3 High Conversion Diffusion-Controlled Polymerization
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
F. L . M A R T E N
and A . E. H A M I E L E C
McMaster University, Hamilton, Canada L8S 4M1
In bulk, s o l u t i o n and emulsion p o l y m e r i z a t i o n dramatic p h y s i c a l changes occur during the course o f r e a c t i o n . As polymer conc e n t r a t i o n increases a p o i n t is reached where a p p r e c i a b l e chain entanglements occur and e v e n t u a l l y a g l a s s y - s t a t e t r a n s i t i o n may r e s u l t . These p h y s i c a l changes o f t e n have a s i g n i f i c a n t e f f e c t on both r a t e o f p o l y m e r i z a t i o n and molecular weight development and any attempt a t modelling such r e a c t i o n s must p r o p e r l y account f o r these phenomena. In t h i s manuscript we review the p r i n c i p l e s o f bulk and s o l u t i o n p o l y m e r i z a t i o n with p a r t i c u l a r emphasis on high conversion (high polymer concentrations) r a t e o f p o l y m e r i z a t i o n and molecular weight development. In the l i t e r a t u r e there is only one serious attempt t o devel o p a d e t a i l e d mechanistic model o f f r e e r a d i c a l p o l y m e r i z a t i o n a t high conversions ( 1 , 2 , 3 ) . T h i s model a f t e r Cardenas and O ' D r i s c o l l i s d i s c u s s e d i n some detail p o i n t i n g out its important l i m i t a t i o n s . The present authors then d e s c r i b e the development o f a semi-empirical model based on the f r e e volume theory and show t h a t t h i s model adequately accounts f o r chain entanglements and g l a s s y - s t a t e t r a n s i t i o n i n bulk and s o l u t i o n p o l y m e r i z a t i o n o f methyl methacryl a t e over wide ranges o f temperature and solvent c o n c e n t r a t i o n . P h y s i c a l Phenomena o f High
Conversions
I t i s appropriate t o d i f f e r e n t i a t e between polymerizations occuring a t temperatures above and below the g l a s s t r a n s i t i o n point(Tg) o f the polymer being produced. For polymerizations below Tg the d i f f u s i o n c o e f f i c i e n t s o f even small monomer molecules can f a l l a p p r e c i a b l y and as a consequence even r e l a t i v e l y slow r e a c t i o n s i n v o l v i n g monomer molecules can become d i f f u s i o n c o n t r o l l e d complicating the mechanism o f p o l y m e r i z a t i o n even f u r t h e r . F o r polymerizations above Tg one can reasonably assume t h a t r e a c t i o n s i n v o l v i n g small molecules are not d i f f u s i o n c o n t r o l l e d , except perhaps f o r extremely f a s t r e a c t i o n s such as those i n v o l v i n g t e r m i n a t i o n o f small r a d i c a l s .
0-8412-0506-x/79/47-104-043$07.00/0 © 1979 American Chemical Society In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION
44
REACTORS AND PROCESSES
Polymerizations Above T . Let the p o l y m e r i z a t i o n begin i n pure monomer. As the c o n c e n t r a t i o n o f polymer chains i n c r e a s e s i n i t i a l l y one observes a r e l a t i v e l y small i n c r e a s e i n the terminat i o n r a t e constant. T h i s i s r e l a t e d t o the e f f e c t o f polymer conc e n t r a t i o n on c o i l s i z e . A r e d u c t i o n i n c o i l s i z e i n c r e a s e s the p r o b a b i l i t y o f f i n d i n g a chain end near the s u r f a c e and hence causes an i n c r e a s e i n k-^. Soon t h e r e a f t e r a t conversions 15-20% polymer chains begin t o entangle causing a 'dramatic r e d u c t i o n i n r a d i c a l chain t r a n s l a t i o n a l m o b i l i t y g i v i n g a r a p i d drop i n k^. The onset o f chain entanglements depends on polymer c o n c e n t r a t i o n , molecular weight and r e a c t i o n temperature. I t i s reasonable t o assume as d i d Cardenas and O ' D r i s c o l l (i.,2.,3) t h a t l a r g e r r a d i c a l chains become entangled before smaller ones and that the i n t r i n s i c t e r m i n a t i o n r a t e o f smaller not entangled r a d i c a l s would be una f f e c t e d u n t i l l a t e r i n the p o l y m e r i z a t i o n . The concept t h a t the t e r m i n a t i o n o f some smaller r a d i c a l s never becomes d i f f u s i o n c o n t r o l l e d i s however questionable and with the r e d u c t i o n o f even some f r e e volume even these r e a c t i o n s might become d i f f u s i o n c o n t r o l l e d . . The s i g n i f i c a n t r e d u c t i o n i n t e r m i n a t i o n r a t e o f t e n causes an almost e x p l o s i v e i n c r e a s e i n r a d i c a l p o p u l a t i o n and r a t e of polymerization. The extent o f the a u t o a c c e l e r a t i o n i n Rp depends a great d e a l upon molecular weight development. For example i n the bulk p o l y m e r i z a t i o n o f MMA most o f the polymer chains are produced by t e r m i n a t i o n r e a c t i o n s . There i s as a consequence a l a r g e r i n c r e a s e i n molecular weight as k^ f a l l s and t h i s g i v e s a m u l t i p l i e r e f f e c t i n i n c r e a s i n g the number o f polymer r a d i c a l s which are entangled. For p o l y m e r i z a t i o n above T the propagation r e a c t i o n s do not become d i f f u s i o n c o n t r o l l e d and as a consequence a conversion o f 100$ i s approached i n a reasonable time s c a l e .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
g
g
P o l y m e r i z a t i o n Below T . For p o l y m e r i z a t i o n below Tg the s i t u a t i o n i s more complex. To i l l u s t r a t e the phenomena we r e f e r t o F i g u r e s 1, 2, 3 and h. These F i g u r e s i n v o l v e monomers which are normally polymerized below T (MMA, AN, VC). The exception i s polystyrene which i s u s u a l l y polymerized above T . Rather than begin our d i s c u s s i o n at low conversion i t i s convenient, as w i l l be seen l a t e r , t o begin a t the l i m i t i n g conversion. When p o l y m e r i z a t i o n s are done below T the monomer a c t s as a p l a s t i c i z e r and a g l a s s y - s t a t e occurs a t a conversion l e s s than 100$. When a g l a s s i s formed one experiences s o l i d - s t a t e p o l y m e r i z a t i o n with a much greater time s c a l e . In the normal time s c a l e the r a t e o f p o l y m e r i z a t i o n may be taken as zero. The existence o f t h i s g l a s s y s t a t e t r a n s i t i o n has been confirmed f o r s e v e r a l polymer systems i n bulk and emulsion p o l y m e r i z a t i o n by F r i i s and Hamielec {k) and more r e c e n t l y by Berens who has independently measured Tg values f o r PVC p l a s t i c i z e d with i t s own monomer. This information i s shown i n F i g u r e s 1, 2 and 3. F i g u r e 1 shows a l i m i t i n g conv e r s i o n o f 92% f o r PMMA-MMA a t a p o l y m e r i z a t i o n temperature o f T0°C. In other words a s o l u t i o n o f 92% wt PMMA i n Q% MMA has a g l a s s t r a n s i t i o n p o i n t o f 70°C. F i g u r e 2 shows l i m i t i n g converg
g
g
g
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
MARTEN AND HAMDELEC
Figure
Diffusion-Controlled
Polymerization
1. Bulk polymerization of MMA initiated by AIBN (9): temperature 70°C; (O)[I] — 0.0258 mol/L; (X) W o = 0.01548 mol AIBN/L. 0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
45
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
46
POLYMERIZATION REACTORS AND PROCESSES
Figure
2. Polymerization temperature vs. limiting conversion for different monomer-polymer systems (4): ( V ) PMMA; ( Q ) PAN; (X) PS; (O) PVC.
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
MARTEN AND HAMIELEC
Diffusion-Controlled
Polymerization
100
50 —
7>
50
WT
%
- 100 10
20
VC
I 30
Figure 3. T of PVC vs. content of VC: ( V ) data measured by means of deviation from Flory-Huggins isotherm (5); (X) data measured thermomechanically (18); (O) data obtained from limiting conversion (4). g
American Chemical Society Library 1155 16th st. N. w. Washington, 0. C. 20036
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
47
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
48
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
MARTEN AND HAMDELEC
Diffusion-Controlled
Polymerization
49
sions p l o t t e d versus p o l y m e r i z a t i o n temperature, f o r PMMA/MMA, PAN/AN, PS/S, PVC/VC systems which have been e x t r a p o l a t e d t o a l i m i t i n g conversion o f 100$ t o estimate the Tg o f t h e polymer produced. These Tg values are i n general agreement with values measured by DSC and mechanical spectroscopy. L a t e r i n t h e manuscript i t w i l l be shown t h a t t h e e f f e c t o f r e s i d u a l monomer on g l a s s t r a n s i t i o n p o i n t as measured v i a k i n e t i c s and l i m i t i n g conversion, agrees with t h e free-volume theory. From t h e o b s e r v a t i o n o f l i m i t i n g conversions below 100$, i t i s c l e a r t h a t even r e l a t i v e l y slow propagation r e a c t i o n s i n v o l v i n g the small monomer molecule become d i f f u s i o n c o n t r o l l e d w e l l below the l i m i t i n g conversion. This i s confirmed by measurements o f kp a f t e r Hayden and M e l v i l l e (6), i n F i g u r e k where a l i m i t i n g conversion t o about Q0% was observed and i t was found t h a t kp a l r e a d y began t o drop i n value a t a conv e r s i o n o f about 50%. These observations have s i g n i f i c a n t i m p l i c a t i o n s as f a r as t e r m i n a t i o n r e a c t i o n s a r e concerned. I t must be concluded t h a t t h e magnitude o f k^ even f o r the smallest r a d i c a l r e a c t i o n s must be d i f f u s i o n - c o n t r o l l e d probably from t h e onset o f chain entanglements. In other words k-^ f o r t e r m i n a t i o n o f small r a d i c a l s must decrease s i g n i f i c a n t l y w i t h conversion. As mentioned above f o r bulk MMA p o l y m e r i z a t i o n , polymer chains are produced mainly by t e r m i n a t i o n r e a c t i o n s and hence t h e v a r i a t i o n o f k^, Rp and molecular weight a r e s t r o n g l y coupled phenomena. T h i s i s p a r t i c u l a r l y t r u e from the onset o f chain entanglements but l a t e r i n t h e p o l y m e r i z a t i o n when k^ has f a l l e n a p p r e c i a b l e t r a n s f e r t o monomer becomes an important polymer p r o ducing r e a c t i o n , l i m i t i n g t h e u l t i m a t e molecular weights t h a t can be obtained. In c e r t a i n p o l y m e r i z a t i o n s such as VC and styrene above 100°C, t r a n s f e r r e a c t i o n s c o n t r o l molecular weight development and the a u t o a c c e l e r a t i o n i n Rp i s smaller w i t h v i r t u a l l y no e f f e c t on molecular weight developments. D e s i r a b l e Features o f a P o l y m e r i z a t i o n Model a t High
Conversion.
A u s e f u l model should account f o r a r e d u c t i o n o f k t and kp with i n c r e a s e i n polymer molecular weight and c o n c e n t r a t i o n and decrease i n solvent c o n c e n t r a t i o n a t p o l y m e r i z a t i o n temperatures both below and above the T o f t h e polymer produced. For a mechanistic model t h i s would i n v o l v e many complex steps and a l a r g e number o f a d j u s t a b l e parameters. I t appears t h a t the o n l y r e a l i s t i c s o l u t i o n i s t o develop a semi-empirical model. In t h i s context t h e free-volume theory appears t o be a good s t a r t i n g p o i n t . g
Mechanistic Model - Cardenas and O ' D r i s c o l l ( l , 2, 3 ) . The b a s i s o f t h i s model i n v o l v e s the assumption that r a d i c a l s with a chain l e n g t h > x a r e entangled with the f o l l o w i n g r e l a t i o n ship based on v i s c o s i t y measurements used t o e s t a b l i s h x . c
c
K
c
=
*p
#
x
c
(1)
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
50
POLYMERIZATION
where
REACTORS AND PROCESSES
p i s the polymer volume f r a c t i o n . x i s the number average chain l e n g t h at the p o i n t o f chain entanglement. 3 i s an a d j u s t a b l e parameter (3 u s u a l l y u n i t f o r v i s c o s i t y measurements). K i s the entanglement constant. c
c
In a p p l y i n g equation ( l ) Cardenas and O ' D r i s c o l l use x as the c r i t i c a l chain l e n g t h f o r chain entanglement and permit x to decrease as p i n c r e a s e s during the p o l y m e r i z a t i o n according t o equation ( l ) . Therefore, during the course o f p o l y m e r i z a t i o n they note three kinds o f t e r m i n a t i o n r e a c t i o n s : c
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
c
k
R
#
r
+
R« s
— •
+
(R.) s
t
where r , s
x„ c
where r > x ,
s >
c
e
(R-) r
k^.
t —>.c
+
(R») —* e
e
c
c
I t i s assumed t h a t k-t i s independent o f conversion and t h a t the t e r m i n a t i o n constant f o r entangled r a d i c a l s i s given by
P and
x
s
e
n
finally
k
t
c
(
k
k
t t
)
h
( 3 )
e
T h i s model accounts f o r the c o u p l i n g between molecular weight development and a u t o a c c e l e r a t i o n i n R . However, two o f t h e b a s i c assumptions i) i s independent o f conversion ii) kp i s independent o f conversion are c e r t a i n l y not v a l i d f o r p o l y m e r i z a t i o n s below T . T h i s model does not account f o r a g l a s s y s t a t e - t r a n s i t i o n and hence cannot p r e d i c t the observed l i m i t i n g conversion. For temperatures above Tg i t may prove t o be s u c c e s s f u l . U n f o r t u n a t e l y , i t has not yet been evaluated under these c o n d i t i o n s . g
A Model Based on Free-Volume Theory. Three main problems are i n v o l v e d i n model development.
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
1. 2.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
MARTEN AND HAMIELEC
Diffusion-Controlled
51
Polymerization
Determination o f t h e conversion a t which s i g n i f i c a n t chain entanglements f i r s t occur. Development o f a r e l a t i o n s h i p w h i c h g i v e s t h e d e c r e a s e i n t h e t e r m i n a t i o n r a t e constant as a f u n c t i o n o f temperature and polymer molecular weight and c o n c e n t r a t i o n . Development o f a r e l a t i o n s h i p w h i c h g i v e s t h e d e c r e a s e i n t h e propagation r a t e constant as a f u n c t i o n o f temperature and polymer molecular weight and c o n c e n t r a t i o n .
The r a t e o f p o l y m e r i z a t i o n isothermal bulk polymerization k
where k^ k-t f k^ [I] e dp dM x t
= = = = = = = = = =
2
\
c a n b e shown t o b e i n t h e c a s e o f
/ f - k , [I]
k «t
propagation rate constant, termination rate constant, initiator efficiency, decomposition constant o f i n i t i a t o r . i n i t i a l i n i t i a t o r concentration, (dp - dj^)/dp, volume c o n t r a c t i o n f a c t o r , d e n s i t y o f polymer. d e n s i t y o f monomer degree o f c o n v e r s i o n , time
I n o r d e r t o e s t i m a t e t h e dependence o f t h e t e r m i n a t i o n r a t e c o n s t a n t o n c o n v e r s i o n , m o l e c u l a r -weight a n d t e m p e r a t u r e , t h e f o l l o w i n g i s assumed: k-^ becomes d i f f u s i o n c o n t r o l l e d when t h e d i f f u s i o n c o e f f i c i e n t f o r a p o l y m e r r a d i c a l Dp becomes l e s s t h a n o r e q u a l t o a c r i t i c a l d i f f u s i o n c o e f f i c i e n t D^ Per K ± K (5) P P c r
I t i s f u r t h e r assumed t h a t t h e t e r m i n a t i o n r a t e c o n s t a n t b e y o n d t h i s c o n v e r s i o n c a n be e x p r e s s e d b y eq. (6a) and a t t h e c r i t i c a l point (6b). k, = fc.D (6a) k, = k. D (6b) t i p t 1 p c
r
c
r
where k^ = t e m p e r a t u r e dependent p r o p o r t i o n a l i t y constant. Dp = d i f f u s i o n c o e f f i c i e n t o f polymer r a d i c a l . D = c r i t i c a l d i f f u s i o n c o e f f i c i e n t o f polymer r a d i c a l . Pcr I f no e n t a n g l e m e n t s a r e p r e s e n t , t h e d i f f u s i o n c o e f f i c i e n t p o l y m e r m o l e c u l e i s , a c c o r d i n g t o B e u c h e (T_), g i v e n a s D
p
= ( 6 /k 'M) e x p (-A/V ) o
where M 6 k A Vp Q
2
= = = = = =
2
(7)
F
molecular weight o f polymer jump f r e q u e n c y . jump d i s t a n c e . constant constant f r e e volume.
(monodispersed).
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
of a
52
POLYMERIZATION REACTORS AND PROCESSES
V
F
V
F
i n the case o f b u l k or s o l u t i o n p o l y m e r i z a t i o n i s equal t o (0.025^ (T-T ^))
=
p
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
^ +
(0.025+a (T-T ))
g
M
(0.025+a (T-T q
))
g
g M
(8)
^
where M, P and S denote monomer, polymer and solvent r e s p e c t i v e l y . T = p o l y m e r i z a t i o n temperature. V = volume. V = t o t a l volume. Tg = g l a s s t r a n s i t i o n p o i n t o f monomer. T
=
a a£ ag
a
= =
a
£ ~ g expansion c o e f f i c i e n t f o r the l i q u i d s t a t e , expansion c o e f f i c i e n t f o r the g l a s s y s t a t e .
It i s further established that -
T„
-
#-
(9)
where T i s the g l a s s temperature o f the i n f i n i t e molecular weight polymer and M i s the cumulative number average molecular weight. Q i s a constant independent o f temperature. g o o
n
I f equation ( 6 a ) i s i n s e r t e d i n t o k
t
=
k
-l V (
2
(7)
A/
one o b t a i n s 1 Q
S /k2M)exp(- V )
( )
F
For a polymer with a molecular weight d i s t r i b u t i o n the proper molecular weight average t o use i n equations (7) and (10) can be determined u s i n g the f o l l o w i n g c o n s i d e r a t i o n s . In the case o f a heterogeneous polymer i t has been shown that (7,19 « 2 0 ) . n
=
k« M If w
f o r not entangled polymer n
=
s o l u t i o n s , and
3 , 5
k M 4 w f o r entangled polymer s o l u t i o n s . The d i f f u s i o n c o e f f i c i e n t s o f entangled polymers i n s o l u t i o n w i l l most c e r t a i n l y depend on the v i s c o s i t y o f the medium and v i c e versa. I t i s reasonable t h e r e f o r e t o expect t h a t the d i f f u s i o n c o e f f i c i e n t would c o r r e l a t e w e l l w i t h the weight average molecular weight o f the polymer. M i s t h e r e f o r e used with equation (10) giving k ^ ^ / k ^ ) exp(- / y ) = k (10a) u
w
A
F
f o r unentangled polymer
t
solutions
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
MARTEN AND HAMIELEC
Diffusion-Controlled
53
Polymerization
2
~ - n ( -6 / k M ) e x p ( - A / V ) = k
for
(10b)
n
k
o
2
w
F
t
entangled polymer s o l u t i o n s . I f e q u a t i o n ( 1 0 a ) i s c o m b i n e d w i t h ( 6 b ) a n d r e a r r a n g e d , one
has
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
*1 K-3= ( j )' = M t cr a n d
^wcrl
V
m
(10c)
exp(+A/V ) c r l
w c r i
F
m u s
" F
" t ^e e s t i m a t e d f o r e a c h p o l y m e r i z a t i o n b y crl s a t i s f y i n g equation (10c). K 3 depends o n l y on t e m p e r a t u r e a n d A i s a c o n s t a n t and t h e r e f o r e t h e r e l a t i o n s h i p between M _ a n d V* wcrl F i depends o n t e m p e r a t u r e a l o n e t h r o u g h e q u a t i o n ( 1 0 c ) At a constant temperature, t h e magnitude o f b o t h a n d V" ^ c a n c h a n g e w i t h i n i t i a t i o n rate or concentration o f solvent or chain transfer agent. The r e l a t i o n s h i p g i v e n b y e q u a t i o n ( 1 0 c ) i s h o w e v e r t h e same. I f i t i s assumed t h a t c h a i n e n g a n g l e m e n t s o c c u r s o o n a f t e r k^ becomes d i f f u s i o n c o n t r o l l e d , t h e n one h a s a s a good a p p r o x i m a t i o n c
r
F
k
t
=
e x
M
k
t
=
k
y F
)
(
1 0 d
)
w
t
o
A
P(- /
=
cr
(
~
) e
n" M „ wcrl
x
(
P "
A
/
V
} F
c r l
C o m b i n i n g e q u a t i o n s ( l O d ) a n d ( l l ) , k^ i s o b t a i n e d a s a f u n c t i o n o f c o n v e r s i o n and t h e weight average m o l e c u l a r weight
£ - ) t o k
=
(ijEEl) M w
ex (-A(^- - ± F F P
V
V
)) , c r l
(12)
W h i l e K 3 a n d A a s e x p l a i n e d l a t e r were e s t i m a t e d u s i n g a f i t to e x p e r i m e n t a l d a t a m and n a r b i t r a r i l y s e t e q u a l t o 0.5 and 1.75 r e s p e c t i v e l y . The r e m a i n i n g p r o b l e m i n t h e m o d e l d e v e l o p m e n t i s t o e s t i m a t e t h e decrease i n k as a f u n c t i o n o f c o n v e r s i o n . As t h e r e a c t i o n proceeds beyond t h e p o i n t o f c h a i n entanglement, a c r i t i c a l conv e r s i o n i s r e a c h e d where t h e p r o p a g a t i o n r e a c t i o n becomes d i f f u sion c o n t r o l l e d and kp begins t o f a l l w i t h f u r t h e r i n c r e a s e i n p o l y m e r c o n c e n t r a t i o n . A t t h e c r i t i c a l c o n v e r s i o n , one may w r i t e p
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
54
POLYMERIZATION REACTORS AND PROCESSES
*3^ •where k p
M w
=
(13)
= t h e propagation constant below t h e c r i t i c a l conversion. = the d i f f u s i o n c o e f f i c i e n t o f t h e monomer at the c r i t i c a l conversion. = a proportionality factor.
Q
i|>3
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
kp *o
cr
Beuche (jj gives t h e f o l l o w i n g expression f o r the d i f f u s i o n c o e f f i c i e n t o f a small molecule i n a polymer s o l u t i o n . This equation a l s o known as the D o l i t t l e equation i s D = (* &1/6) exp(- B/y ) (11*) M
2
F
Beyond t h e c r i t i c a l conversion kp i s given by k
p
(15)
B
=
*
exp(- / V )
=
exp (- B( 7 " -
3
F
and ^ Po k
V
f
According t o Beuche (j)
(16) V
Fcr
2
B = 1 . 0 and t h i s value i s used here.
The general r a t e e x p r e s s i o n f o r the complete conversion interval i s
t
(
( l
d
wcrl
Q
.
° )
V/ )
( 1 - x) exp(-
x )
Conversion I n t e r v a l 1 : Interval 2 : Interval 3 :
a = 0, a = 0.875, a = 0.875,
2
B = 0, B = 0, B = 1.0,
(IT) A = 0 A = 1.11 A = 1.11
The determination of the conversion i n t e r v a l s a r e d i s c u s s e d l a t e r , a f t e r the molecular weight development. The instantaneous number and weight average degrees o f p o l y m e r i z a t i o n a r e g i v e n by k. R T
=
f L
\
=
1_
h
=
±JL
*X
+
c
+
"
c
JSi SIM1
when t e r m i n a t i o n i s s o l e l y by d i s p r o p o r t i o n a t i o n ; and t h e cumulat i v e averages by xM
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
MARTEN AND HAMIELEC
3.
2M
Diffusion-Controlled
55
Polymerization
X dx
(19)
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
T
I t should he understood that the weight average molecular weights appearing i n equation (17) are cumulative ones. The conversion-time h i s t o r y i s obtained by simultaneous s o l u t i o n o f equations (17) and (19). The conversion i n t e r v a l s are determined i n the f o l l o w i n g way: Values of A and
K
3
i s guessed and equations (17) and (19) are i n t e g r a t e d i n i n t e r v a l 1. The c a l c u l a t e d cum and a c a l c u l a t e d p are s u b s t i t u t e d i n t o equation ( 1 0 c ) . The end of i n t e r v a l 1 i s reached when the equation i s s a t i s f i e d . The i n t e g r a t i o n i s c a r r i e d f u r t h e r i n t o i n t e r v a l 2 w i t h the a p p r o p r i a t e parameters. The e r r o r o f f i t i n these i n t e r v a l s i s noted and v
A and
K
3
a d j u s t e d a c c o r d i n g l y . T h i s procedure thus e s t a b l i s h e s the c o r r e c t end of i n t e r v a l 1 . We next guess the c r i t i c a l f r e e volume where k-p begins t o f a l l and then i n t e g r a t e through i n t e r v a l 3 t o l i m i t i n g conversion. The e r r o r o f f i t i s used t o e s t a b l i s h F and cr 2. the c r i t i c a l conversion. v
Comparison o f Simulated and Measured Rate Data. Model Parameters used with Equations Polymerization.
x 2
k
= t
U.U8
for
MMA
v
1
: c
r
l
+ K
11
• IQ^expC '
1 k
^
/
m
Q
l
) (l/mole min)
(20)
o
and p C
(19)
p
^
W
and
Data a f t e r Balke(£), I t o ( l O ) and Hayden and M e l v i l l e ( 6 _ ) were c o r r e l a t e d w i t h an Arrhenius type plot g i v i n g the f o l l o w i n g equation which was used i n a l l the s i m u l a t i o n s .
— : kj. o
M
(17)
=
3
k
— t c
Refer t o equation ( 1 0 c ) follows. = 0.563
exp(8,900
and equation (21)
cal/mol/RT)
w
where R
=
1.986
c a l / ( g mole)(°K)
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
which
(21)
56
POLYMERIZATION REACTORS AND PROCESSES
T A m
in = =
(°K) 1.11 0.5
Equations (17) and (19) are i n t e g r a t e d i n I n t e r v a l 1 u n t i l the cumulative % and V s a t i s f y equation ( 1 0 c ) . T h i s provides ^wcrl F * Refer to F i g u r e 5 f o r the a c t u a l K 3 data. F
a n ( i
V
c r l
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
= 0.066
(22)
*cr2
with B = 1. T h i s parameter i s independent o f temperature polymer molecular weight and c o n c e n t r a t i o n .
V"
:
F
The f r e e volume i s c a l c u l a t e d u s i n g equations (9) with the f o l l o w i n g parameters. 0.U8
T
g
a
M
T a
=
llU
=
10-
g M
T
(^C)"
Q
=
-102°C
=
)
3
^ )
2.208 • 10
=
M
d^
(°
, 9 T 3
1
" -
1.2g/cm
=
(11) (11)
C
10-
and
(11) 1
(o )
=
(8)
(11)
1
(°C)
3
SS
d
(°C)-
-106
=
g
3
x icr
and
henzene as
solvent
Ig/mole]degi3ee(ii)
5
l 6 1 +
•10- -t°C)g/cm' 3
(12)
3
I t should be noted t h a t polymer volume f r a c t i o n i s r e a d i l y t e d t o conversion. k
d
:
AIBN (13)
k
d
= 6.32
• 10
1 6
exp("
1 5
'
k 6
k c a
^/
m o l e
)mln-
... BOP
(14)=
k
= 7.5*10" min" , kd if
d
1
70 f was e
:
(23a)
= 3.6^*10~
5
min"
1
50
e the volume c o n t r a c t i o n f a c t o r i s c a l c u l a t e d u s i n g dens i t y data as P " M x c = - 3 ^ — (2U) d
/
M
1
set equal t o u n i t y i n a l l the s i m u l a t i o n s .
d
C
conver-
: C
M
=
8 . 9 3 • IG"- expC 'f 2
^J™^)
o
l
(25)
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
MARTEN AND HAMIELEC
Figure
Diffusion-Controlled
5. Arrhenius
plot of
Polymerization
k
s
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
58
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
Bulk P o l y m e r i z a t i o n o f MMA B a l k e d Data. F i g u r e s 1, 6 , 7 and 8 show r a t e data a f t e r Balke i n t h e temperature range, 50 - 90°C. A l s o i n c l u d e d i s one r a t e curve a f t e r Nishimura (l£). There i s o b v i o u s l y e x c e l l e n t agreement even a t l i m i t i n g conversion. F i g u r e s 9 and 10 show a comparison o f measured and p r e d i c t e d weight average molecular weights. The agreement w i t h % i s e x c e l l e n t , but w i t h M^ o n l y f a i r a t intermediate conversions near t h e onset o f c h a i n entanglements. The r e p r o d u c i b i l i t y o f % when a h i g h molecular weight spike i s generated i s r a t h e r poor and perhaps t h i s may e x p l a i n some o f the d e v i a t i o n . I t o ' s Data. F i g u r e 11 shows I t o s ( l 0 i ) r a t e data a t 1+5°C f o r a very wide range o f i n i t i a t o r c o n c e n t r a t i o n s (AIBN: 0 . 2 - 0 . 0 0 6 2 5 gmole/£). The agreement i s e x c e l l e n t showing t h a t the l a r g e changes i n molecular weights can be accounted f o r i n our model. f
S o l u t i o n P o l y m e r i z a t i o n o f MMA Schulz's Data ( l 6 ) . F i g u r e s 12 and 13 show e x c e l l e n t agreement between simulated and measured r a t e s f o r a wide range o f solvent concentrations (benzene: 0 - 0 . 9 2 7 l i t e r benzene t o 0.103 l i t e r MMA and benzoyl peroxide: 0.0^+13 gmole/£ a t 50°C and 70°C). No doubt measured and p r e d i c t e d molecular weights would have been i n good agreement. T r a n s f e r t o benzene was n e g l e c t e d i n the simulations. I t should be mentioned t h a t the p r e d i c t e d curve a t highest benzene l e v e l i n F i g u r e 13 agrees with c l a s s i c a l k i n e t i c s (no diffusion-control). I t i s not c l e a r t h e r e f o r e why measured data at even higher benzene c o n c e n t r a t i o n s do not agree w i t h c l a s s i c a l k i n e t i c s . There may be some s u b t l e chemical i n t e r a c t i o n s a t these h i g h solvent l e v e l s . D u e r k s e n ( l 7 ) found s i m i l a r e f f e c t s w i t h styrene p o l y m e r i z a t i o n i n benzene and had t o c o r r e c t kp f o r s o l vent. Conclusions A new r a t e model f o r f r e e r a d i c a l homopolymerization which accounts f o r d i f f u s i o n - c o n t r o l l e d t e r m i n a t i o n and propagation, and which g i v e s a l i m i t i n g conversion, has been developed based on free-volume theory concepts. The model g i v e s e x c e l l e n t agreement w i t h measured r a t e data f o r bulk and s o l u t i o n p o l y m e r i z a t i o n o f MMA over wide ranges o f temperature and i n i t i a t o r and solvent concentrations .
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
MARTEN AND HAMD2LEC
Figure
6.
Diffusion-Controlled
59
Polymerization
Bulk polymerization of MMA at 50°C: (X) [I]o = 0.02018 mol U (O)[I] = 0.01548 mol AIBN/L (9). 0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
AIBN/
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
60
Figure
7.
Bulk polymerization of MMA at 50°C: (x) [I] = 0.05 mol (15); (O)[I] = 0.0258 mol AIBN/L (9). 0
0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
AIBN/L
MABTEN AND HAMIELEC
Diffusion-Controlled Polymerization
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
3.
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
61
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
62
Figure
9. Bulk polymerization of MMA at 70°C: effect of conversion on molecular weight averages. (X)& ;(0)M . [I] = 0.01548 mol AIBN/L (9). n
w
0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Diffusion-Controlled
Polymerization
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
MARTEN AND HAMIELEC
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
64
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
MARTEN AND HAMIELEC
Diffusion-Controlled
500
1000
Polymerization
1500
Figure 12. Solution polymerization of MMA with benzene as solvent: temperature 50°C; [I] = 0.0413 mol BOP. (O) zero, Benzene = B, 1.030 L MMA; (X) 0.206 L B, 0.824 L MMA; (+) 0.412 L B, 0.618 L MMA; (A) 0.618 L B, 0.412 L MMA; (U) 0.824 L B, 0.206 L MMA; ( V ) 0.927 L B, 0.103 L MMA (16). 0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
66
Figure 13. Solution polymerization of MMA with benzene as solvent: temperature 70°C; [I] = 0.0413 mol BOP. (O) zero Benzene = B, 1.057 L MMA; (X) 0.211 L B, 0.846 L MMA; (+) 0.423 L B, 0.634 L MMA; (A) 0.634 L B, 0.423L MMA; ([J) 0.846 L B, 0.211 L MMA; (V) 0.915 L B, 0.142 L MMA (16). 0
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
3.
MARTEN AND HAMIELEC
Diffusion-Controlled
67
Polymerization
Nomenclature A
constant
B
constant
C. .
c h a i n t r a n s f e r c o n s t a n t t o monomer
Cg
chain t r a n s f e r constant t o solvent
M
D. .
diffusion coefficient
o f t h e monomer
D..
diffusion
o f t h e monomer a t t h e c o n v e r s i o n
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
M M
cr D
coefficient
w h e r e t h e p r o p a g a t i o n becomes d i f f u s i o n diffusion
coefficient
o f a polymer
controlled
radical
P D ^cr
d i f f u s i o n c o e f f i c i e n t o f a polymer r a d i c a l a t t h e conversion where t h e t e r m i n a t i o n becomes d i f f u s i o n controlled
d^
d e n s i t y o f monomer
dp
d e n s i t y o f polymer
f
initiator
efficiency
entanglement
constant
K3
temperature
k^
decomposition
k
propagation r a t e constant at zero
p
dependent
constant
rate constant conversion
kp°
propagation r a t e constant
kj.
t e r m i n a t i o n r a t e c o n s t a n t i n t h e absence o f g e l
k^°
termination rate constant
kj. c
t e r m i n a t i o n r a t e c o n s t a n t between e n t a n g l e d and radical
cr
t e r m i n a t i o n r a t e c o n s t a n t o f t h e c o n v e r s i o n where t h e t e r m i n a t i o n becomes d i f f u s i o n controlled
kj_
kj.
t e r m i n a t i o n r a t e c o n s t a n t between two e n t a n g l e d
k
temperature
dependent
constant
k^
temperature
dependent
constant
k^
constant
k^
constant
k^
constant
M
molecular weight
[M]
monomer c o n c e n t r a t i o n
M
molecular weight
1
q
weight
non-entangled
radicals
o f monodispersed polymer
number a v e r a g e m o l e c u l a r
M
effect
weight
o f monomer
average molecular
weight
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
DO
POLYMERIZATION REACTORS AND PROCESSES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
^wcrl
w e i
r t
&* average molecular the g e l e f f e c t s t a r t s
m
constant
n
constant
Q
constant
R
gas c o n s t a n t
weight o f t h e conversion
[s]
concentration of solvent
T
polymerization
T
g l a s s t r a n s i t i o n p o i n t o f monomer
T
where
temperature
g l a s s t r a n s i t i o n p o i n t o f polymer gp
T
glass t r a n s i t i o n of solvent s
s
T
g l a s s t r a n s i t i o n p o i n t o f polymer w i t h i n f i n i t e
molecular
CPoo &
weight
t V„ F V
time f r e e volume
F
crl V
F
cr2
fraction
f r e e volume f r a c t i o n a t t h e c o n v e r s i o n where t h e g e l e f f e c t starts f r e e volume f r a c t i o n a t t h e c o n v e r s i o n where t h e p r o p a g a t i o n becomes d i f f u s i o n c o n t r o l l e d
V., M Vp
volume o f polymer
V
volume o f s o l v e n t
o
V
v o l u m e o f monomer
total
volume
number a v e r a g e d e g r e e o f p o l y m e r i z a t i o n X^
weight average degree o f p o l y m e r i z a t i o n
x
conversion
X
number a v e r a g e c h a i n l e n g t h a t t h e p o i n t o f c h a i n ment
o f monomer
Greek Symbols a
constant,
exponent
01^
expansion c o e f f i c i e n t
for the glassy state
expansion c o e f f i c i e n t
for the l i q u i d
3
constant,
e
volumetric
6
jump d i s t a n c e
state
exponent contraction
coefficient
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
entangle-
MARTEN AND HAMiELEC
3.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
6
Diffusion-Controlled
Polymerization
69
jump d i s t a n c e
2
Ψ]_
t e m p e r a t u r e dependent lumped
constant
Ψ2
t e m p e r a t u r e dependent lumped
constant
Ψ3
lumped
constant
η
viscosity
τ
t h e r e c i p r o c a l i n s t a n t a n e o u s number a v e r a g e d e g r e e o f p o l y m e r i ζation
φ
volume f r a c t i o n o f polymer
o
jump f r e q u e n c y
φ2
jump f r e q u e n c y
Literature Cited 1.
C a r d e n a s , J. a n d 14, 8 8 3 .
2.
C a r d e n a s , J. a n d O'Driscoll, K. F., J. P o l y m . Sci. ( 1 9 7 7 ) A-1, 15, 1883. C a r d e n a s , J. a n d O'Driscoll, K . F . , J. P o l y m . Sci. ( 1 9 7 7 ) A - 1 , 15, 2097. Friis, N. a n d H a m i e l e c , A.E., ACS Symposium Series ( 1 9 7 6 ) 24, 8 2 , " G e l Effect in E m u l s i o n Polymerization of Vinyl Monomers". B e r e n s , A.R., ACS Symposium Series ( 1 9 7 8 ) 3 9 , 2 3 6 , "The Sorption of Gases a n d V a p o r s in PVC P o w d e r s " . H a y d e n , P. a n d Melville, Sir Harry, J. P o l y m . Sci. (1960) 43, 2 0 1 . B e u c h e , F., Interscience, New Y o r k ( 1 9 6 2 ) , "Physical Proper ties of P o l y m e r s " . A b u i n E. a n d Lissi, E.A., J. M a c r o m o l . Sci. Chem. ( 1 9 7 7 ) A-11, 287.
3. 4.
5. 6. 7. 8. 9.
O'Driscoll,
K . F . , J. P o l y m . Sci. ( 1 9 7 6 ) A - 1 ,
B a l k e , S.T. a n d H a m i e l e c , A . E . , J. Appl. P o l y m . Sci. ( 1 9 7 3 )
17, 905. 10. 11.
Ito, K., J. P o l y m . Sci. ( 1 9 7 5 ) A - 1 , 13, 401. H o r i e , Κ., Mita, I. a n d Kambe, M., J. P o l y m . Sci. (1968) A-1, 6, 2663. 12. B a l k e , S.T., "The Free Radical Polymerization of Methyl Methacrylate to High C o n v e r s i o n " , Ph.D. Thesis, M c M a s t e r University, Hamilton, Ontario (1972). 1 3 . A b d e l - A l i m , A.H. a n d H a m i e l e c , A.E., J. Appl. P o l y m . Sci. (1972) 1 6 , 7 8 3 . 14. P o l y m e r Handbook ( 2 n d ed.), B r a n d r u p , J . a n d Immergut, E.H., Wiley, New Y o r k ( 1 9 7 5 ) . 15. N i s h i m u r a , N., J. M a c r o m o l . Sci. ( 1 9 6 6 ) 1 , 257. 16. S c h u l z , G.V. a n d Harborth, G., M a k r o m o l . Chem. ( 1 9 4 7 ) 1, 1 0 6 .
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
POLYMERIZATION REACTORS AND PROCESSES
70 17.
18. 19. 20.
Duerksen, J.H., "Free R a d i c a l P o l y m e r i z a t i o n o f Styrene i n Continuous S t i r r e d Tank Reactors", Ph.D. T h e s i s , McMaster U n i v e r s i t y , Hamilton, Ontario ( 1 9 6 8 ) . Ibragimov, I.Y. B o r t , D.N. and Efremova, V.N., Vysokomol. Soedin. Ser.B, (1974) 16 (5), 3 7 6 . Rudd, J . F . , J. Polym. Sci. ( 1 9 6 0 ) , 44, 459. Bueche, F., J. Polym. Sci., ( 1 9 6 0 ) , 43, 5 2 7 .
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 15, 2014 | http://pubs.acs.org Publication Date: July 31, 1979 | doi: 10.1021/bk-1979-0104.ch003
RECEIVED February 9, 1979.
In Polymerization Reactors and Processes; Henderson, J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1979.