i t i o n s o f a s y s t e m . They s h o u l d n o t be a p p l i e d t o t h e non-runaway s t a g e o f t h e r e a c t i o n . 2. The e x p e r i m e n t s w e r e c o n d u c t e d a t a m b i e n t t e m p e r a t u r e s up t o 200°C. Hence, t h e y do n o t r e l a t e t o t h e h i g h t e m p e r a t u r e s e n c o u n t e r e d i f t h e r e a c t o r w e r e e x p o s e d t o an external f i r e . 3. The t e m p e r a t u r e s and p r e s s u r e s d e v e l o p e d a r e a f u n c t i o n o f t h e heat t r a n s f e r c h a r a c t e r i s t i c s o f the r e a c t i o n system. Hence, o u r o b s e r v e d p r e s s u r e s and t e m p e r a t u r e s r e l a t e o n l y t o t h i s p a r t i c u l a r system. Conclus ions In c o n c l u s i o n , we have r e v i e w e d how o u r k i n e t i c model did simulate the experiments f o r the t h e r m a l l y - i n i t i a t e d styrene polymerization. The r e s u l t s o f o u r k i n e t i c model compared c l o s e l y w i t h some p u b l i s h e d i s o t h e r m a l e x p e r i m e n t s on t h e r m a l l y - i n i t i a t e d s t y r e n e and on s t y r e n e and MMA u s i n g initiators. T h e s e e x p e r i m e n t s and o t h e r m o d e l i n g e f f o r t s have p r o v i d e d us w i t h u s e f u l g u i d e l i n e s i n a n a l y z i n g more c o m p l e x s y s t e m s . W i t h s u c h m o d e l i n g e f f o r t s , we c a n a s s e s s the hazards o f a polymer r e a c t i o n system a t v a r i o u s temperaa t u r e s and i n i t i a t o r c o n c e n t r a t i o n s by k n o w i n g c e r t a i n p h y s i c a l , c h e m i c a l and k i n e t i c p a r a m e t e r s .
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
356
1.0 --,
(MIN) Figure
11.
Styrene thermal polymerization
at 140°C,
initial conversion
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
—0%
NORONHA ET AL.
Viscous
Systems
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
16.
357
co
Ο Sa
Ο ο
S s ci ••s
1
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
358
POLYMERIZATION REACTORS AND PROCESSES
-8
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
-3
- i
If
U0|ti9AU09 0/
Q
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Viscous
Systems
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
G l o s s a r y o f Terms s o l u t i o n v i s c o s i t y a t c o n v e r s i o n 'S' and t e m p e r a t u r e T°K, c p . frequency f a c t o r f o r i n i t i a t o r initiation, 1/sec. f r e q u e n c y f a c t o r f o r monomer t h e r m a l decomposition, liter/mole sec, Propagation frequency f a c t o r , l i t e r / m o l e sec. e f f e c t i v e termination frequency f a c t o r , cp 1 i t e r / m o l e s e c , a c t i v a t i o n e n e r g y f o r monomer t h e r m a l decomposition, kcal/mole, a c t i v a t i o n energy f o r i n i t i a t i o n , kcal/mole. propagation a c t i v a t i o n energy, kcal/mole, t e r m i n a t i o n a c t i v a t i o n energy, kcal/mole, initiator un i t s . initiator
e f f i c i e n c y factor, dimensionless concentration,
mole/liter.
propagation rate constant, liter/mole sec, monomer c o n c e n t r a t i o n , m o l e / l i t e r , observed reactor pressure, k i l o p a s c a l s (gauge). I d e a l Gas Law c o n s t a n t , polymerization rate, mole/liter sec. weight f r a c t i o n o f conversion, dimensionless units. time from s t a r t o f experiment, minutes, temperature near h e a t e r ( o u t s i d e r e a c t o r ) , °C. temperature a t center o f glass l i n e r ( i n t h e s o l u t i o n ) , °C. temperature a t the inside wall o f the g l a s s l i n e r ( i n t h e s o l u t i o n ) , °C. t e m p e r a t u r e between t h e g l a s s l i n e r and t h e r e a c t o r w a l 1 , °C. r e a c t i o n t e m p e r a t u r e , IK. a v e r a g e s o l u t i o n t e m p e r a t u r e , °C.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
360
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 31, 2018 | https://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch016
Literature
Cited
1.
Sadawa, H., J . Polym. S c i . , Polym. Lett. Ed., 1, p. 305.
2.
Sebastian, D. H. and Biesenberger, J . Α., Kinetics and Thermal Runaway in Styrene A c r y l o n i t r i l e Copolymerization An Experimental Study. Presented at the 70th National AIChE Meeting held in Nov., 1977 in New York City.
3.
Cardenas, J . N. and O'Driscoll, K.F., J . Polym. S c i . , Polym. Chem. Ed. (1977), 15, p. 2097.
4.
Barr, N.J., Bengough, W.I., Beveridge, G. and Park, European Polym. J . , (1977), 14, p. 245.
5.
Lee, H.B. and Turner, D.T. (2), p. 226.
6.
Hui, A. W. and Hamielec, A. E., J . Appl. Polym. S c i . , (1972), 16, p. 749.
7.
Balke, S. T. and Hamielec, A. E., J . Appl. Polym. S c i . , (1973), 17, p. 905.
8.
Flory, P. J . , " P r i n c i p l e s of Polymer Chemistry", p. 131, Cornell Univ. Press, Ithaca, N.Y., 8th p r i n t i n g , 1971.
9.
Hayden, P. and M e l v i l l e , H., J . Polym. S c i . , (1960), 43, p. 201.
10.
Enal'ev, V.D. and Mel'nichenko, V.I., Mathematical Modeling of the Kinetics of Initiated Polymerization of Vinyl Monomers, U.S.S.R., Deposited Doc., V i n i t i , (1974), 319-74.
11.
Odian, G., " P r i n c i p l e s of Polymerization", p. 243, McGraw-Hill, N.Y., N.Y., 1970.
12.
Macromolecules,
(1963),
G.B.,
(1977), 10,
H i l l y e r , M. J . and Leonard, W. J . , "Solvents Theory and Practice", R. W. Tess Ed., Series", p. 31, ACS, Washington,
"Advances in Chemistry D.C.,
1973.
13.
O l a j , O.F., Kauffman, H. F., Breitenbach, J . W. and Bieringer, H., J . Polym. S c i . , Polym. Lett. Ed. (1977), 15, p. 229.
13.
Olaj, O.F., Kauffman, H.F., Breitenbach, J . W. and Bieringer, H., J. Polym. S c i . , Polym. Lett. Ed. (1977) 2, p. 45.
RECEIVED March 15,
1979.
Henderson and Bouton; Polymerization Reactors and Processes ACS Symposium Series; American Chemical Society: Washington, DC, 1979.