Potassium—Calcium Exchange Equilibria in Aluminosilicate Minerals

Nov 13, 1987 - Potassium-calcium exchange equilibria in some selected layer silicate minerals and soils were studied using exchange isotherms and ...
0 downloads 0 Views 1MB Size
15

Potassium-Calcium Exchange Equilibria i n Aluminosilicate M i n e r a l s a n d Soils Keith W. T. Goulding Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, England Potassium-calcium exchange equilibria in some selected layer silicate minerals and soils were studied using exchange isotherms and microcalorimetry. Groups of homogeneous exchange sites, identified by their differential enthalpies of Ca->2K exchange, comprised eight distinct types. These, in turn, were tentatively associated with the surfaces of mica (one type of s i t e ) , hydrous mica or illite (three types of s i t e ) , vermiculite (one type of s i t e ) , and montmorillonite (three types of s i t e ) . If the identification is correct, the method can be used to estimate the amount of each mineral in a clay or soil and thus more precisely determine clay composition. Plants take up the potassium (K) they require from the soil solution. Very l i t t l e Κ i s present in this form, however, perhaps 5-10 kg ha" in the surface soil (0-20 cm). Almost a l l of the Κ in soil is adsorbed on the surfaces of soil colloids, chiefly on aluminosilicate minerals; very l i t t l e Κ i s held on organic materials (see below). In temperate s o i l s , about 500 kg Κ ha~l i s present in this exchangeable form in topsoil , and i t i s released into solution by a simple cation exchange reaction. By far the greatest proportion of Κ in soils of temperate regions, 80-99% or 2-50 Mg ha~l, i s held within the interlayers of partially-weathered and unweathered mica minerals, and within the crystal structure of feldspars. Although the term nonexchangeable' is widely used for this K, this i s not s t r i c t l y correct. The Κ i s exchangeable, but only very slowly. It i s released into more available forms - exchangeable or solution Κ by slow weathering, which again involves cation exchange in the case of micas. The release of Κ into solution from the solid phase is important in plant nutrition, and i t has been extensively studied at Rothamsted as at other agricultural research stations throughout the world. We have been interested in the process both from the practical standpoint of determining the availability of Κ to crops, and from the more fundamental view of understanding its 1

1

0097-6156/ 86/ 0323-0327S06.00/ 0 © 1986 American Chemical Society

328

GEOCHEMICAL PROCESSES AT MINERAL SURFACES

a d s o r p t i o n and r e l e a s e p r o p e r t i e s and the n a t u r e o f the s u r f a c e s and s i t e s on which Κ i s a d s o r b e d . We have thus examined both the e q u i l i b r i a and k i n e t i c s o f Κ exchange. Because c a l c i u m (Ca) i s the dominant c a t i o n i n most B r i t i s h a g r i c u l t u r a l s o i l s , we have c o n c e n t r a t e d on K/Ca exchange. A l s o , s o i l s are mul ticomponent systems, c o n t a i n i n g a l u m i n o s i l i c a t e ( p h y l l o s i l i c a t e s o r l a y e r l a t t i c e c l a y s , e t c . ) and o r g a n i c e x c h a n g e r s . To determine something o f the c o n t r i b u t i o n o f each component to the exchange c h a r a c t e r i s t i c s o f a s o i l we have t h e r e f o r e examined K/Ca exchange r e a c t i o n s on s o i l s and on some o f the i n d i v i d u a l a l u m i n o s i l i c a t e s most commonly found i n the c l a y f r a c t i o n s o f temperate s o i l s . P.W. A r n o l d ( K 3 ) was an e a r l y p i o n e e r o f the work a t Rothamsted. The p r e s e n t r e s e a r c h programme was begun by 0. T a l i b u d e e n ( 4 - 6 ) , w i t h whom I began c o l l a b o r a t i o n i n 1974. T h i s paper summarises our r e s u l t s and my more r e c e n t work on exchange e q u i l i b r i a (4-16). Materials The s o i l s and c l a y s used i n the work were d e s c r i b e d i n f u l l i n the o r i g i n a l r e p o r t s ( 7 , 1 1 - 1 6 ) . The s o i l s used were taken c h i e f l y from l o n g - t e r m experiments on p l a n t n u t r i t i o n a t Rothamsted and a t e x p e r i m e n t a l s t a t i o n s and farms t h r o u g h o u t B r i t a i n . Those o f c o n t r a s t i n g m i n e r a l o g y and c o n s t i t u t i o n were s e l e c t e d where p o s s i b l e and a l s o those t h a t had been s u b j e c t e d to d i f f e r e n t f e r t i l i z e r and c r o p p i n g sequences, and which t h e r e f o r e had very d i f f e r e n t Κ c o n t e n t s and exchange c h a r a c t e r i s t i c s . G e n e r a l l y , the w h o l e , u n t r e a t e d s o i l s were examined but a l s o , i n one c a s e , the v a r i o u s p a r t i c l e s i z e s e p a r a t e s . The a l u m i n o s i l i c a t e s examined were chosen as end members o f those groups o f p h y l l o s i l i c a t e s t h a t commonly o c c u r i n s o i l s : m u s c o v i t e and b i o t i t e m i c a , F i t h i a n and M o r r i s i l l i t e , Montana v e r m i c u l i t e , m o n t m o r i l l o n i t e s from Upton (Wyoming b e n t o n i t e ) , Camp B e r t e a u , R e d h i l l and New M e x i c o , and k a o l i n i t e s from S t . A u s t e l l , E n g l a n d , and G e o r g i a , U . S . A . Methods E q u i l i b r i a . P o t a s s i u m - c a l c i u m exchange e q u i l i b r i a were s t u d i e d u s i n g s t a n d a r d exchange i s o t h e r m t e c h n i q u e s and by the m i c r o c a l o r i m e t r i c measurement o f e n t h a l p i e s o f exchange; the methods were d e s c r i b e d i n f u l l by G o u l d i n g and T a l i b u d e e n (_7). E s s e n t i a l l y the s o i l s and c l a y s were s a t u r a t e d w i t h Ca and the e n t h a l p i e s o f Ca •* 2K exchange measured a t 303K by adding s u c c e s s i v e 5 μΐ a l i q u o t s o f 0 . 5 M KC1 to a s u s p e n s i o n o f about 50 peq o f the s o l i d i n 2-5 ml water i n an LKB B a t c h m i c r o c a l o r i m e t e r . An i n j e c t i o n system f i t t e d to the c a l o r i m e t e r , d e s c r i b e d by Tal ibudeen e t a l . (8) and M i n t e r and T a l i b u d e e n (9), greatly speeded up the e x p e r i m e n t a l work. The e n t h a l p y measured a f t e r each s t e p was summed to g i v e the i n t e g r a l e n t h a l p y o f exchange ( Η ) , and the r a t e o f change o f t h i s w i t h Κ s a t u r a t i o n was the d i f f e r e n t i a l e n t h a l p y o f exchange, d U H ) / d x ( F i g u r e 1 ) . The Δ Η : Κ s a t u r a t i o n r e l a t i o n s h i p appeared to be a s e r i e s o f s t r a i g h t l i n e s r a t h e r than a smooth c u r v e . T h u s , t h e d e r i v e d Δ

Χ

x

Χ

GOULDING

Potassium-Calcium

Exchange

Equilibria

0.2-1.0 urn Wyoming Bentonite

(kJ eq- ) 1

0

0.25

0.50

0.75

1.0

Fractional K saturation (x)

F i g u r e 1. I n t e g r a l ( Δ Η ) and d i f f e r e n t i a l ( d ( A H ) / d x ) e n t h a l p i e s o f Ca -+ 2K (I) and 2K + Ca (0) exchange on Wyoming b e n t o n i t e as a f u n c t i o n o f t h e f r a c t i o n a l Κ s a t u r a t i o n o f t h e exchange c a p a c i t y . χ

x

330

GEOCHEMICAL PROCESSES AT MINERAL SURFACES

d U H ) / d x : K s a t u r a t i o n r e l a t i o n s h i p became a s e r i e s o f sharp steps (Figure 1 ) . To show i f t h i s was t r u l y the c a s e , and to o b t a i n the b e s t f i t f o r the d a t a , the Rothamsted Maximum L i k e l i h o o d Program (17) was used to f i t and compare a l i n e a r s p l i n e ( s p l i t l i n e ) w i t h s e v e r a l smooth c u r v e s ( q u a d r a t i c , e x p o n e n t i a l , exponential plus l i n e a r ) . In a l l the c a s e s r e f e r r e d to h e r e , the l i n e a r s p l i n e gave the s t a t i s t i c a l l y b e t t e r f i t . The e x t e n t o f exchange f o l l o w i n g each i n j e c t i o n was determined s e p a r a t e l y i n a s c a l e d - u p v e r s i o n o f the c a l o r i m e t e r e x p e r i m e n t . The two procedures a l l o w e d a l l the thermodynamic parameters o f c a t i o n exchange to be c a l c u l a t e d f o l l o w i n g the procedure o f Gaines and Thomas ( 1 8 J . The usual working standard s t a t e s were u s e d : the homoionic exchanger i n e q u i l i b r i u m w i t h a s o l u t i o n o f the s a t u r a t i n g c a t i o n o f c o n s t a n t i o n i c s t r e n g t h ( 0 . 1 M ) , and an i d e a l solution at u n i t m o l a r i t y . In t h i s p a p e r , o n l y the d i f f e r e n t i a l e n t h a l p i e s o f exchange, d e f i n e d above, and the s t a n d a r d f r e e energy U G ) , e n t h a l p y ( Δ Η ) , and entropy (àS ) o f exchange are c o n s i d e r e d . The l a t t e r f u n c t i o n s r e p r e s e n t the i n t e g r a t i o n over the whole exchange o f the change i n s e l e c t i v i t y , bonding s t r e n g t h and o r d e r , r e s p e c t i v e l y , when changing from a Ca/water/sol i d to a 2K/water/sol i d s y s t e m . x

0

0

0

R e s u l t s and D i s c u s s i o n Al urn i no s i 1 i c ate m i n e r a l s . Standard f r e e e n e r g i e s o f Ca -*· 2K exchange, AG , were always n e g a t i v e , showing t h a t a l l o f the 2:1 p h y l l o s i l i c a t e m i n e r a l s ( h e r e a f t e r d e s c r i b e d s i m p l y as c l a y s ) s t u d i e d , and the 1:1 m i n e r a l , k a o l i n i t e , were s e l e c t i v e f o r Κ o v e r Ca ( T a b l e I ) . 0

Table

I.

Standard f r e e e n e r g i e s ( Δ 9 ) , e n t h a l p i e s (ΔΗ ) and e n t r o p i e s ( T A S ) o f Ca + 2K exchange i n the s o i l s and p h y l l o s i l i c a t e m i n e r a l s (From r e f e r e n c e s 7,15) 0

0

0

Material

C a t i o n exchange c a p a c i t y (Ca-forni) (^eq

M u s c o v i t e m i c a , i l l i t e = vermiculite > montmorillonite. S e l e c t i v i t y f o r Κ o v e r Ca has been a s c r i b e d to the low h y d r a t i o n number and p o l a r i z a b i l i t y o f K (19), t o wedge s i t e s a t the weathered edge o f c l a y

15.

GOU LDING

Potassium-Calcium

Exchange

Equilibria

331

c r y s t a l l i t e s ( 2 0 , 21), and to the c h a r a c t e r i s t i c s o f the a d s o r p t i o n s i t e g e n e r a l l y [20_, 2 2 ) . F o r the s e r i e s o f c l a y s examined h e r e , i t must r e f l e c t T T f f e r e n c e s i n the a d s o r p t i o n s i t e s , and t h e r e f o r e , i n the s u r f a c e s a t which exchange o c c u r s . W h i l e AG i s a measure o f s e l e c t i v i t y , Η i s a measure o f bond s t r e n g t h . The change i n e n t h a l p y r e f l e c t s the breakage and f o r m a t i o n o f a l l bonds i n the i o n / w a t e r / c l a y system ( i o n - i o n , ion-water, i o n - c l a y , water-clay, c l a y - c l a y , water-water). A n e g a t i v e ( e x o t h e r m i c ) e n t h a l p y change i n going from Ca-*2K i m p l i e s s t r o n g e r bonds i n the 2K/water/clay system than i n the C a / w a t e r / c l a y s y s t e m . As S p o s i t o (23J s t a t e s , thermodynamic q u a n t i t i e s c a n n o t be i n t e r p r e t e d d i r e c t l y i n terms o f m o l e c u l a r s t r u c t u r e , nor be a s s i g n e d to any one component w i t h o u t f u r t h e r nonthermodynamic e v i d e n c e . However, they can be seen to agree o r d i s a g r e e w i t h a p a r t i c u l a r m o d e l . The d a t a here agree w i t h S p o s i t o ' s (23) model o f i o n exchange i n terms o f s u r f a c e complexes wïïTch i s based on x - r a y ( 2 4 J , i n f r a r e d ( 2 5 J , and neutron s c a t t e r i n g (26J d a t a . A c c o r d i n g to the m o d e l , potassium adsorbed on 2 : 1 l a y e r s i l i c a t e m i n e r a l s i s i n an i n n e r - s p h e r e complex w i t h no s o l v e n t m o l e c u l e s between i t and the s u r f a c e f u n c t i o n a l g r o u p ; the Κ i s h e l d by i o n i c o r c o v a i e n t bonds o r some c o m b i n a t i o n o f the two. Good examples o f t h i s are the v e r y s t a b l e K-mica and K - v e r m i c u l i t e s u r f a c e complexes i n s o i l ( 2 4 ) . By c o m p a r i s o n , adsorbed Ca i s h e l d by e l e c t r o s t a t i c bonïïs i n an o u t e r sphere complex w i t h a t l e a s t one water m o l e c u l e between i t and the s u r f a c e f u n c t i o n a l g r o u p , e . g . the t w o - l a y e r h y d r a t e o f Camontmorillonite. The g r e a t e r bond s t r e n g t h i n the K - c l a y system decreases i n the same o r d e r as the s e l e c t i v i t y f o r K, s u g g e s t i n g a t f i r s t t h a t bond s t r e n g t h c o n t r o l s s e l e c t i v i t y , as Brouwer e t a l . (27) s t a t e d . However, the data show the range o f e n t h a l p i e s to be v e r y much l e s s than t h a t o f f r e e e n e r g i e s , and t h a t e n t r o p i e s e x e r t a s t r o n g i n f l u e n c e , e s p e c i a l l y i n the m u s c o v i t e m i c a . The s t a n d a r d e n t r o p y change accompanying Ca + 2K exchange on the m i c a , expressed as TAS , i s p o s i t i v e , w h i l e t h a t o f a l l the o t h e r clays i s negative (Table I). T h i s i m p l i e s g r e a t e r o r d e r i n the Ca than the Κ system i n m i c a , b u t v i c e v e r s a f o r the o t h e r c l a y s . I t i s not easy i n such a complex system to d e c i d e which component o r components i s i n f l u e n c i n g the entropy changes m o s t . The o v e r a l l o r d e r o f the system i n c l u d e s t h a t o f the c l a y s u r f a c e s , the adsorbed c a t i o n s and the water m o l e c u l e s - both those a s s o c i a t e d w i t h the c a t i o n s and those i n the f r e e s o l u t i o n . F o l l o w i n g work o f PI ancon e t a l . (28) and Eberl and Srodon ( t h i s volume) which showed how t h e ~ T : l l a y e r s o f N a - s m e c t i t e s r o t a t e and r e a l i g n on a d s o r b i n g Κ, I t h i n k t h a t t h i s r e a l i g n m e n t i s the p r i n c i p l e component o f e n t r o p y changes i n i l l i t e s , v e r m i c u l i t e s and s m e c t i t e s , g i v i n g them g r e a t e r o r d e r on a d s o r b i n g K. In m i c a , no rearrangement i s p o s s i b l e , and the p r i n c i p a l component o f AS i s the i n c r e a s e d randomness i n d i s t r i b u t i o n o f adsorbed Κ o v e r adsorbed C a . D i f f e r e n t i a l e n t h a l p i e s o f exchange, p l o t t e d as a f u n c t i o n o f Κ s a t u r a t i o n , e x h i b i t a stepped c h a r a c t e r ( F i g u r e 1 and T a b l e II). T h i s can o n l y r e f l e c t d i f f e r e n t types o f a d s o r p t i o n s i t e s on the c l a y s u r f a c e s , the group o f s i t e s w i t h the most n e g a t i v e e n t h a l p y Δ

0

0

0

0

vm

H /dx) as a f u n c t i o n o f f r a c t i o n a l Κ s a t u r a t i o n f o r the Batcombe s e r i e s s o i l s from v a r i o u s p l o t s o f the Broadbalk C l a s s i c a l Experiment a t Rothamsted. x

appeared to cause a r e v e r s a l o f the normal p a t t e r n o f d i f f e r e n t i a l enthalpy curves (Figure 2 ) . S i t e s t h a t bound Κ w e a k l y appeared to be f i l l e d b e f o r e those t h a t bound Κ more s t r o n g l y . T h i s s h a r p l y c o n t r a s t i n g b e h a v i o u r has n o t y e t been examined f u r t h e r . The d i f f e r e n c e s between the two s o i l s c o u l d be because ( i ) exchange f i r s t t a k e s p l a c e on o r g a n i c exchange s i t e s which b i n d Κ o n l y weakly b u t which are favoured by e n t r o p y c h a n g e s , ( i i ) the o r g a n i c m a t e r i a l , w h i l e n o t d i r e c t l y i n v o l v e d i n the exchange, c o a t s m i n e r a l s u r f a c e s b l o c k i n g some o f the exchange s i t e s . There may a l s o be some e f f e c t o f the d e c o m p o s i t i o n o f o r g a n i c m a t t e r on c l a y weathering. E n t r o p y changes show an i n c r e a s e i n o r d e r o v e r a l l the exchange when Κ i s a d s o r b e d , an i n c r e a s e so l a r g e t h a t the Batcombe s o i l t r e a t e d w i t h FYM p r e f e r s C a . T h i s may r e f l e c t the c h a r a c t e r i s t i c s o f o r g a n i c exchange s i t e s , but i t c o u l d a l s o r e f l e c t the b l o c k i n g a c t i o n o f o r g a n i c m a t e r i a l s . Other workers have suggested t h a t o r g a n i c m a t e r i a l b l o c k s exchange s i t e s ( 3 6 , 3 7 ) , and the d e s t a b i l i z a t i o n o f c l a y - C a - o r g a n i c b r i d g e s by monovalent c a t i o n s has been noted b e f o r e [38). C e r t a i n l y the Κ on the p l o t s r e c e i v i n g FYM on some Rothamsted C l a s s i c a l Experiments has been observed as r e a c t i n g d i f f e r e n t l y , namely b e i n g 'more a v a i l a b l e ' , b e f o r e ( 3 9 ) . G e n e r a l l y , c l a y m i n e r a l c o n t e n t was the most i m p o r t a n t f a c t o r d e t e r m i n i n g Κ s e l e c t i v i t y i n s o i l , w i t h w e a t h e r i n g , f e r t i l i z e r s and o r g a n i c r e s i d u e s a f f e c t i n g s e l e c t i v i t y through t h e i r m o d i f y i n g e f f e c t s on m i n e r a l s u r f a c e s . Conclusions P o t a s s i u m - c a l c i u m exchange e q u i l i b r i u m s t u d i e s , i n v o l v i n g p a r t i c u l a r l y the measurement o f d i f f e r e n t i a l e n t h a l p i e s o f exchange, q u a n t i t a t i v e l y i d e n t i f y t y p e s o f c a t i o n exchange s i t e s i n s o i l s and p h y l l o s i l i c a t e m i n e r a l s which can be i n t e r p r e t e d i n terms o f m i c a , hydrous m i c a , v e r m i c u l i t e and m o n t m o r i l 1 o n i t e s u r f a c e s . Combined w i t h XRD and o t h e r a n a l y t i c a l t e c h n i q u e s , such s u r f a c e measurements p r o v i d e a means o f more p r e c i s e l y d e t e r m i n i n g m i n e r a l c o m p o s i t i o n , and o f examining the e f f e c t s o f w e a t h e r i n g and o f v a r i o u s c o a t i n g s on the s u r f a c e s o f a l l a l u m i n o s i l i c a t e m i n e r a l s w i t h an exchange c a p a c i t y . At t h i s s t a g e i t i s not

15.

GOULDING

Potassium-Calcium

Exchange

Equilibria

339

p o s s i b l e to i d e n t i f y c o n c l u s i v e l y the v a r i o u s types o f s i t e s w i t h known p h y s i c a l c h a r a c t e r i s t i c s o f a l u m i n o s i l i c a t e s , p a r t i c u l a r l y because charge d e n s i t y ( c o u l o m b i c ) e f f e c t s w i l l a l s o be a s t r o n g force i n determining s e l e c t i v i t y . However, t h e mass o f e v i d e n c e p o i n t s t o t h e e x i s t e n c e o f ( i ) a few h i g h l y Κ s e l e c t i v e , s p e c i f i c s i t e s which b i n d Κ s t r o n g l y a t p a r t i c l e and step e d g e s , a t c r a c k s , and around i s l a n d s o f 1 0 A c o r e s i n weathered micas ( i l l i t e s ) ; ( i i ) s i t e s on t h e s u r f a c e s o f m i c a s , w h i c h a r e v e r y Κ s e l e c t i v e because o f e n t r o p i e e f f e c t s b u t which do n o t b i n d Κ e s p e c i a l l y s t r o n g l y ; ( i i i ) s i t e s o f i n t e r m e d i a t e Κ s e l e c t i v i t y on i l l i t i c and v e r m i c u l i t i c s u r f a c e s ; ( i v ) s i t e s o f low Κ s e l e c t i v i t y on e x t e r n a l p l a n a r s i t e s on m o n t m o r i l l o n i t i c s u r f a c e s . I t has o f t e n been argued t h a t c l a y m i n e r a l s c a n n o t be used as models f o r s o i l s i n s u r f a c e c h e m i s t r y because s o i l c l a y s a r e t o o heterogeneous and impure. The work r e p o r t e d here shows t h a t , f o r both e q u i l i b r i u m and k i n e t i c s t u d i e s , s t a n d a r d al u m i n o s i l i c a t e s a r e u s e f u l models f o r s o i l s .

Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13 14. 15. 16. 17. 18. 19.

Arnold, P.W. Nature 1960, 182, 1594-5. Arnold, P.W. Proc. Fert. Soc. 1962, No. 72, 25-43. Arnold, P.W.; Close, B.M. J. Agric. Sci., Camb. 1961, 57, 381-6. Talibudeen, O. In "Potassium in the Soil", Proc. 9th Colloq. Int. Potash Inst. 1972, 97-112. Talibudeen, O. Rep. Prog. App. Chem. 1973, 58, 403-8. Talibudeen, O.; Beasley, J.D.; Lane, P.; Rajendran, N. J . Soil Sci. 1978, 29, 207-18. Goulding, K.W.T.; Talibudeen, O. J . Coll. Int. Sci. 1980, 78, 15-24. Talibudeen, O.; Goulding, K.W.T.; Edwards, B.S.; Minter, B.A. Lab. Practice 1977, 26, 952-5. Minter, B.A.; Talibudeen, O. Lab. Practice 1982, 31, 10946. Talibudeen, O. Ads. Sci. Tech. 1984, 1, 235-46. Talibudeen, O.; Goulding, K.W.T. Clays Clay Mins. 1983, 31, 37-42. Talibudeen, O.; Goulding, K.W.T. Clays Clay Mins. 1983, 31, 137-42. Arkcoll, D.B.; Goulding, K.W.T.; Hughes, J.C. J. Soil Sci. 1985, 36, 123-8. Goulding, K.W.T.; Talibudeen, O. J . Soil Sci. 1984, 35, 397-408. Goulding, K.W.T.; Talibudeen, O. J. Soil Sci. 1984, 35, 409-20. Goulding, K.W.T.; Talibudeen, O. J . Soil Sci. 1979, 30, 291-302. Ross, G.J.S. Proc. 40th Session Int. Stat. Inst., Warsaw 1975, Paper 81. Gaines, G.L.; Thomas, H.C. J . Chem. Phys. 1953, 21, 714-8. Assa, A.D. Cah. 0RST0M Ser. Pedol. 1976, 14, 219-26, 27986.

340 20.

GEOCHEMICAL PROCESSES AT MINERAL SURFACES

Schouwenberg, J.Ch.van; Schuffelen, A.C. Neth. J. Agric. Sci. 1963, 11, 13-22. 21. Lee, R.; Rowell, D.L. J. Soil Sci. 1975, 26, 418-25. 22. Bolt, G.H.; Sumner, M.E.; Kamphorst, A. Soil Sci. Soc. Am. Proc. 1963, 27, 294-9. 23. Sposito, G. "The Surface Chemistry of Soils"; Oxford University Press: Oxford, U.K., 1984. 24. Norrish, K. Proc. Int. Clay Conf., 1972 1973, pp.417-32. 25. Farmer, V.C.; Russell, J.P. Trans. Far. Soc. 1971, 67, 2737-49. 26. Ross, D.K.; Hall, P.L. In "Advanced Chemical Methods for Soil and Clay Mineralogy Research"; Stucki, J.W.; Banwart, W.L., Eds., Reidel, Boston, 1980; p.93. 27. Brouwer, E . ; Baeyens, B.; Maes, Α.; Cremers, A. J. Phys. Chem. 1983, 87, 1213-9. 28. Plancon, Α.; Besson, G.; Gaultier, J.P.; Mamy, J ; Tchoubar, C. In "Developments in Sedimentology Vol. 27"; Mortland, M.M.; Farmer, V.C., Eds.; Elsevier, Oxford, 1979; pp. 45-54. 29. Pashley, R.M. Clays Clay Mins 1985, 33, 193-9. 30. Maes, Α.; Verheyden, D.; Cremers, A. Clays Clay Mins. 1985, 33, 251-7. 31. Brown, G.; Newman, A.C.D.; Rayner, J.H.; Weir, A.H. In "The chemistry of soil constituents"; Greenland, D.J.; Hayes, M.H.B., Eds., John Wiley and Sons, Chichester, 1978, pp. 29178. 32. Nadeau, P.H.; Wilson, M.J.; McHardy, W.J.; Tait, J.M. Science 1984, 225, 923-5. 33. Le Roux, J.; Rich, C.I.; Ribbe, P.H. Clays Clay Mins. 1970, 18, 333-8. 34. Ross, G.J.; Phillips, P.Α.; Culley, J.L.P. Can. J. Soil Sci. 1985, 65, 599-603. 35. Chen, Y.; Banin, Α.; Borochovitch, A. Geoderma 1983, 30, 135-47. 36. Beckett, P.H.T.; Nafady, M.H.M. J . Soil Sci. 1967, 18, 26381. 37. Greenland, D.J.; Mott, C.J.B. In "The Chemistry of Soil Constituents"; Greenland, D.J.; Hayes, M.H.B., Eds., John Wiley and Sons, Chichester, 1978; pp 321-353. 38. Theng, B.K.G. "Formation and Properties of Clay-Polymer Complexes" (Developments in Soil Science, Vol. 9); Elsevier, Amsterdam, 1979; ch. 12, pp. 283-326. 39. Addiscott, T.M.; Johnston, A.E. J. Agric. Sci., Camb. 1971, 76, 553-61. RECEIVED June 18, 1986