15
Polystyrene—Polydimethylsiloxane Multiblock Copolymers
J O H N C. SAAM, A N D R E W H. W A R D and F. W. G O R D O N F E A R O N
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
Dow Corning Corp., Midland, Mich., 48640
The
title block copolymers
with characteristics
ranging
from thermoplastic elastomers to polyethylene-like thermo plastics are obtained from ring opening polymerization of hexamethylcyclotrisiloxane
with "living" α,ω-dilithiopoly-
styrene.
and
Chain
scissions
oligomerizations
which
usually complicate siloxane polymerization are avoided, and molecular parameters regulating physical and mechanical properties are conveniently controlled to provide a unique family of thermoplastic materials.
j D l o c k c o p o l y m e r s of p o l y d i m e t h y l s i l o x a n e a n d v a r i o u s
thermoplastics
offer c o m b i n a t i o n s of properties w h i c h h a v e i n t r i g u e d n u m e r o u s i n vestigators.
T h e interest generated b y the earlier c o p o l y m e r systems as
w e l l as those of t h e present i n v e s t i g a t i o n stems i n large part f r o m t h e u n i q u e features i m p a r t e d b y t h e p o l y d i m e t h y l s i l o x a n e b l o c k s . these a r e retention of
flexibility
properties, ozone resistance,
at l o w t e m p e r a t u r e , excellent
durability towards weathering, a n d a h i g h
degree of p e r m e a b i l i t y t o w a r d s gases. to
be incorporated
i n such
Among electrical
Thermoplastic blocks
thermoplastic
reported
elastomers
so f a r i n c l u d e
silphenylene-siloxane ( I ) , poly(bisphenol-A-carbonate)
( 2 ) , polystyrene
(3, 4), a n d p o l y a r y l s u l f o n e s ( 5 ) . block
copolymer
I n each case t h e r u b b e r y p a r t o f t h e
is p o l y d i m e t h y l s i l o x a n e .
A l l show
interesting a n d
u n i q u e p r o p e r t y profiles, b u t t h e o n l y b l o c k c o p o l y m e r s w h i c h seem economically
suited
for volume
manufacture
are those
where the
" h a r d " b l o c k s a r e c o m p o s e d of p o l y s t y r e n e o r its d e r i v a t i v e s . T h e most p r o m i s i n g a p p r o a c h f o r p r e p a r i n g b l o c k c o p o l y m e r s of p o l y s t y r e n e ( A ) a n d p o l y d i m e t h y l s i l o x a n e ( B ) involves p o l y m e r i z a t i o n of
cyclosiloxane
monomers
with
" l i v i n g " «,ω-polystyrene
anions
(6).
T h e o r i g i n a l a p p r o a c h , h o w e v e r , gives materials c o n t a m i n a t e d w i t h t h e 239 Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
240
P O L Y M E R I Z A T I O N
R E A C T I O N S
A N D N E W
c o m p o n e n t h o m o p o l y m e r s w h i c h are r u i n o u s to m e c h a n i c a l
P O L Y M E R S
properties.
T h e present effort shows that v a r i a t i o n of the o r i g i n a l a n i o n i c p o l y m e r i z a t i o n of cyclosiloxanes w i t h l i v i n g p o l y s t y r e n e ( 7 )
c i r c u m v e n t s these
difficulties a n d p r o v i d e s a n effective route to a range of u s e f u l materials. Synthesis T h e k e y to s y n t h e s i z i n g w e l l d e f i n e d b l o c k c o p o l y m e r s successfully is the a n i o n i c r i n g - o p e n i n g p o l y m e r i z a t i o n of h e x a m e t h y l c y c l o t r i s i l o x a n e , D , f r o m the " l i v i n g " ends of «,ω-dilithiopolystyrene.
T h i s gives a B A B
s
b l o c k c o p o l y m e r t e r m i n a t e d w i t h l i t h i u m silanolate ends.
T h e ends are
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
t h e n c o u p l e d w i t h d i a l k y l d i c h l o r o s i l a n e to g i v e ( B A B ) * m u l t i b l o c k co p o l y m e r s essentially free of h o m o p o l y m e r s a n d b y - p r o d u c t cyclosiloxanes. T h e siloxane p o l y m e r i z a t i o n is r u n i n s o l u t i o n i n the presence of p r o m o t i n g solvents s u c h as T H F or the g l y m e s . cyclosiloxane employed,
l i t t l e or n o c o n c o m i t a n t
m o d e l experiments
where
Ά
gave
T h i s has b e e n
butyllithium
styrene was u s e d to p o l y m e r i z e Ό
are u s u a l l y
c h a i n scission or e q u i l i b r a t i o n is
o b s e r v e d w h e n l i t h i u m is the c o u n t e r i o n . in
C o n t r a r y to t y p i c a l a n i o n i c
p o l y m e r i z a t i o n s w h e r e p o t a s s i u m silanolates
rather
than
demonstrated "living"
poly
under comparable conditions.
These
l i t t l e of the b y - p r o d u c t c y c l o d i m e t h y l s i l o x a n e s u s u a l l y f o u n d i n
a n i o n i c siloxane r i n g - o p e n i n g p o l y m e r i z a t i o n s d o n e i n s o l u t i o n .
High
conversions to p o l y d i m e t h y l s i l o x a n e w i t h n a r r o w m o l e c u l a r w e i g h t dis t r i b u t i o n w e r e also o b t a i n e d .
T h e m o l e c u l a r w e i g h t c o r r e s p o n d e d closely
to that c a l c u l a t e d f r o m the a m o u n t of catalyst a n d the w e i g h t of D
3
p r o v i d e d the system was s c r u p u l o u s l y p u r g e d of moisture a n d protic
impurities.
Thus,
as
in "living"
styrene
polymerizations
m o l e c u l a r w e i g h t of the siloxane b l o c k s c a n be closely r e g u l a t e d .
used other the This
p r o c e d u r e a l l o w s c o n t r o l of b l o c k size a n d relative a m o u n t of the b l o c k s i n the c o p o l y m e r system.
T h e precise n a t u r e of the p o l y m e r i z a t i o n a n d
the a b i l i t y to c o n t r o l m o l e c u l a r variables w e r e t h e n u s e d to synthesize polystyrene-polydimethylsiloxane A B block copolymers
(8).
Reaction
1 outlines the synthesis of the m u l t i b l o c k c o p o l y m e r s . Li[CH CH(C H )]nLi + 2/3M(Me SiO) 2
6
5
2
3
+
(polar solvent) ->
Li(OMe Si) [CH CH(C H )]n(SiMe 0) Li 2
|R SiX 2
m
2
6
5
2
w
(1)
2
[(OMe Si) (CH —CH(C H )) (SiMe,0)J, 2
m
2
e
e
n
T h e e x p e r i m e n t a l c o n d i t i o n s w e r e essentially those a l r e a d y r e p o r t e d for the synthesis of the c o r r e s p o n d i n g A B b l o c k c o p o l y m e r s . T h e o n l y differences w e r e the d i f u n c t i o n a l i n i t i a t o r ( 9 ) a n d the use of a d i f u n c t i o n a l rather t h a n m o n o f u n c t i o n a l c h l o r o s i l a n e for r e a c t i o n w i t h the
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
15.
S A A M
E T
Polysty
A L .
241
rene-Polydimethylsïloxane
l i t h i u m siloxanolate t e r m i n a t e d p o l y m e r .
A t least 18 hours w e r e a l l o w e d
for t h e latter step to ensure c o m p l e t e r e a c t i o n .
Absence of homopoly-
m e r w a s assessed b y t h e p r e v i o u s l y d e s c r i b e d p r o c e d u r e of d e t e r m i n i n g s o l u b i l i t y i n selective solvents
a n d i n t w o examples b y f r a c t i o n a l
(8)
p r e c i p i t a t i o n of 1% toluene solutions of b l o c k c o p o l y m e r u s i n g m e t h a n o l as a p r e c i p i t a n t .
T h e c o m p o s i t i o n s of each f r a c t i o n as d e t e r m i n e d b y
s i l i c o n analysis w e r e constant w i t h i n e x p e r i m e n t a l error over t h e r a n g e of m o l e c u l a r w e i g h t s
obtained
(given
i n Figures
1 a n d 2.)
Gross
variations i n s i l i c o n content f r o m o n e f r a c t i o n t o another w o u l d b e expected
f o r either t h e c o p o l y m e r r i c h i n p o l y d i m e t h y l s i l o x a n e o r t h e
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
c o p o l y m e r r i c h i n p o l y s t y r e n e i f significant amounts
of either
homo-
p o l y m e r w e r e present. Table I. Effect of Free P o l y d i m e t h y l s i l o x a n e on Mechanical Properties of a Compression Molded (BAB)^ Block Copolymer with 50 wt % P o l y s t y r e n e a
6
{MeiSiO)n Added, wt %
Tensile at Break, psi, (Break)
0 5 10 15 20
2200 1600 1400 440 150
Elongation at Break, (Break)
%,
350 280 340 40 20
° Molecular weight 22,800. Molecular weight of polystyrene blocks, 23,500; overall molecular weight 107,000. 6
M o i s t u r e a n d o x y g e n m u s t b e r i g o r o u s l y e x c l u d e d f r o m t h e system if t h e synthesis is to b e successful.
I n a d v e r t a n t i n t r o d u c t i o n of t r a c e
p r o t i c i m p u r i t i e s o f m e t a l oxides d u r i n g t h e synthesis leads t o the f o r m a t i o n of p o l y d i m e t h y l s i l i o x a n e h o m o p o l y m e r .
T h i s m a t e r i a l , present i n
even s m a l l amounts, is d e t r i m e n t a l to t h e m e c h a n i c a l properties of t h e final
block copolymer.
T h i s effect c a n b e i l l u s t r a t e d b y d e l i b e r a t e l y
i n c l u d i n g k n o w n amounts of p o l y d i m e t h y l s i l o x a n e i n a b l o c k c o p o l y m e r of d e m o n s t r a t e d m e c h a n i c a l strength.
T h e s e effects are s u m m a r i z e d i n
Table I. Structure-Property
Relationships
T h e characteristics of t h e c o p o l y m e r s , w h i c h range f r o m elastomers to l o w m o d u l u s thermoplastics
of v a r y i n g mechanical a n d rheological
properties, d e p e n d o n m o l e c u l a r parameters that c a n b e p r e d e t e r m i n e d i n t h e synthesis
b y t h e relative amounts
c o u p l i n g reagent ( R S i X ) 2
2
used.
of m o n o m e r s , i n i t i a t o r , a n d
T h e s e parameters a r e o v e r a l l m o l e c -
u l a r w e i g h t , t h e relative a n d absolute sizes of t h e c o m p o n e n t
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
blocks,
242
P O L Y M E R I Z A T I O N
R E A C T I O N S
A N D N E W
a n d the glass t r a n s i t i o n t e m p e r a t u r e of the " h a r d " b l o c k s .
P O L Y M E R S
T h e influence
of e a c h of these o n properties is c o n s i d e r e d separately. T h e effect of o v e r a l l m o l e c u l a r w e i g h t o n m e c h a n i c a l a n d r h e o l o g i c a l properties was d e t e r m i n e d b y m e a s u r i n g properties o n samples o b t a i n e d b y f r a c t i o n a l p r e c i p i t a t i o n of t w o different ( B A B ) * b l o c k c o p o l y m e r s . O n e c o p o l y m e r c o n t a i n i n g 30 w t % p o l y s t y r e n e g a v e seven w h e r e χ v a r i e d f r o m 1.6 to 60. c a l b e t w e e n fractions.
fractions
T h e s i l i c o n e content was n e a r l y i d e n t i
A s e c o n d c o p o l y m e r c o n t a i n i n g 50 w t % p o l y
styrene gave five fractions.
T e n s i l e properties w e r e m e a s u r e d o n solu
t i o n cast films f r o m the first series.
T h e d a t a s h o w e d that χ m u s t b e
greater t h a n 2 f o r the films to s h o w a n y significant m e c h a n i c a l strength. Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
T e n s i l e strength increases s h a r p l y w i t h m o l e c u l a r w e i g h t u n t i l χ reaches 8 to 10, after w h i c h l i t t l e f u r t h e r increase is seen.
T h e general
of the stress-strain c u r v e is essentially the same f o r e a c h f r a c t i o n .
shape The
e n v e l o p e of the stress-strain curves a n d points of f a i l u r e are s h o w n i n F i g u r e 1. TENSILE STRENGTH
(PSI)
2500
2000 KEY
1500
—
M
Ο
€ 1000
Q Φ
—
©
•
500
N
Χ
10*5
30.9 25.8 19.3 12.9 4.0 1.6 0.71
ι ι
5
15
10
EXTENTION RATIO
Figure 1. Effect of molecular weight on tensile properties of fractionaly precipitated samples of (BAB) which contain 30 wt % polystyrene and M = 13,500 X
A
T h e effect of o v e r a l l m o l e c u l a r w e i g h t or the n u m b e r of
blocks
o n r h e o l o g i c a l properties f o r the samples f r o m the s e c o n d f r a c t i o n a t i o n c a n b e i l l u s t r a t e d as a p l o t of r e d u c e d viscosity vs. a f u n c t i o n p r o p o r tional
to the
principal molecular
relaxation
time
(Figure
2).
This
f u n c t i o n i n c l u d e s the variables of z e r o shear viscosity, shear rate, γ, a n d absolute temperature, T, i n a d d i t i o n to m o l e c u l a r w e i g h t , a n d a l l o w s the d a t a to b e expressed as a single master c u r v e (10). fractions
A l l b u t one of the
f r o m the c o p o l y m e r c o n t a i n i n g 50% p o l y s t y r e n e f a l l o n this
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
15.
sA A M E T A L .
243
Poly sty rene-Polydimethyhiloxane
5 + LOG τ?Α?
0
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
5.0 Κ—
Figure 2. Effect of molecular weight on reduced bulk viscosity ex pressed as a master curve for fractionally precipitated samples of (BAB) which contain 50 wt % polystyrene and M = 13,500. T = 463°K. X
A
curve.
T h e e x c e p t i o n is t h e f r a c t i o n of l o w e s t m o l e c u l a r w e i g h t w h i c h
contains a h i g h p r o p o r t i o n of the species ( B A B ) ^ w h e r e χ = 1.
The
v a l u e of —0.99 f o r t h e l i m i t i n g slope of the master c u r v e i n F i g u r e 2 is u n u s u a l . dicted
T h i s is s u b s t a n t i a l l y h i g h e r t h a n t h e v a l u e of —0.82 p r e
f r o m theoretical
considerations
polystyrene a n d polydimethylsiloxane
a n d t h e values
observed
for
(11).
T h e m o l e c u l a r w e i g h t of the p o l y s t y r e n e b l o c k s is d e t e r m i n e d b y the r a t i o of m o n o m e r to i n i t i a t o r u s e d i n t h e synthesis a n d is c r i t i c a l i n d e t e r m i n i n g m e c h a n i c a l a n d r h e o l o g i c a l properties.
T h e data i n Table
I I i n d i c a t e that a b l o c k size of a b o u t 8000 is r e q u i r e d to o b t a i n u s e f u l
T a b l e I I . E f f e c t of P o l y s t y r e n e B l o c k Size o n M e c h a n i c a l P r o p e r t i e s of C o m p r e s s i o n M o l d e d P o l y s t y r e n e - P o l y d i m e t h y l s i l o x a n e B l o c k Copolymers C o n t a i n i n g 30% Polystyrene M
n
Polystyrene Block 4,000 7,700 11,100 12,300 13,550
Degree of Condensation, 3.3 3.6 3.9 3.5 3.3
χ
Ultimate Stress, psi 240 700 950 1,020 1,030
Ultimate Strain, % 120 260 550 350 480
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
244
P O L Y M E R I Z A T I O N
R E A C T I O N S
A N D N E W
P O L Y M E R S
m e c h a n i c a l properties a n d that a m o l e c u l a r w e i g h t greater t h a n 12,000 gives l i t t l e f u r t h e r i m p r o v e m e n t . M e l t viscosity increases as the m o l e c u l a r w e i g h t of the p o l y s t y r e n e b l o c k s is increased, b u t the effect tends t o d i m i n i s h as the rate of shear is increased.
T h e influence of b l o c k size is expressed as a f a m i l y of
c o n v e r g i n g v i s c o s i t y — s h e a r rate curves f o r three c o p o l y m e r s of d i f f e r i n g b l o c k size, ( F i g u r e 3 ) . character
T h e s e curves also illustrate the n o n - N e w t o n i a n
of t h e p o l y s t y r e n e - p o l y d i m e t h y l s i l o x a n e b l o c k
copolymers.
T h e effect of c h a n g i n g b l o c k size cannot b e expressed as a single master c u r v e as i n t h e case of o v e r a l l m o l e c u l a r w e i g h t .
S u c h master
curves
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
m u s t b e b a s e d o n p o l y m e r s of constant b l o c k size. τ? (POISE) ν
(SEC-1)
Figure 3. Effect of size of polystyrene blocks on true ap parent viscosity at 190°C for a multiblock copolymer con taining 40 wt % polystyrene; overall molecular weight= 130 ± 10 X 10"; M = 9.5 X 10*. A
T h e r e l a t i v e amounts of t h e t w o m o n o m e r s u s e d i n the synthesis d e t e r m i n e the r e l a t i v e size o f the t w o b l o c k s o r the c o m p o s i t i o n of ( B A B ) . T h i s i n t u r n determines w h e t h e r m e c h a n i c a l b e h a v i o r re sembles that of thermoplastics o r t h e r m o p l a s t i c elastomers. T h e greater the p o l y s t y r e n e content, t h e greater the i n i t i a l m o d u l u s a n d y i e l d p o i n t of t h e b l o c k c o p o l y m e r . O v e r a l l c o m p o s i t i o n thus tends t o d o m i n a t e the parameters discussed above. A t a g i v e n l e v e l of p o l y s t y r e n e t h e X
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
15.
S A A M
E T
245
Polystyrene-Polydimethylsiloxane
A L .
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
STRESS (PSI)
EXTENTION RATIO
Figure 4. Effect of polystyrene content on tensile properties of polystyrene-polydimethylsiloxane multiblock copolymers other parameters c h a n g e u l t i m a t e m e c h a n i c a l properties b u t effect o n l y m i n o r alterations i n t h e g e n e r a l shape o f t h e stress-strain
curve. E n
velopes of stress-strain curves w h e r e o v e r a l l m o l e c u l a r w e i g h t s a n d t h e size of p o l y s t y r e n e b l o c k s c h a n g e
b r o a d l y at three g i v e n contents o f
p o l y s t y r e n e a r e i l l u s t r a t e d i n F i g u r e 4. T h e a m o u n t o f p o l y s t y r e n e also influences t h e p e r m e a b i l i t y of t h e b l o c k c o p o l y m e r s t o gases.
T h u s , a c o m p r e s s i o n m o l d e d f i l m of t h e r m o
p l a s t i c elastomer c o n t a i n i n g 2 0 w t % p o l y s t y r e n e shows a p e r m e a b i l i t y t o w a r d s o x y g e n t y p i c a l o f a s i l i c a - f i l l e d silicone elastomer, 49.2 Χ 10" cm -cm/cm -sec, 3
2
c m H g at 2 5 ° C .
9
T h e p e r m e a b i l i t y of films w i t h i n
c r e a s i n g amounts of p o l y s t y r e n e r a p i d l y decreases l i n e a r l y to a n inflec t i o n p o i n t at 50 w t % p o l y s t y r e n e w h e r e t h e p e r m e a b i l i t y is 3.6 X 10r
9
cm -cm/cm -sec, 3
2
C0 .
cm Hg.
A s i m i l a r t r e n d is n o t e d w i t h n i t r o g e n a n d
T h e i n f l e c t i o n p o i n t at 50 w t % m i g h t b e a c o n s e q u e n c e of t h e
2
m u c h less p e r m e a b l e p o l y s t y r e n e p r e d o m i n a t i n g i n t h e c o n t i n u o u s phase of t h e m i c r o d i s p e r s e t w o - p h a s e system ( 3 ) .
T h e m e t h o d of f a b r i c a t i o n
c a n also b e a n b e a n i m p o r t a n t factor i n d e t e r m i n i n g p e r m e a b i l i t y . B l o c k c o p o l y m e r s c o n s t i t u t e d so that t h e h a r d A b l o c k s s h o w i n creased glass temperatures
m i g h t b e e x p e c t e d to s h o w better u l t i m a t e
tensile properties t h a n c o m p a r a b l e b l o c k c o p o l y m e r s o f a l o w e r T i n t h e g
glassy
phase
(12).
This
is d e m o n s t r a t e d
i n t h e present
system b y
s u b s t i t u t i n g t h e m a j o r p o r t i o n of t h e p o l y s t y r e n e i n t h e present for p o l y ( « - m e t h y l s t y r e n e ) .
system
A short l e n g t h of p o l y s t y r e n e is i n c l u d e d
at e a c h c h a i n e n d of t h e h a r d b l o c k to f a c i l i t a t e the s e c o n d step of t h e synthesis a n d to g i v e a m o r e stable p o l y m e r .
T h e effect of r e p l a c i n g
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
246
P O L Y M E R I Z A T I O N
R E A C T I O N S
A N DN E W
P O L Y M E R S
DYNAMIC STORAGE
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
MODULUS DYNES/CM'
TEMPERATURE ° C
Figure 5. Effect of T in the glassy block on thermomechanical properties of (BAB) containing 40 wt % "Α'; curve A , " A " block is poly(a-methylstyrene); curve B, "A" block is polystyrene. 0
X
Table III.
Effect of T of the H a r d " A " Block on Tensile Properties of (BAB), Containing 40 wt % of A 9
A = Polystyrene Temperature, °C
Tensile at Break, psi
25 50 100 130 150
1550 1080 90 — —
polystyrene w i t h
A =
Elongation at Break, % 800 1000 300 — —
poly(«-methylstyrene)
Poly(a-methylstyrene)
Tensile at Break, psi
Elongation at Break, %
2400 — 870 300 90
700 — 800 1160 1100
i n the A b l o c k s o n t h e r m o -
m e c h a n i c a l properties is s u m m a r i z e d i n F i g u r e 5 a n d T a b l e III.
Figure
5 shows that t h e m o d u l u s of t h e m a t e r i a l b a s e d o n p o l y ( α-methylstyrene ) is r e t a i n e d to temperatures based on polystyrene. strength
at a
7 0 ° greater t h a n a c o r r e s p o n d i n g m a t e r i a l
T a b l e III shows a s i g n i f i c a n t l y greater
g i v e n . temperature
for copolymers
based
on
methylstyrene).
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
tensile poly(a-
15.
S A A M
E T
A L .
Polysty
247
rene-Polydimethylsïloxane
M u l t i b l o c k copolymers based on poly(a-methylstyrene)
also s h o w
s i g n i f i c a n t l y better o x i d a t i v e t h e r m a l s t a b i l i t y t h a n the b l o c k c o p o l y m e r s based o n p o l y s t y r e n e .
Thus, polystyrene-polydimethyldisiloxane multi-
b l o c k c o p o l y m e r s lose h a l f of t h e i r tensile strength after 80 hours w i t h considerable
yellowing
at
150 ° C
i n air, b u t c o r r e s p o n d i n g
materials
b a s e d o n p o l y ( a - m e t h y l s t y r e n e ) s h o w n o d i s c o l o r a t i o n or loss i n tensile properties u n d e r the same c o n d i t i o n s .
Downloaded by FUDAN UNIV on February 22, 2017 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0129.ch015
Literature
Cited
1. Merker, R. L., Scott, M. M., J. Polymer Sci. (1964) 2, 15. 2. Vaughn, Η. Α.,J.Polymer Sci., Pt. Β (1969) 7, 569. 3. Saam, J. C., Fearon, F. W. G., Ind. Eng. Chem., Prod. Res. Develop. (1971) 10, 10; Polymer Preprints (1970) 11, (2), 455. 4. Dean, J. W., J. PolymerSci.,Pt. Β (1970) 8, 677. 5. Noshay, Α., Matzner, M., Merriam, C. N., Polymer Preprints (1971) 12 (1) 247. 6. Greber,G.,Metzinger, L., Makromol. Chem. (1960) 39, 167. 7. Morton, M., Rembaum, Α. Α., Bostick, Ε. E., J. Appl. Polymer Sci., (1964) 8, 2707. 8. Saam, J. C., Gordon, D. J., Lindsey, S. L., Macromolecules (1970) 3, 1. 9. Gilman, H., Carteledge, F. K., J. Organometal Chem. (1964) 2, 447. 10. Graessly, W. N., J. Chem. Phys. (1967) 47, 1942. 11. Lee, C. L., Polmanteer, Κ. E., King, E. G., J. Polymer Sci., Pt. A-2 (1970) 8, 1909. 12. Fetters, T. J., Morton, M., Macromolecules (1969) 2, (5), 453. R E C E I V E D May
1,
1972.
Platzer; Polymerization Reactions and New Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1973.