Position Group Contribution Method for the Prediction of Critical

Jun 26, 2008 - A Review on Property Estimation Methods and Computational Schemes for ... Compounds with the Positional Distributive Contribution Metho...
0 downloads 0 Views 73KB Size
J. Chem. Eng. Data 2008, 53, 1877–1885

1877

Position Group Contribution Method for the Prediction of Critical Pressure of Organic Compounds Qiang Wang,†,‡ Qingzhu Jia,†,‡ and Peisheng Ma*,‡ School of Material Science and Chemical Engineering, Tianjin University of Science and Technology, 13 St. TEDA, Tianjin 300457, People’s Republic of China, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China

A new group contribution method based on position group contribution additivity is developed and applied for the prediction of critical pressure Pc of pure organic compounds involving the carbon chain from C2 to C18. Contributions for organic compounds containing oxygen, nitrogen, chlorine, bromine, and sulfur are given. Also, the proposed method is compared against other predictive methods. The overall average absolute errors for critical pressure Pc predictions of 232 organic compounds is 0.08 MPa and 2.4 % mean absolute relative derivation, which is compared to 0.19 MPa and 5.1 % with the method of Joback, and 0.21 MPa and 5.4 % with the method of Constantinou and Gani. Owing to the utilization of the position correlation factor, the proposed method outperforms the other alternatives both in accuracy and generality, especially in the capability of distinguishing between isomers. Moreover, critical pressure Pc can be estimated from the chemical structure alone, which demonstrates that this new position contribution group method is fully predictive.

Introduction The increasing use of high pressure in chemical technology calls for the knowledge of fluid phase behavior in the critical region. Hence, critical property data are of great practical importance as they are the basis for many industrial process designs. However, the world literature experimental critical data resources are really poor, and the accuracy of some of these quite older values is even questionable. Unfortunately, most components are not sufficiently stable at or near the critical temperature, and as a result, experimental measurements of their critical properties, Tc and Pc, are extremely difficult, if not impossible. It is therefore vital that prediction methods be developed to obtain critical property values which are reliable. Group contribution methods have been widely used to predict many thermodynamic properties. However, most of the group contribution methods have a serious problem that they cannot distinguish among structural isomers. To overcome this problem, many researchers have tried to improve group contribution methods. On the basis of the first-order group techniques,1–3 Jalowka-Karbert,4 Constantinou-Gani,5 and Marrero-Gani6,7 developed second-order group techniques, which additionally take into consideration the influence of first- and second-nearest neighbors of a considered group. Nannoolal et al.8 recently developed an equation for the prediction of critical pressure. In this study, a new estimation method is developed based on our experience with previous work on the critical temperature.9 As our preliminary work showed significant improvements with respect to the published methods, it was decided to also invest further effort into the development of a new group contribution method for critical pressure. This study will be * To whom correspondence should be addressed. E-mail: mapeisheng@ tju.edu.cn. † Tianjin University of Science and Technology. ‡ Tianjin University.

followed by the next one, dealing with critical volumes of hydrocarbons, as well as with evaluation and employing new predictive methods.

Method Proposed in This Work Experimental Data. The quality of a method strongly depends on the amount and quality of the experimental data used in its development. A total of 232 compounds were used for the determination of group contributions, which includes linear and branched alkanes and cycloalkanes (62), alkenes (12), aromatics (13), ketones and aldehydes (20), alcohols (29), acids (9), phenols and ether oxides (11), esters (23), amines (25), nitriles (5), pyridines (10), and chlorobromoalkanes and thiols (13). The sources of experimental data were from a series of critical compilation reviews by the critical properties group of the IUPAC Ι, two on thermodynamics, and the works were published in the Journal of Chemical and Engineering Data by Ambrose,10–12 Tsonopoulous,11,12,15,17 Daubert,14 Gude,13 Kudchadker,16 and Marsh et al.18,19 Critical data were also obtained from a compilation of organic property data by Ma.20 Position Group Contributions for the Critical Pressure. The first step consisted of testing correlations to represent the properties. Only a one-parameter contribution was considered for each group. The critical pressure function is constructed by all groups’ contributions as well as position correction. The position corrections were used to take into account longer distance interactions, which could distinguish most isomer, including cis- and trans- or Z- and E-, structures of organic compounds for their thermodynamic properties. Here, the critical pressure is expressed as

PC ) P0 +

∑ AiNi + ∑ Aj tanh(Nj ⁄ N) + ∑ AkPk + i

j

k

a1 exp(1 ⁄ M) + a2 exp(1 ⁄ N) (1)

10.1021/je800207c CCC: $40.75  2008 American Chemical Society Published on Web 06/26/2008

1878 Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008

N)

∑ Ni + ∑ Nj i

(2)

Results and Discussion

j

Parameter Ai or Aj stands for i or j group contributions, Ni for the number of each group that the carbon element forms the center of the group in the molecular formula, Nj for the number of each group that the noncarbon element forms the center, N for total number of groups, Pk for position correlation factor, and a1, a2 for parameters of the model. The set of contributions that allowed us to minimize the residual estimation difference was then computed by regression. P0 is -124.843 MPa, and M is molecular weight. Table 1 reports the values computed for the group contributions Ai, and our method developed is applicable only to comparatively low-molar-mass compounds involving carbon chain from C2 to C18.

Prediction of Critical Pressure. The results of the reference compounds obtained using the new position group contribution method were presented in detail in Table 3. To illustrate the application of the proposed method, a detailed procedure for the estimation of critical properties is given in Appendix A for the critical pressure. Table 2 compares the critical pressure predictions obtained using our method and previous methods to experimental data. Also, the overall average absolute difference (AD) between experimental and predicted values for each group of molecules, as well as the overall mean differences δ and the average mean differences δj , are summarized in Table 2.

Table 1. Position Group Contributions for the Prediction of PCa group

A/MPa

group

A/MPa

C-(CH3)(H)3 C-(CH2)(H)3 C-(CH)(H)3 C-(C)(H)3 C-(C)2(H)2 C-(C)3(H) C-(C)4 Cd-(H)(O) Cd-(H)2 Cd-(C)(H) C-(Cd)(C)(H)2 C-(Cd)(H)3 Cd-(C)2 C-(Cd)(C)2(H) Cd-(Cd)(H) C-(O)(H)3 C-(CO)(H)3 C-(C)(CO)(H)2 C-(C)2(CO)(H) C-(C)3(CO) C-(C)(O)(H)2 C-(C)2(O)(H) C-(C)3(O) CO-(CH3)(O) CO-(CH2)(O) CO-(CH)(O) CO-(O)(H) CO-(C)(H) CO-(C)2 CO-(Cd)(O) Cb-(H) Cb-(C) C-(Cb)(H)3 C-(Cb)(C)(H)2 C-(Cb)(C)2(H) C-(Cb)(C)3 Cb-(O) O-(Cb)(H) O-(C)(H) O-(C)2 O-(CO)(CH3) O-(CO)(CH2) O-(CO)(CH) O-(CO)(H) phenol position correction a2 P0

-0.5425 -0.1151 -0.1406 -0.2478 -0.0882 -0.0596 0.2912 -2.6099 -0.3539 1.0576 -0.2146 -0.2787 1.4366 -0.1745 0.5441 -0.2372 -0.3138 -0.3453 -0.0392 0.0843 -0.2613 -0.28 -0.3002 8.0703 7.6686 5.5291 8.7052 5.0557 5.1039 9.08 4.7909 -3.3609 0.5692 0.6996 0.698 1.1613 -23.5303 33.4631 5.5794 3.8118 -1.8659 -2.8912 -3.0687 -1.7856 0.0581 -0.9719 -124.8429

C-(C)(Br)(H)2 C-(C)(Cl)(H)2 C-(C)2(Cl)(H) C-(C)(Cl)2(H) C-(C)(S)(H)2 C-(C)2(S)(H) C-(C)3(S) Cb-(N) C-(N)(H)3 C-(C)(N)(H)2 C-(C)2(N)(H) C-(C)3(N) C-(C)(CN)(H)2 N-(CH3)(H)2 N-(CH2)(H)2 N-(CH)(H)2 N-(Cyclopenty)(H)2 N-(Cyclohexy)(H)2 N-(C)2(H) N-(C)3 N-(Cb)(H)2 N-(Cb)(C)(H) N-(Cb)(C)2 N-(C)2 correction N-(C)3 correction NI-(Cb)2 S-(C)(H) ClBrortho correctionb meta correctionb cyclopentane correction cyclohexane correction Cobc Cmbc Cpbc cyclopropane correction cyclobutane correction -(CH)< position correction >(C)< position correction double bond position correction hydroxyl position correction benzenamine position correction benzene correction trans or cis structure correction carbonyl position correction a1

-0.8532 -0.5617 -0.6716 -1.0226 -0.4868 -0.3348 0.0123 8.1548 0.1178 -0.5161 0.9004 0.7889 0.3345 3.2138 6.9729 0.6923 -7.6341 -1.3404 -6.6258 -19.2507 -45.9113 -53.226 -72.0517 2.4901 4.2759 6.4393 6.6966 6.4523 11.5556 0.1705 0.0375 0.6152 0.4271 0.0652 0.1786 0.2004 0.8524 1.054 0.0244 0.0599 -0.0346 0.0052 -0.5581 -2.439 0.0085 0.0103 128.0716

a Notice: The first symbol represents the element that forms the center of the group. The symbols between parentheses represent the elements to which it is linked. Usual symbols are used to represent the elements in their normal valence state. Elements in other valence states are distinguished by using additional characters; furthermore, different symbols represent multiple bonded carbons, depending on the element at the other end of the multiple bond: Cd, carbon forming a double bond with another carbon; Cb, carbon involved in a benzene or a pyridine ring; CO, CdO group; CN, C’N group; NI, nitrogen of the imide (CdN-) function. Also used for the nitrogen of pyridine derivatives. The pyridine ring is considered as formed of five Cb and one NI. trans or cis correction: cis-structure correction is 1 and trans structure is -1. b Ortho and meta corrections consider interactions between alkyl chains through a benzene ring. c Corrections for pyridines: Cob, Cmb, and Cpb pyridine corrections take into account alkyl ligands in position ortho, meta, and para with respect to the N element, respectively.

Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008 1879

AD )

∑ |Pc,exptl - Pc,pred|

n Pc,exptl - Pc,pred δ) Pc,exptl

|

δ)

1 N

∑| n

|

Pc,exptl - Pc,pred Pc,exptl

Appendix A (3)

A.1. Example 1. Estimation of the critical pressure of 2,3,3,4tetramethylpentane:

(4)

|

(5)

The performance of the new model has been compared with two well-known estimation methods from the literature, and the results indicate that the new model is significantly more reliable. Results presented in Table 2 show that the proposed method is more accurate than other methods for the critical pressure. The AD for critical pressure Pc predictions of 232 organic comj is 2.4 %, which is compared to pounds is 0.08 MPa, and δ 0.19 MPa and 5.1 % with the method of Joback, and 0.21 MPa and 5.4 % with the method of Constantinou and Gani. Uncertainty of the New Model. To test the quality of the regressed parameters of the position group contribution equation, the degree of confidence should be calculated. According to the F distribution function, the degree of confidence is calculated with the incomplete beta function which could be calculated from the gamma function. The results show that the correlation coefficient is 0.9903; the value of F distribution is 231.34; and the degree of confidence is 0.9976, which confirms the greater precision of our position group contribution method which can be used for the best estimation of the critical pressure of organic compounds.

This compound is decomposed in position groups as follows: 4 C-(CH)(H)3; 2 C-(C)(H)3; 2 C-(C)3(H); 1 C-(C)4. Total number of groups: N ) 9. The position factor: position of (CH) group 2, 4, the compensated factor is P ) 2 + 4 ) 6; position of (C) group 3, the position correlation factor is P ) 3. Molecular weight: M ) 128.2551. From the contributions in Table 1, the critical pressure is estimated by eq 1

Pc ) -0.1406 · 4 - 0.2478 · 2 - 0.0596 · 2 + 0.2912 · 1 + 0.0244 · 6 + 0.0599 · 3 - 0.9719 · exp(1 ⁄ 9) + 128.0716 · exp(1 ⁄ 128.2551) 124.8429 ) 2.59 MPa The calculated result is 2.59 Pa, while the experimental critical pressure is 2.72 MPa. A.2. Example 2. Estimation of the critical pressure of methyl butanoate:

Conclusion In this work, based on the position group contribution method, a new method recently proposed for the estimation of the critical temperature is extended to the prediction of critical pressure. Contributions for compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, chlorine, and bromine were reported, and that position compensation factor has been developed which could distinguish between the thermodynamic properties of most isomers of organic compounds including cis- and trans- or Zand E-structures. It is shown that it is possible to use a similar framework to predict the two properties of organic compounds. The predicted results for critical pressure of 232 different organic compounds showed that the position group contribution method performs significantly better than other methods used for comparison.

This compound is decomposed in position groups as follows: 1C-(CH2)(H)3;1C-(C)2(H)2;1C-(C)(CO)(H)2;1CO-(CH2)(O); 1 O-(CO)(CH3); 1 C-(O)(H)3. Total number of groups: N ) 6. The position of (CO) group: the position correlation factor is P ) 4. Molecular weight: M ) 102.1317. From the contributions in Table 1, the critical pressure is estimated by eq 1

Table 2. Comparison of Pc Predicted with Our Method and with the Methods of Joback and Constantinou for Various Classes of Organic Compoundsa Joback

Constantinou

this work

chemical family

no. of compounds

AD/MPa

100 δj

AD/MPa

100 δj

AD/MPa

100 δj

alkanes and cycloalkanes alkenes aromatics ketones and aldehydes alcohols acids phenols and ether oxides esters amines and anilines nitriles pyridines bromochloroalkanes and alkane thiols overall

62 12 13 20 29 9 11 23 25 5 10 13 232

0.10 0.08 0.08 0.14 0.41 0.17 0.28 0.18 0.34 0.25 0.13 0.41 0.19

3.5 2.4 2.3 3.9 10.9 5.1 7.4 4.9 7.9 8.0 2.9 6.9 5.1

0.10 0.05 0.07 0.18 0.25 0.20 0.33 0.16 0.79 0.24 0.19 0.53 0.21

3.2 1.8 1.9 4.8 6.9 5.6 8.5 4.4 17.0 7.4 4.3 9.9 5.4

0.08 0.03 0.08 0.09 0.07 0.08 0.20 0.06 0.12 0.03 0.06 0.08 0.08

2.9 0.9 2.2 2.7 2.2 2.8 4.7 1.6 2.9 1.0 1.4 1.9 2.4

a

AD is the overall average absolute difference and δj is the average mean difference.

experimental MPa

4.872 4.248 3.796 3.64 3.37 3.38 3.196 3.025 3.04 3.12 3.1 3.15 2.74 2.74 2.81 2.89 2.77 2.91 2.74 2.95 2.95 2.49 2.5 2.55 2.54 2.61 2.53 2.63 2.56 2.49 2.65 2.69 2.7 2.81 2.73 2.57 2.82 2.73 2.29 2.31

compounds

ethane propane n-butane 2-methylpropane n-pentane 2-methylbutane 2,2-dimethylpropane n-hexane 2-methylpentane 3-methylpentane 2,2-dimethybutane 2,3-dimethylbutane n-heptane 2-methylhexane 3-methylhexane 3-ethylpentane 2,2-dimethylpentane 2,3-dimethylpentane 2,4-dimethylpentane 3,3-dimethylpentane 2,2,3-trimethylbutane n-octane 2-methylheptane 3-methylheptane 4-methylheptane 3-ethylhexane 2,2-dimethylhexane 2,3-dimethylhexane 2,4-dimethylhexane 2,5-dimethylhexane 3,3-dimethylhexane 3,4-dimethylhexane 2-methyl-3-ethylpentane 3-methyl-3-ethylpentane 2,2,3-trimethylpentane 2,2,4-trimethylpentane 2,3,3-trimethylpentane 2,3,4-trimethylpentane n-nonane 2-methyloctane 4-ethyloctane 2,2-dimethyloctane 2,3-dimethyloctane 2,4-dimethyloctane 2,5-dimethyloctane 2,6-dimethyloctane 2,7-dimethyloctane 3,3-dimethyloctane 3,4-dimethyloctane 3,5-dimethyloctane 3,6-dimethyloctane 4,4-dimethyloctane

11 11 11 14 11 14 14 11 14 14 14 14 11 14 14 14 14 14 14 14 14 11 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 11 14

ref

Table 3. Fully Predictive Estimations of Critical Pressure Pc

4.87 4.49 3.80 3.77 3.33 3.33 3.25 2.99 2.99 3.04 3.04 3.02 2.72 2.72 2.77 2.80 2.77 2.77 2.77 2.96 2.79 2.49 2.49 2.54 2.57 2.57 2.54 2.54 2.57 2.57 2.73 2.62 2.57 2.87 2.59 2.59 2.73 2.59 2.30 2.30 2.22 2.14 2.17 2.20 2.22 2.24 2.24 2.36 2.25 2.27 2.29 2.42

predict 0.00 0.24 0.00 0.13 0.04 0.05 0.05 0.03 0.05 0.08 0.06 0.13 0.02 0.02 0.04 0.09 0.00 0.14 0.03 0.01 0.16 0.00 0.01 0.01 0.03 0.04 0.01 0.09 0.01 0.08 0.08 0.07 0.13 0.06 0.14 0.02 0.09 0.14 0.01 0.01

D

this work 0.0 5.7 0.0 3.6 1.1 1.4 1.7 1.1 1.6 2.5 1.9 4.3 0.7 0.7 1.4 3.3 0.1 4.8 1.1 0.4 5.4 0.2 0.3 0.3 1.1 1.6 0.5 3.3 0.3 3.1 3.2 2.7 4.9 2.0 5.1 0.8 3.1 5.1 0.3 0.6

100 δ 3-methyloctane 4-methyloctane 2-ethylheptane 3-ethylheptane 4-ethylheptane 2,2-dimethylheptane 2,3-dimethylheptane 2,4-dimethylheptane 2,5-dimethylheptane 2,6-dimethylheptane 3,3-dimethylheptane 3,4-dimethylheptane 3,5-dimethylheptane 4,4-dimethylheptane 3-ethyl-2-metylhexane 3-ethyl-3-metylhexane 3-ethyl-4-metylhexane 4-ethyl-2-metylhexane 2,2,3-trimethylhexane 2,2,4-trimethylhexane 2,2,5-trimethylhexane 2,3,3-trimethylhexane 2,3,4-trimethylhexane 2,3,5-trimethylhexane 2,4,4-trimethylhexane 3,3,4-trimethylhexane 3,3-diethylpentane 3-ethyl-2,2-dimethylpentane 3-ethyl-2,3-dimethylpentane 3-ethyl-2,4-dimethylpentane 2,2,3,3-tetramethylpentane 2,2,3,4-tetramethylpentane 2,2,4,4-tetramethylpentane 2,3,3,4-tetramethylpentane n-decane 2-methylnonane 3-methylnonane 4-methylnonane 5-methylnonane 3-ethyloctane 3-ethyl-2,2-dimethylhexane 3-ethyl-2,3-dimethylhexane 3-ethyl-2,4-dimethylhexane 3-ethyl-2,5-dimethylhexane 3-ethyl-3,4-dimethylhexane 4-ethyl-2,2-dimethylhexane 4-ethyl-2,3-dimethylhexane 4-ethyl-2,4-dimethylhexane 4-ethyl-3,3-dimethylhexane 2,2,3,3-tetramethylhexane 2,2,3,4-tetramethylhexane 2,2,3,5-tetramethylhexane

compounds

14

14 14 14 14 11

14

2.74 2.6 2.49 2.72 2.11

2.51

ref

2.35

experimental MPa 2.35 2.37 2.32 2.37 2.40 2.34 2.35 2.37 2.40 2.39 2.54 2.42 2.45 2.60 2.37 2.67 2.45 2.40 2.39 2.42 2.42 2.54 2.42 2.42 2.60 2.61 2.70 2.42 2.67 2.42 2.58 2.44 2.51 2.59 2.12 2.12 2.17 2.20 2.22 2.20 2.57 2.52 2.27 2.27 2.57 2.27 2.17 2.55 2.46 2.41 2.29 2.29

predict

0.10

0.16 0.16 0.02 0.13 0.01

0.01

D

this work

4.0

5.7 6.1 0.9 5.0 0.6

0.2

100 δ

1880 Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008

4,5-dimethyloctane 4-propylheptane 3-ethyl-2-methylheptane 3-ethyl-3-methylheptane 3-ethyl-4-methylheptane 3-ethyl-5-methylheptane 4-ethyl-2-methylheptane 4-ethyl-3-methylheptane 4-ethyl-4-methylheptane 5-ethyl-2-methylheptane 2,2,3-trimethylheptane 2,2,4-trimethylheptane 2,2,5-trimethylheptane 2,2,6-trimethylheptane 2,3,3-trimethylheptane 2,3,4-trimethylheptane 2,3,5-trimethylheptane 2,3,6-trimethylheptane 2,4,4-trimethylheptane 2,4,5-trimethylheptane 2,4,6-trimethylheptane 2,5,5-trimethylheptane 3,3,4-trimethylheptane 3,3,5-trimethylheptane 3,4,4-trimethylheptane 3,4,5-trimethylheptane 3,4-diethylhexane 3,3-diethylhexane cis-1,2-dimethylcyclopentane trans-1,2-dimethylcyclopentane cis-1,3-dimethylcyclopentane trans-1,3-dimethylcyclopentane 1,1-dimethylcyclopentane 1,1-dimethylcyclohexane cis-1,2-dimethylcyclohexane trans-1,2-dimethylcyclohexane cis-1,3-dimethylcyclohexane trans-1,3-dimethylcyclohexane cis-1,4-dimethylcyclohexane trans-1,4-dimethylcyclohexane ethylcyclohexane n-propylcyclopentane n-propylcyclohexane n-butylcyclopentane n-butylcyclohexane n-pentylcyclopentane n-pentylcyclohexane n-hexylcyclopentane n-heptylcyclohexane 1-butene cis-2-butene trans-2-butene

compounds

Table 3 Continued

14

15 15 15

4.02 4.21 4.1

ref

2.32

experimental MPa 2.29 2.22 2.20 2.49 2.27 2.30 2.22 2.27 2.66 2.25 2.22 2.24 2.27 2.27 2.36 2.25 2.27 2.27 2.42 2.29 2.29 2.48 2.44 2.46 2.47 2.29 2.30 2.63 3.45 3.43 3.48 3.46 3.54 3.12 3.03 3.01 3.05 3.04 3.08 3.06 3.02 3.02 2.82 3.01 2.64 2.83 2.48 2.67 2.52 4.09 4.15 4.14

predict

0.07 0.06 0.04

0.14

D

this work

1.8 1.3 0.9

6.0

100 δ 2,2,4,4-tetramethylhexane 2,2,5,5-tetramethylhexane 2,2,4,5-tetramethylhexane 2,3,3,4-tetramethylhexane 2,3,3,5-tetramethylhexane 2,3,4,4-tetramethylhexane 2,3,4,5-tetramethylhexane 3,3,4,4-tetramethylhexane 3,3-dethyl-2-methylpentane 3-ethyl-2,2,3-trimethylpentane 3-ethyl-2,2,4-trimethylpentane 3-ethyl-2,3,4-trimethylpentane 2,2,3,3,4-pentamethylpentane 2,2,3,4,4-pentamethylpentane n-undecane n-dodecane n-tridecane n-tetradecane n-pentadecane n-hexadecane n-heptadecane cyclopropane cyclobutane cyclopentane cyclohexane methylcyclopentane methylcyclohexane ethylcyclopentane trans-2-heptene cis-3-heptene trans-3-heptene 1-octene cis-2-octene trans-2-octene cis-3-octene trans-3-octene cis-4-octene trans-4-octene 1-nonene 1-decene 1-undecene 1-dodecene 1,3-butadiene benzene methylbenzene 1,4-dimethylbenzene 1,2-dimethylbenzene 1,3-dimethylbenzene ethylbenzene 1,2,3-trimethylbenzene 1,2,4-trimethylbenzene 1,3,5-trimethylbenzene

compounds

14 14 14 14 14

15

15 15 15 12 12 12 12 12 12 12 12 12

2.68

2.22 1.93 4.32 4.895 4.108 3.511 3.732 3.541 3.609 3.454 3.232 3.127

11 11 11 11 11 11 11 14

1.98 1.82 1.68 1.57 1.48 1.4 1.34 5.54 4.51 4.08 3.79 3.48 3.4

14

ref

2.19

experimental MPa 2.47 2.40 2.32 2.44 2.43 2.47 2.32 2.66 2.57 2.65 2.29 2.54 2.48 2.39 1.96 1.81 1.68 1.54 1.42 1.30 1.18 5.54 4.99 4.06 3.51 3.70 3.23 3.44 2.85 2.87 2.85 2.64 2.60 2.58 2.60 2.58 2.57 2.55 2.43 2.25 2.08 1.92 4.32 4.94 4.10 3.43 3.60 3.47 3.72 3.32 3.15 3.05

predict

0.01 0.00 0.05 0.01 0.08 0.13 0.07 0.11 0.13 0.08 0.07

0.03

0.04

0.45 0.57 0.09 0.25 0.04

0.02 0.01 0.00 0.03 0.06 0.10 0.16 0.00

0.21

D

this work

0.3 0.0 0.9 0.3 2.3 3.5 2.1 3.2 3.9 2.6 2.4

1.3

1.3

10.1 14.0 2.4 7.2 1.3

0.9 0.3 0.3 1.7 4.2 7.4 12.0 0.0

9.4

100 δ

Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008 1881

15

15 15 15

15 16 16 16 16 16 16 16 16 16

16 16

3.56

3.42 3.53 3.21

2.92

4.207 3.683 3.729 3.8 3.3 3.32 3.43 3.27 2.97

2.32

2.48

1-pentene cis-2-pentene trans-2-pentene 2-methyl-1-butene 2-methyl-2-butene 3-methyl-1-butene 1-hexene cis-2-hexene trans-2-hexene cis-3-hexene trans-3-hexene 2-methyl-1-hexene 3-methyl-1-hexene 4-methyl-1-hexene 1-heptene cis-2-heptene n-heptylbenzene butanone 2-pentanone 3-pentanone 3-methyl-2-butanone 2-hexanone 3-hexanone 3,3-dimethyl-2-butanone 4-methyl-2-pentanone 2-heptanone 3-heptanone 4-heptanone 2-octanone 3-octanone 4-octanone 2-methyl-3-hexanone 5-methyl-2-hexanone 2,4-dimethyl-3-pentanone 2-methyl-3-heptanone 5-methyl-3-heptanone 2,5-dimethyl-3-hexanone 5-nonanone 4-nonanone 3-nonanone 2-nonanone 2,6-dimethyl-4-heptanone 2-decanone 3-decanone 4-decanone 5-decanone 2-undecanone 3-undecanone 4-undecanone 5-undecanone 6-undecanone 2-dodecanone

ref

experimental MPa

compounds

Table 3 Continued

3.57 3.61 3.60 3.45 3.47 3.53 3.19 3.19 3.18 3.20 3.18 2.80 2.95 2.96 2.89 2.87 2.11 4.27 3.70 3.65 4.00 3.27 3.22 3.43 3.01 2.94 2.89 2.90 2.66 2.61 2.62 3.17 3.01 3.50 3.15 2.87 2.96 2.39 2.38 2.37 2.42 2.48 2.20 2.15 2.17 2.18 2.01 1.96 1.97 1.98 1.99 1.83

predict

0.06

0.07

0.06 0.02 0.07 0.20 0.03 0.10 0.00 0.26 0.03

0.03

0.05 0.00 0.02

0.01

D

this work

2.6

3.0

1.5 0.5 2.0 5.4 0.8 2.9 0.0 8.0 1.0

1.0

1.4 0.0 0.7

0.2

100 δ 1,2,3,4-tetramethylbenzene 1,2,3,5-tetramethylbenzene 1,2,4,5-tetramethylbenzene 1-methyl-2-ethylbenzene 1-methyl-3-ethylbenzene 1-methyl-4-ethylbenzene n-propylbenzene isopropylbenzene 1-methyl-2-isopropylbenzene 1-methyl-3-isopropylbenzene 1-methyl-4-isopropylbenzene n-butylbenzene sec-butylbenzene tert-butylbenzene n-pentylbenzene n-hexylbenzene 2-tridecanone 3-tridecanone 4-tridecanone 5-tridecanone 6-tridecanone 7-tridecanone 2-tetradecanone 3-tetradecanone 4-tetradecanone 7-tetradecanone propanal butanal 1-pentanal 1-hexanal 1-heptanal 1-octanal 1-nonanal 1-decanal 2-methylpropanal 2-methylhexanal 3-methylhexanal ethanol 1-propanol 2-propanol 1-butanol 2-butanol 2-methyl-1-propanol 2-methyl-2-propanol 1-pentanol 2-pentanol 3-pentanol 2-methyl-1-butanol 3-methyl-1-butanol 2-methyl-2-butanol 3-methyl-2-butanol 1,2-butanedial

compounds

13 13 13 13 13 13 13 13 13 13 13 13 13

6.137 5.169 4.764 4.414 4.202 4.295 3.972 3.897 3.675 3.94 3.93 3.71 3.87

16 16 16 16 16 16 16 16 16

12

2.89

5.26 4.32 3.97 3.46 3.16 2.96 2.68 2.6 5.1

12 12 12

ref

3.23 3.2 3.209

experimental MPa 3.21 3.07 3.03 3.36 3.23 3.19 3.32 3.24 2.99 2.85 2.82 2.96 2.91 2.97 2.65 2.37 1.67 1.62 1.63 1.64 1.65 1.66 1.52 1.47 1.48 1.51 5.27 4.47 3.91 3.49 3.15 2.87 2.63 2.41 4.75 3.15 3.20 6.11 5.04 4.95 4.33 4.27 4.33 4.22 3.83 3.76 3.79 3.85 3.85 3.74 3.79 4.57

predict

0.09 0.08 0.03 0.08

0.03 0.13 0.18 0.08 0.07 0.04 0.25 0.07 0.09

0.01 0.15 0.06 0.03 0.01 0.09 0.05 0.19 0.35

0.07

0.04 0.12 0.03

D

this work

2.2 2.0 0.8 2.2

0.5 2.6 3.8 1.8 1.6 0.9 6.2 1.8 2.4

0.2 3.5 1.6 0.8 0.4 3.1 2.0 7.2 7.0

2.4

1.2 3.6 0.9

100 δ

1882 Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008

3-dodecanone 4-dodecanone 5-dodecanone 6-dodecanone 2-methyl-1-pentanol 4-methyl-1-pentanol 2-methyl-2-pentanol 2-methyl-3-pentanol 4-methyl-2-pentanol 3-methyl-3-pentanol 1-heptanol 2-heptanol 3-heptanol 4-heptanol 1-octanol 2-octanol 3-octanol 4-octanol 2-ethyl-1-hexanol 1-nonanol 2-nonanol 3-nonanol 4-nonanol 1-decanol 2-decanol 3-decanol 4-decanol 5-decanol 1-undecanol 1-dodecanol phenol o-cresol m-cresol p-cresol 2,3-xylenol 2,4-xylenol 2,5-xylenol 2,6-xylenol 3,4-xylenol 3,5-xylenol 3-ethylphenol 2-ethylphenol 4-ethylphenol diethyl ether isopropylamine trimethylamine butylamine isobutylamine sec-butylamine tert-butylamine diethylamine pentylamine

compounds

Table 3 Continued

13 13 13 13 13 13 13 13 13 13 13

13 13 16 16 16 16

16 18 18 18 18 18 18

3.46

3.52 3.058 3.021

2.777 2.754

2.8 2.528 2.53

2.315

2.147 1.994 5.93 4.17 4.36 4.07

3.644 4.55 4.08 4.2

5 3.85 3.754

ref

3.45

experimental MPa 1.79 1.80 1.81 1.82 3.46 3.48 3.35 3.37 3.42 3.37 3.12 3.05 3.08 3.09 2.85 2.78 2.81 2.82 2.90 2.61 2.55 2.58 2.56 2.41 2.34 2.37 2.38 2.38 2.22 2.04 5.38 4.59 4.65 4.71 4.26 4.19 4.21 4.30 4.38 4.30 4.24 4.18 4.30 3.78 4.95 4.08 4.37 4.40 4.50 3.85 3.72 3.81

predict

0.50 0.00 0.03

0.14 0.40 0.00 0.17

0.07 0.05 0.55 0.42 0.29 0.64

0.09

0.10 0.09 0.02

0.07 0.03

0.15 0.06 0.03

0.09

0.01

D

this work

10.0 0.0 0.8

3.8 8.9 0.0 4.1

3.3 2.5 9.2 10.2 6.7 15.7

3.9

3.5 3.4 0.7

2.5 1.0

4.3 1.9 1.0

2.6

0.3

100 δ 1,3-butanedial 1-hexanol 2-hexanol 3-hexanol isopropyl methyl ether ethyl n-propyl ether butyl methyl ether methyl pentyl ether butyl ethyl ether dipropyl ether diisopropyl ether methyl formiate methyl acetate ethyl formiate propyl formiate n-pentyl methanoate ethyl acetate methyl propionate propyl acetate isopropyl acetate methyl butanoate methyl isobutanoate 2-propenyl acetate 2-ethenyl acetate ethyl propionate butyl acetate pentyl ethanoate propyl propionate ethyl butanoate propyl butanoate ethyl isobutanoate methyl pentanoate ethyl pentanoate propyl pentanoate isobutyl acetate 1 methylpropyl ethanoate isobutyl acrylate isobutyl butyrate isobutyl formate diphenyl ether methylamine dimethylamine ethanamine propylamine 2,6-dimethylpyridine 3,4-dimethylpyridine 3,5-dimethylpyridine propanenitrile butanenitrile 2-methylpropanenitrile pentanenitrile 3-methylbutanenitrile

compounds

16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18

2.99 3.01 3.88 5.34 5.6 4.74 3.85 4.2 4.05 4.26 3.88 3.58

16 16 16 16 16 16 16 16 16 16 16 16 16

13 13 13 16 16 16 16

ref

4.185 3.45 3.14 2.73 3.06 3.1 2.72 3.1 3.2

3.028 2.832 6 4.75 4.74 4.06 3.46 3.87 4 3.36 3.31 3.47 3.43

3.417 3.31 3.36 3.762 3.37 3.37 3.042

experimental MPa 4.55 3.43 3.37 3.40 3.74 3.33 3.38 3.03 2.98 2.98 2.79 6.00 4.71 4.78 4.20 3.41 3.86 3.98 3.44 3.31 3.55 3.42 3.94 4.19 3.32 3.10 2.82 3.00 3.01 2.74 3.23 3.22 2.75 2.51 3.05 3.01 2.95 2.45 3.71 3.08 7.42 5.34 6.36 5.15 3.85 4.10 4.08 4.19 3.87 3.46 3.57 3.62

predict

0.01

0.41 0.00 0.10 0.03 0.07 0.01

0.00

0.17

0.06 0.00

0.00 0.13 0.04 0.09 0.06 0.09 0.02 0.13 0.02

0.05 0.05 0.00 0.04 0.04 0.14 0.05 0.01 0.02 0.08 0.00 0.08 0.01

0.02 0.06 0.04 0.03 0.04 0.01 0.01

D

this work

0.2

8.7 0.1 2.4 0.7 1.6 0.3

0.0

4.4

2.2 0.1

0.0 3.7 1.2 3.5 2.0 2.9 0.6 4.1 0.5

1.6 1.6 0.1 0.8 0.8 3.4 1.5 0.4 0.5 2.3 0.1 2.4 0.3

0.5 1.8 1.2 0.7 1.8 0.3 0.4

100 δ

Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008 1883

cyclopentylamine hexylamine 1-octanamine butyl ethylamine isopropyl propylamine triethylamine dipropylamine diisopropylamine cyclohexylamine dibutylamine 1,2-ethanediamine 1,3-propanediamine 1,4-butanediamine 1,6-hexanediamine 1,8-octanediamine 1,9-nonanediamine 1,10-decanediamine 1,12-dodecanediamine benzenamine 2-methylbenzenamine 3-methylbenzenamine N-methylbenzenamine N-ethylbenzenamine N,N-dimethylbenzenamine N,N-diethylbenzenamine pyridine 2-methylpyridine 3-methylpyridine 4-methylpyridine 2,3-dimethylpyridine 2,4-dimethylpyridine 2,5-dimethylpyridine 2-ethylthio-2-methyl propane methylthio cyclopentane 1,2-dibromopropane 1,1,2-trichloroethane methylthio methane ethanethiol 1-propanethiol 2-propanethiol 1-butanethiol 2-butanethiol 2-methyl-1-propanethiol 2-methyl-2-propanethiol 1-pentanethiol 2-methyl-1-butanethiol 3-methyl-1-butanethiol 2-methyl-2-butanethiol 3-methyl-2-butanethiol 2,2-dimethyl-1-propanethiol

compounds

Table 3 Continued

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18

17 17 17 17

3.03 3.63

3.11 6.71 5.6 4.5 3.6 2.8 2.6 2.4 2 5.63 4.7 4.2 5.2

3.6

5.65 4.62 4.65 4.67 4.1 3.95 3.85

7.23 5.49 4.6

4

17

18

ref

2.6

experimental MPa 3.61 3.38 2.75 0.95 2.39 3.03 3.49 3.25 4.20 3.28 6.32 5.31 4.57 3.56 2.86 2.58 2.33 1.90 5.63 4.70 4.20 5.20 4.79 3.60 2.93 5.60 4.60 4.71 4.73 3.97 3.99 3.97 1.86 3.14 1.51 1.01 4.56 5.50 4.62 4.70 4.01 4.11 4.01 4.06 3.55 3.58 3.36 3.73 3.68 3.60

predict

0.01

0.01 0.02

0.05 0.02 0.06 0.06 0.13 0.04 0.12

0.00

0.17 0.39 0.29 0.07 0.04 0.06 0.02 0.07 0.10 0.00 0.00 0.00 0.00

0.00 0.14

0.15

D

this work

0.3

0.2 0.5

0.8 0.5 1.3 1.3 3.3 1.0 3.0

0.0

5.4 5.8 5.2 1.7 1.2 2.2 0.8 2.9 5.0 0.0 0.0 0.0 0.0

0.0 3.8

5.7

100 δ 2,2-dimethylpropanenitrile hexanenitrile octanenitrile decanenitrile chloroethane 1-chloropropane 2-chloropropane 1-chlorobutane 2-chlorobutane 2-chloro-2-methylpropane 1-chloropentane 2-chloropentane 1-chlorohexane 1-cloroheptane 1-chloro-3-methylbutane 1,1-dichloroethane bromoethane 1-bromopropane 2-bromopropane 1-bromobutane 1-bromo-2-methylpropane 2-bromo-2-methylpropane 1-bromopentane methylthio ethane 1-methylthio propane 2-methylthio propane 1-methylthio butane 2-methyl-2-methylthio propane 1-ethylthio propane 2-ethylthio propane 1-ethylthio butane 2-ethylthio butane cyclopentanethiol 1-hexanethiol 2-methyl-2-pentanethiol 2,3-dimethyl-2-butanethiol cyclohexanethiol 1-heptanethiol 1-octanethiol acetic acid n-propanoic acid acrylic acid n-butyric acid n-pentanoic acid 2-ethyl butyric acid 2-ethyl hexanoic acid n-hexanoic acid n-heptanoic acid n-octanoic acid n-nonanoic acid

compounds

16 16 16 16 16 16 16 16 16

5.78 4.67 4.06 3.63 2.78 3.38 3.16 2.87 2.35

19 19

19 19 19

5.2 4.57 4.26

5.8 4.8

18 18

ref

3.3 2.85

experimental MPa 2.79 3.32 2.91 2.58 5.27 4.44 4.25 3.85 3.69 3.96 3.41 3.25 3.06 2.77 4.19 5.10 5.80 4.80 5.68 4.12 4.12 4.64 3.61 3.07 2.78 2.85 2.54 2.58 2.02 2.10 1.76 1.76 4.37 3.19 3.37 3.39 3.82 2.89 2.63 5.73 4.70 5.66 4.12 3.68 3.35 2.87 3.32 3.03 2.78 2.56

predict

0.09 0.06 0.13 0.09 0.21

0.06 0.05

0.05 0.03

0.00 0.00

0.07 0.13 0.01

0.02 0.06

D

this work

3.4 1.6 4.0 3.0 9.1

1.4 1.3

0.9 0.7

0.0 0.0

1.4 2.9 0.3

0.7 2.2

100 δ

1884 Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008

Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008 1885

Pc ) -0.1151 · 1 - 0.0882 · 1 - 0.3453 · 1 - 0.2372 · 1 + 7.6686 · tanh(1 ⁄ 6) + 0.0103 · 4 - 1.8659 · tanh(1 ⁄ 6) - 0.9719 · exp(1 ⁄ 6) + 128.0716 · exp(1 ⁄ 102.1317) - 124.8429 ) 3.55 MPa Therefore, the calculated result is 3.55 MPa while the experimental critical pressure is 3.47 MPa. A.3. Example 3. Estimation of the critical pressure of 2,6dimethylpyridine

This compound could be decomposed in position groups as follows: 3 Cb-H; 2 Cb-(C); 2 C-(Cb)(H)3; 1 NI-(Cb)2; 2 Cob correction; 1 benzene correction. Total number of groups: N ) 8. Molecular weight: M ) 107.1531. From the contributions in Table 1, the critical pressure is estimated by eq 1

Pc ) 4.7909 · tanh(3 ⁄ 8) - 3.3609 · tanh(2 ⁄ 8) + 0.5692 · 2 + 6.4393 · tanh(1 ⁄ 8) + + 0.0652 · 2 - 2.439 - 0.9719 · exp(1 ⁄ 8) + 128.0716 · exp(1 ⁄ 107.1531) - 124.8429 ) 3.85 MPa So, the calculated result is 3.85 MPa, while the experimental critical pressure is 3.85 MP.

Literature Cited (1) Ambrose, D. Correlation and Estimation of Vapor-Liquid Critical Properties. 2. Critical pressures and Volumes of Organic Compounds; National Physical Laboratory: Teddington, NPL Rep. Chem. 98, 1979. (2) Joback, K. G.; Reid, R. C. Estimation of Pure-Component Properties from Group-Contributions. Chem. Eng. Commun. 1987, 57, 233–243. (3) Somayajulu, G. R. Estimation procedures for critical constants. J. Chem. Eng. Data 1989, 34, 106–120. (4) Jalowka, J. W.; Daubert, T. E. Group contribution method to predict critical temperature and pressure of hydrocarbons. Ind. Eng. Chem. Process Des. DeV. 1986, 25, 139–142. (5) Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 1697– 1710.

(6) Marrero-Morejo´n, J.; Pardillo-Fontdevilla, E. Estimation of pure compound properties using group-interaction contribution. AIChE J. 1999, 45, 615–621. (7) Marrero, J.; Gani, R. Group-contribution Based Estimation of Pure Component Properties. Fluid Phase Equilib. 2001, 183, 183–184. (8) Nannoolal, Y.; Rarey, J.; Ramjugernath, D. Estimation of pure component properties Part 2. Estimation of critical property data by group contribution. Fluid Phase Equilib. 2007, 252, 1–27. (9) Wang, Q.; Ma, P. Sh.; Jia, Q. Zh.; Xia, Sh. Q. Position Group Contribution Method for the Prediction of Critical Temperatures of Organic Compounds. J. Chem. Eng. Data 2008, 53, 1103–1109. (10) Ambrose, D.; Young, C. L. Vapor-liquid critical properties of elements and compounds 1. An introduction survey. J. Chem. Eng. Data 1995, 40, 345–357. (11) Ambrose, D.; Tsonopoulos, T. Vapor-liquid critical properties of elements and compounds 2. Normal alkanes. J. Chem. Eng. Data 1995, 40, 531–546. (12) Tsonopoulos, T.; Ambrose, D. Vapor-liquid critical properties of elements and compounds 3. Aromatic hydrocarbons. J. Chem. Eng. Data 1995, 40, 547–558. (13) Gude, M.; Teja, A. S. Vapor-liquid critical properties of elements and compounds 4. Aliphatic alkanols. J. Chem. Eng. Data 1995, 40, 1025–1036. (14) Daubert, T. Vapor-liquid critical properties of elements and compounds 5. Branched alkanes and cycloalkanes. J. Chem. Eng. Data 1996, 41, 365–372. (15) Tsonopoulos, T.; Ambrose, D. Vapor-liquid critical properties of elements and compounds 6. Unsaturated Aliphatic hydrocarbons. J. Chem. Eng. Data 1996, 41, 645–656. (16) Kudchadker, A. P.; Ambrose, D.; Tsonopoulos, C. Vapor-liquid critical properties of elements and compounds 7. Oxygen compounds other than alkanols and cycloalkanols. J. Chem. Eng. Data 2001, 46, 457–479. (17) Tsonopoulos, C.; Ambrose, D. Vapor-liquid critical properties of elements and compounds 8-Organic sulfur, silicen and tin. J. Chem. Eng. Data 2001, 46, 480–485. (18) Marsh, K. N.; Young, C. L.; Morton, D. W.; Ambrose, D.; Tsonopoulos, C. Vapor-Liquid Critical Properties of Elements and Compounds. 9. Organic Compounds Containing Nitrogen. J. Chem. Eng. Data 2006, 51, 305–314. (19) Marsh, K. N.; Abramson, A.; Ambrose, D.; Nikitin, E.; Tsonopoulos, C.; Young, C. L. Vapor-Liquid Critical Properties of Elements and Compounds. 10. Organic Compounds Containing Halogens. J. Chem. Eng. Data 2007, 52, 1509–1538. (20) Ma, P. Sh. Handbook of property data of organic compounds; Chemical Engineering Press: Beijing, 2006.

Received for review March 26, 2008. Accepted May 28, 2008.

JE800207C