4 Power Supplies for Electrodeposition of Coatings
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
C L A Y B O U R N E M I T C H E L L , JR. Elcoat Systems, Inc., 38780 Grand River Rd., Farmington, Mich. 48024
The basic principles of power supply (rectifier) design for electrodeposition of coatings are examined. All system com ponents from the primary ac input to the dc output, along with design criteria, are briefly discussed to aid scientists and production personnel in selecting power systems. Ex perimental measurements were made of current during the electrocoating cycle.
demand
These confirmed that the
most severe transient conditions on the rectifier occur during the high initial current risetimes of 200—1000 μsec, which rapidly decline 25% or more in 1-3 seconds.
" E l e c t r i c a l p o w e r f o r i n d u s t r i a l a n d d o m e s t i c consumers is s u p p l i e d i n the U n i t e d States a n d t h r o u g h o u t t h e w o r l d p r i n c i p a l l y as a l t e r n a t i n g c u r r e n t , a n d as s u c h , i t p e r i o d i c a l l y flows i n opposite directions. F o r i n d u s t r i a l processes r e q u i r i n g essentially u n i d i r e c t i o n a l c u r r e n t flow, i t is necessary to use a p p r o p r i a t e e q u i p m e n t to r e c t i f y t h e current.
Conse
q u e n t l y , a n a l t e r n a t i n g current ( a c ) to d i r e c t c u r r e n t ( d c ) c o n v e r s i o n is effected, a n d t h e e q u i p m e n t is t y p i c a l l y c a l l e d a rectifier, a n a m e w h i c h o r i g i n a t e d d u r i n g t h e early e r a of e l e c t r o p l a t i n g .
Basic Components of a Rectifier T h i s p a p e r discusses t h e basic c o m p o n e n t s of a t y p i c a l p o w e r s u p p l y ( r e c t i f i e r ) , p a r t i c u l a r l y as r e l a t e d to a n electrocoating process.
Considera
t i o n of its d e s i g n a n d f u n c t i o n s i n c l u d e the t y p e of o u t p u t controller, m a n u a l o r a u t o m a t i c c o n t r o l features, m e t e r i n g , p r o t e c t i o n , alarms, a n d p o w e r s u p p l y r i p p l e . T h e b a s i c components of a rectifier are s h o w n i n F i g u r e 1, a n d each of these is d i s c u s s e d i n d e t a i l b e l o w . A c Input. T h e i n c o m i n g i n d u s t r i a l p o w e r u t i l i z e d is t y p i c a l l y threephase ac f o r outputs greater t h a n 5 k w , a n d t h e i n p u t a c voltages m a y 62 In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
63
Power Supplies
M I T C H E L L
r a n g e f r o m 208 t o 550 volts, d e p e n d i n g o n g e o g r a p h i c a l locale a n d t h e age of the plant's e l e c t r i c a l system. T h u s , w h e r e i t is e c o n o m i c a l l y feasible to operate a l o w p o w e r l a b o r a t o r y s u p p l y f r o m a single phase, 120-volt ac c i r c u i t , i t is q u i t e t h e c o n t r a r y f o r a large m a n u f a c t u r i n g i n s t a l l a t i o n . I m m e d i a t e l y f o l l o w i n g t h e i n p u t ac t e r m i n a l s , e l e c t r i c a l c o d e r e q u i r e s a three-phase
d i s c o n n e c t s w i t c h o r c i r c u i t breaker, either i n t e r n a l o r
e x t e r n a l t o t h e rectifier. T h i s m a k e s i t p o s s i b l e t o isolate safely t h e i n coming power for maintenance.
F o l l o w i n g t h e d i s c o n n e c t s w i t c h o r cir
c u i t breaker, there c a n also b e a contactor o r starter
(which may be
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
r e m o t e l y o p e r a t e d ) to c o n t r o l the i n p u t p o w e r d u r i n g v a r i o u s o p e r a t i o n a l phases.
A c o n t a c t o r i s a m a g n e t i c a l l y a c t u a t e d s w i t c h t o energize a n d
d e - e n e r g i z e the p r i m a r y ac current. A starter is a contactor w i t h t h e r m a l o v e r l o a d sensors that a u t o m a t i c a l l y disengage the starter i n t h e event of excessive a c c u r r e n t f o r a p e r i o d o f t i m e . W h e r e a s a t u r a b l e reactor o r s i l i c o n c o n t r o l l e d rectifier ( S C R ) p r i m a r y c o n t r o l l e r is u s e d , i t is f r e q u e n t l y u s e d as the p o w e r d e a c t i v a t o r t o save t h e a d d i t i o n a l expense of a contactor or starter. Input
Starter
Controller Transformer Rectifier
T^FI
AC
niter
iï^h
DC τ
Feedback Figure 1.
Basic components of a rectifier
Controller. A l t h o u g h t h e c o n t r o l l e r m a y b e l o c a t e d i n the p r i m a r y or secondary currents of t h e p o w e r transformer ( s u b s e q u e n t l y discussed ), most present d a y e l e c t r o c o a t i n g rectifier designs u t i l i z e t h e m i n t h e p r i mary.
T h e p r i m a r y currents are t y p i c a l l y less t h a n t h e secondary, a n d
for c e r t a i n types of s o l i d state c o n t r o l , p r i m a r y c o n t r o l results i n less ripple. T h e simplest a n d least flexible c o n t r o l results f r o m n o t h a v i n g one. T h e o u t p u t voltage is d e t e r m i n e d b y l i n e v o l t a g e c o n d i t i o n s
(±10%),
t r a n s f o r m e r turns r a t i o , a n d l o a d ( — 1 0 / 1 5 % a t f u l l c u r r e n t ) .
For a
non-sensitive a p p l i c a t i o n , w i t h n o r e g a r d to c o a t i n g thickness o r q u a l i t y , coverage c a n b e o b t a i n e d . H o w e v e r , c o m p e n s a t i o n cannot b e m a d e f o r v a r i a b l e s , i n c l u d i n g t h e most sensitive—the c o a t i n g s o l u t i o n . A t a p s w i t c h c o n t r o l , m a n u a l o r m o t o r o p e r a t e d , offers l i m i t e d r a n g e c o n t r o l ( 3 0 - 1 0 0 % ) i n a discrete n u m b e r o f steps that varies t h e o u t p u t v o l t a g e b u t achieves n o r e g u l a t i o n i n response to l i n e or l o a d changes. V a r i a b l e t r a n s f o r m e r c o n t r o l , m a n u a l o r m o t o r o p e r a t e d , gives a range ( 0 - 1 0 0 % ) o f almost stepless o u t p u t c o n t r o l b u t o t h e r w i s e has t h e
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
64
ELECTRODEPOSITION
OF
COATINGS
r e g u l a t i o n deficiencies of a t a p s w i t c h . N e i t h e r a t a p s w i t c h n o r v a r i a b l e t r a n s f o r m e r is e c o n o m i c a l l y feasible for h i g h p o w e r p l a n t -installations. T h e i n d u c t i o n r e g u l a t o r is a m o t o r d r i v e n ( a l t h o u g h m a n u a l l y oper able f o r e m e r g e n c y o p e r a t i o n )
m e c h a n i s m w h i c h " b u c k s o u t " or n u l l s
p a r t of the i n c o m i n g ac voltage to p r o v i d e c o n t i n u o u s l y v a r i a b l e c o n t r o l of the o u t p u t voltage. T h i s t y p e of c o n t r o l is i n f r e q u e n t l y e n c o u n t e r e d i n o p e r a t i n g systems o w i n g to the size, cost, a n d l i m i t e d c o n t r o l a c c u r a c y of a c l o s e d l o o p w i t h a m o t o r d r i v e as one element of the system. A saturable core reactor c o n t r o l is f r e q u e n t l y u s e d f o r e l e c t r o c o a t i n g Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
rectifier c o n t r o l , a n d it, p l u s S C R ' s , a c c o u n t f o r p r o b a b l y 9 0 - 9 5 %
of
c u r r e n t p r o d u c t i o n . T h e o p e r a t i o n a l p r i n c i p l e of the reactor is b a s e d o n the i n c o m i n g ac c u r r e n t s b e i n g l o o p e d a r o u n d a core of m a g n e t i c a l l y s a t u r a b l e m a t e r i a l . A bias w i n d i n g is also l o o p e d t h r o u g h the core, a n d d c c u r r e n t is a p p l i e d to this w i n d i n g . I n the absence of a d c bias c u r r e n t , the c o r e m a t e r i a l is u n s a t u r a t e d d u r i n g the ac c y c l e , a n d the
voltage
o u t p u t is m i n i m u m whereas f u l l bias c u r r e n t results i n core saturation ( m i n i m u m i n d u c t i v e r e a c t a n c e ) a n d the m a x i m u m voltage o u t p u t . o u t p u t r a n g e of c o n t r o l is 5 - 9 5 %
The
of f u l l o u t p u t voltage.
O f p a r t i c u l a r interest w i t h this t y p e of c o n t r o l , as w e l l as the S C R , is its effect u p o n the i n c o m i n g s i n u s o i d a l voltage, as s u p p l i e d b y
the
electric u t i l i t y . W h e r e a s the t a p s w i t c h , v a r i a b l e transformer, a n d i n d u c t i o n r e g u l a t o r decrease the a m p l i t u d e of the i n c o m i n g w a v e a n d c o n d u c t t h r o u g h o u t the entire c y c l e , a p h a s i n g c o n t r o l of the saturable
reactor
a n d S C R t y p e d o not alter the a m p l i t u d e b u t rather c o n d u c t f o r o n l y a f r a c t i o n of the c y c l e . T h i s is s h o w n i n F i g u r e 2 w h e r e , for e x a m p l e , c o n d u c t i o n w o u l d o c c u r f r o m 135 to 180 degrees o n the first h a l f of the c y c l e a n d 315 to 360 degrees o n the second h a l f c y c l e . T h e e q u a t i o n for the o u t p u t voltage i s :
where Ε
= peak voltage oit = phase angle of i n c o m i n g voltage (0-x rad) θ ι = angle at i n i t i a t i o n of c o n d u c t i o n p
A s a result of this m e t h o d of v a r y i n g the o u t p u t voltage, the i n c o m i n g voltage a n d c u r r e n t are c h o p p e d i n t o segments.
T h i s results i n w a v e f o r m
d i s t o r t i o n , a n d the o u t p u t r i p p l e is greater t h a n that p r o d u c e d w i t h a tap s w i t c h or v a r i a b l e t r a n s f o r m e r controller. R i p p l e is d i s c u s s e d b e l o w . A n S C R is a s o l i d state p h a s i n g c o n t r o l w h i c h operates o n the same p r i n c i p l e as a saturable reactor.
Its c h i e f differences are a c o n s i d e r a b l y
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
4.
M I T C H E L L
65
Power Supplies
Figure 2.
Phase controller conduction angle
smaller size, greater efficiency, faster response, a n d 0 - 1 0 0 %
operating
range. P r o p o n e n t s of saturable reactor controllers cite t h e i r a b i l i t y to w i t h stand h e a v y c u r r e n t surges, w h i c h m a y o c c u r because of large t a n k loads or s h o r t i n g of t h e tank b y d a n g l i n g o r s c r a p i n g parts.
However, good
e n g i n e e r i n g d e s i g n of a n S C R c o n t r o l l e r protects i t against these surges, as w e l l as the tank a n d l o a d . Manual/Automatic
Control.
M a n u a l a n d automatic
controls a r e
a v a i l a b l e f o r l a b o r a t o r y or p r o d u c t i o n rectifiers. A m a n u a l c o n t r o l estab lishes a n o m i n a l o u t p u t voltage, w h i c h m a y b e affected b y l i n e v o l t a g e or l o a d changes.
I n a n extreme case, the o u t p u t voltage c o u l d d r o p as
l o w as 2 5 % , f o r example. A n a u t o m a t i c c o n t r o l samples the o u t p u t voltage a n d / o r c u r r e n t a n d compares i t w i t h a reference
voltage.
Differences b e t w e e n t h e o u t p u t
a n d reference constitute a n error s i g n a l w h i c h is u s e d , after a p p r o p r i a t e s i g n a l c o n d i t i o n i n g , to alter the o u t p u t a p p r o p r i a t e l y . T y p i c a l r e g u l a t i o n a c h i e v e d i n p r a c t i c e is ± 2 % f o r a saturable reactor o r i n d u c t i o n r e g u lator a n d ±i%
o r better f o r a n S C R .
Transformer. T h e t r a n s f o r m e r serves t w o p r i m a r y p u r p o s e s : ( 1 ) S t e p - u p o r s t e p - d o w n of t h e p r i m a r y l i n e v o l t a g e to t h e neces sary s e c o n d a r y voltage, so that i n c o n j u n c t i o n w i t h t h e selected c i r c u i t c o n f i g u r a t i o n , t h e r e q u i r e d d c v o l t a g e is o b t a i n e d . ( 2 ) I s o l a t i o n of the l o a d c u r r e n t f r o m t h e l i n e c u r r e n t , m a k i n g i t possible to g r o u n d either p o l a r i t y of the d c o u t p u t , or neither.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
66
ELECTRODEPOSITION
Rectifier or Rectifier/Control.
OF
COATINGS
I n the c o n t r o l a n d / o r r e c t i f i c a t i o n
( s h o w n i n F i g u r e 1) w h i c h m a y o c c u r i n the s e c o n d a r y c i r c u i t of t h e transformer, the c o n t r o l l e r is u s u a l l y i n the p r i m a r y . I n the cases w h e r e the c o n t r o l l e r is i n the secondary, it c o u l d be a saturable core reactor b u t is m o r e t y p i c a l l y S C R ' s or S C R ' s a n d d i o d e rectifiers. W i t h a p r i m a r y c o n troller, diodes are u s e d i n the secondary because o n l y r e c t i f i c a t i o n is required. S C R s i n the s e c o n d a r y c i r c u i t of the t r a n s f o r m e r p e r f o r m the same f u n c t i o n as i n the p r i m a r y — p h a s e c o n t r o l of the a l t e r n a t i n g voltage. T h i s Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
t y p e o f c o n t r o l is p a r t i c u l a r l y advantageous
i f the i n c o m i n g p r i m a r y
v o l t a g e is greater t h a n 600 volts a c — f o r e x a m p l e , 2400 or 4160
volts.
A p r i m a r y S C R c o n t r o l l e r w o u l d r e q u i r e a s t e p - d o w n i s o l a t i o n trans f o r m e r to r e d u c e the i n c o m i n g voltage to a v a l u e ( 2 2 0 - 5 5 0 volts
ac)
c o m p a t i b l e w i t h the S C R p e a k reverse voltage r a t i n g . A s e c o n d a r y S C R is subjected to the potentials t y p i c a l of electrocoating voltages a n d there fore does not r e q u i r e a d d i t i o n a l t r a n s f o r m a t i o n . D i o d e s are c o m b i n e d w i t h S C R ' s for cost r e d u c t i o n ( f o r c o m p a r a b l e c u r r e n t a n d voltage r a t i n g , d i o d e s are cheaper t h a n S C R ' s ) a n d s i m p l e r S C R triggering requirements.
H o w e v e r , w h e r e the c u r r e n t o u t p u t re
quires the p a r a l l e l i n g of S C R ' s , c a r e f u l e n g i n e e r i n g is necessary to assure b a l a n c i n g of the S C R c u r r e n t s — a m o r e d i f f i c u l t task t h a n b a l a n c i n g o n l y d i o d e currents.
I n a d d i t i o n , the S C R - d i o d e c o m b i n a t i o n p r o d u c e s
a
greater r i p p l e o u t p u t t h a n a p r i m a r y S C R or a l l S C R secondary c o n troller.
T h i s necessitates g r e a t l y i n c r e a s e d
filtering
requirements
where
the specifications i n d i c a t e a l o w r i p p l e ( 1 0 - 2 0 % ) at short c o n d u c t i o n cycles ( 2 5 - 3 0 % of f u l l voltage o u t p u t ) .
Operation of a Rectifier Circuit Protection. C i r c u i t p r o t e c t i o n appears i n v a r i o u s f o r m s a n d serves the m u l t i p l e purposes of p e r s o n n e l a n d e q u i p m e n t
protection,
m i n i m i z a t i o n of fire h a z a r d , a n d p r o t e c t i o n of the p r o d u c t b e i n g electrocoated.
F u s e s m a y be u s e d to protect S C R ' s , d i o d e s , transformers, a n d
other c o m p o n e n t s , o f t e n i s o l a t i n g the f a u l t y p a r t or s i m u l t a n e o u s l y shut t i n g the rectifier off. C i r c u i t breakers are u s e d for the same p u r p o s e a n d r e q u i r e o n l y r e - e n g a g e m e n t rather t h a n r e p l a c e m e n t to resume o p e r a t i o n . I n t h e event of i n a d e q u a t e c o o l i n g of S C R ' s , d i o d e s , transformers, or other c o m p o n e n t s , t e m p e r a t u r e sensors are u s e d w h i c h protect b y s h u t t i n g off a p a r t of or the entire system. E l e c t r o c o a t i n g rectifiers operate i n i n d u s t r i a l plants i n w h i c h there m a y also b e w e l d e r s , large motors, or other e l e c t r i c a l m a c h i n e r y w h i c h c a n cause l i n e v o l t a g e transients.
T h e s e transients m a y b e as large as
several h u n d r e d volts a n d m a y cause d a m a g e to S C R ' s , diodes, a n d other
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
67
Power Supplies
M I T C H E L L
s o l i d state devices, unless p r o p e r l y p r o t e c t e d .
Protection usually con
sists of s n u b b e r n e t w o r k s — r e s i s t o r / c a p a c i t o r c o m b i n a t i o n s w h i c h b y p a s s the transient a r o u n d t h e p r o t e c t e d c o m p o n e n t ; s e l e n i u m surge suppressors w h i c h absorb t h e transient a n d dissipate i t as heat, zener d i o d e s , or gas d i s c h a r g e devices. I n a n electrocoating o p e r a t i o n , t a n k shorts c a n o c c u r because the p a r t ( a n o d e ) is o v e r s i z e d o r sufficiently a g i t a t e d b y t h e s o l u t i o n m o v e m e n t to t o u c h t h e tank w a l l ( c a t h o d e ) .
Similarly, i n a conveyor opera
tion, a part might drop a n d become wedged. Consider, for example, the Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
effect of a c a r b o d y w h i c h , w h i l e r e m a i n i n g c o n n e c t e d t o the anode, becomes j a m m e d against t h e tank. T h e several possibilities w h i c h c o u l d o c c u r i n c l u d e b u r n i n g a h o l e i n the tank, m e l t i n g p a r t of the b o d y , or d r a w i n g s u c h excessive c u r r e n t that t h e rectifier is d e s t r o y e d . T h i s t y p e of p r o t e c t i o n is d i s c u s s e d b e l o w . F i n a l l y , some degree of p r o t e c t i o n is offered b y a u d i b l e a n d / o r v i s u a l w a r n i n g systems i n w h i c h it is d e s i r e d to i n d i c a t e a m a l f u n c t i o n without
ceasing o p e r a t i o n .
failsafe measures
H o w e v e r , these s h o u l d b e s u p p o r t e d b y
i n the event the w a r n i n g signals are u n n o t i c e d o r
unheeded. O u t p u t Control. T h e o u t p u t c o n t r o l c a n r a n g e i n c o m p l e x i t y f r o m the s i m p l e m a n u a l setting of a t a p s w i t c h or v a r i a b l e t r a n s f o r m e r c o n t r o l to a n a u t o m a t i c v o l t a g e / c u r r e n t c o n t r o l that w i l l regulate to less t h a n ±1%
i n voltage a n d c u r r e n t w i t h 0 - 1 0 0 % v o l t a g e a n d c u r r e n t c o n t r o l
range. T h i s is a c c o m p l i s h e d b y t h e s a m p l i n g , f e e d b a c k , error s i g n a l g e n eration t e c h n i q u e p r e v i o u s l y n o t e d . T h e o u t p u t v o l t a g e a n d c u r r e n t are t y p i c a l l y r e a d o n ± 2 % meters, unless m o r e expensive a n d accurate meters are specified b y t h e customer. D e s p i t e the s e e m i n g p a r a d o x of a better t h a n ± 1 % c o n t r o l a n d ± 2 % meters, this indicates r e p e a t a b i l i t y (as d e t e r m i n e d b y instruments o f greater a c c u r a c y ) of t h e o u t p u t setting over a n e x t e n d e d p e r i o d of t i m e or w h e n s w i t c h e d r e p e a t e d l y off a n d o n whereas t h e o u t p u t c a n o n l y b e set w i t h i n ± 2 % . A m p e r e - h o u r meters are often specified i n e l e c t r o c o a t i n g installations to measure the t o t a l i n t e g r a t e d a m o u n t of e n e r g y e x p e n d e d f o r a c o a t i n g application.
T h e system c a n b e d e s i g n e d so that n o t o n l y are t h e t o t a l
ampere-hours r e c o r d e d , b u t a s i g n a l c a n b e p r o v i d e d to r e p l e n i s h solids or other constituents as they are d e p l e t e d . A c o n t r o l that is c o m m o n l y specified i n c o n v e y o r i z e d e l e c t r o c o a t i n g installations is the h i g h - l o w v o l t a g e c o n t r o l . I f the c o n v e y o r is s t o p p e d f o r m a n y m i n u t e s a n d parts are left i n t h e t a n k at f u l l c o a t i n g v o l t a g e , excessive film thickness results. N o t o n l y is this expensive b u t o f t e n t h e c o a t i n g o b t a i n e d is u n d e s i r a b l e , a n d the p a r t m u s t b e s t r i p p e d a n d r e coated. T u r n i n g the rectifier off i m m e d i a t e l y a l l o w s d i s s o l u t i o n of t h e film
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
68
ELECTRODEPOSITION
OF
COATINGS
a l r e a d y d e p o s i t e d , a n d c o u l d result i n start-up w i t h a tank f u l l of n e a r l y u n c o a t e d parts, thus c r e a t i n g a n a b n o r m a l c u r r e n t d e m a n d o n the r e c t i fier.
T o a v o i d this p r o b l e m , the rectifier is p r o g r a m m e d so that w h e n
the c o n v e y o r is s t o p p e d , the v o l t a g e is s w i t c h e d to a l o w e r v a l u e — a p p r o x i m a t e l y 50 volts. It m a y r e m a i n at this l o w e r v a l u e , or a t i m e r m a y t u r n the u n i t off i f the c o n v e y o r r e m a i n s stationary f o r longer t h a n a g i v e n t i m e , t y p i c a l l y five m i n u t e s . Rectifiers w i t h a u t o m a t i c controls are t y p i c a l l y d e s i g n e d to sense the o u t p u t c u r r e n t a n d regulate the o u t p u t s u c h that it cannot exceed the Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
m a x i m u m of w h i c h the rectifier is c a p a b l e .
T h i s is a c h i e v e d i n p h a s i n g
t y p e controls b y d e c r e a s i n g the o u t p u t voltage to a v a l u e s u c h that o n l y m a x i m u m c u r r e n t is p r o d u c e d . T h u s , i n the event of a fixed short i n the tank or at the rectifier o u t p u t , the meters m i g h t i n d i c a t e that m a x i m u m c u r r e n t was b e i n g p r o d u c e d at zero voltage.
T h i s is not p o s s i b l e since
O h m ' s l a w is s t i l l a p p l i c a b l e , b u t a l o w resistance short requires so l i t t l e voltage for f u l l o u t p u t c u r r e n t that the v o l t a g e appears to be n i l , e s p e c i a l l y o n a 300- or 500-volt scale. T h e d c o v e r l o a d is a c u r r e n t - l i m i t i n g d e v i c e w h i c h also senses a c u r rent m a x i m u m a n d either greatly reduces the o u t p u t or shuts it off en tirely.
It is n o r m a l l y set s l i g h t l y h i g h e r ( 5 - 1 0 % ) t h a n the
automatic
c u r r e n t l i m i t , a n d as a s a f e g u a r d to it. H o w e v e r , it is possible to set i t l o w e r t h a n the c u r r e n t l i m i t p o i n t to g u a r d against o v e r l o a d i n g the r e c t i fier c a p a b i l i t y . F o r e x a m p l e , if too m a n y parts are i n a n o v e r l o a d e d coat i n g tank, this forces the rectifier to l i m i t c u r r e n t a u t o m a t i c a l l y . reduces the c o a t i n g voltage, a n d i n a d e q u a t e
film
This
coverage c a n result,
w h i c h m a y not be d i s c o v e r e d u n t i l i n the field. W i t h the d c o v e r l o a d set l o w e r ( 5 - 1 0 % ) t h a n current, the u n i t is shut off a n d the c o n v e y o r over l o a d i n g is i m m e d i a t e l y detected. Various claims have been made for pulsed p o w e r i n electrocoating a p p l i c a t i o n s , a n d it c a n b e p r o g r a m m e d i n t o rectifiers that are d e s i g n e d f o r this a p p l i c a t i o n . H o w e v e r , its efficacy has not b e e n sufficiently estab l i s h e d to w a r r a n t the a d d i t i o n a l costs i n v o l v e d ( 2 5 - 1 0 0 % ). If the e l e c t r o c o a t i n g a p p l i c a t i o n is b a t c h r a t h e r t h a n c o n v e y o r , the i n i t i a l c u r r e n t d e m a n d m u s t be c o n s i d e r e d w h e n p o w e r is first a p p l i e d . E i t h e r the rectifier m u s t h a v e a c u r r e n t c a p a b i l i t y to d e l i v e r the instant
of c u r r e n t d e m a n d , or a p p r o p r i a t e c u r r e n t l i m i t i n g m u s t
first be
i n c l u d e d to p r o t e c t the rectifier. Input A c Requirements. T h e p o w e r factor ( ^ 1 . 0 ) of a rectifier is the ratio of the p o w e r i n p u t ( k i l o w a t t ) to the k i l o v o l t - a m p e r e (leva) i n p u t , w h i c h is p r o p o r t i o n a l to t h e p r o d u c t of root-mean-square l i n e v o l t a g e a n d current.
(rms)
T h e p o w e r factor is 0.90-0.92 at f u l l o u t p u t
b u t d r o p s s i g n i f i c a n t l y at r e d u c e d v o l t a g e a n d c u r r e n t o w i n g to c h a n g i n g
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
M I T C H E L L
69
Power Supplies
l o a d c o n d i t i o n s a n d t h e w a v e f o r m d i s t o r t i o n created b y a p h a s i n g t y p e controller. T h e efficiency ( ^ 1 . 0 ) of a rectifier is t h e ratio of t h e p o w e r o u t p u t ( k w ) to t h e p o w e r i n p u t ( k w ) . A n electrocoating rectifier has a n effi c i e n c y of 0.92-0.95 at f u l l o u t p u t voltage a n d current, w h i c h decreases s o m e w h a t w i t h l o w e r e d o u t p u t voltages. T h e decrease results f r o m f a i r l y constant
p o w e r losses i n components
whereas
t h e l o a d p o w e r c o n s u m p t i o n becomes less a n d t h e r a t i o is
s u c h as t h e w i r i n g a n d diodes
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
lowered. O u t p u t D c Requirements. T h e o u t p u t voltage r e q u i r e d is p r i n c i p a l l y a f u n c t i o n of t h e electrocoating m a t e r i a l , r e q u i r e d t h r o w - p o w e r ( a b i l i t y to coat d e e p recesses, e t c . ) , c o a t i n g t i m e , a n d t a n k parameters.
T h e cur
rent r e q u i r e d is m a i n l y d e t e r m i n e d b y the a m p e r e - h o u r / p o u n d ( o r c o u l o m b / g r a m ) specification of t h e m a t e r i a l , t h e n u m b e r of p o u n d s p e r u n i t area f o r a g i v e n c o a t i n g thickness, a n d the area of m e t a l i n the tank to be coated.
C o n s i d e r a t i o n m u s t also b e g i v e n to the t y p i c a l c u r r e n t vs.
t i m e characteristic of the c o a t i n g process. Power Supply Ripple. A l t h o u g h a rectifier o u t p u t is r e f e r r e d t o as d i r e c t current, i t is n o t i n a n y sense as d i r e c t a n d s m o o t h a c u r r e n t as that o b t a i n e d f r o m a battery.
It c a n b e s m o o t h e d w i t h r i p p l e
t y p i c a l l y a c o m b i n a t i o n of i n d u c t a n c e a n d capacitance,
filtering,
to almost a n y
extent, b u t the cost increases p r o p o r t i o n a t e l y . T h e variations i n t h e d c o u t p u t result f r o m the three phases o f alter n a t i n g currents f l o w i n g i n t h e p r i m a r y a n d w h i c h m a y b e d i s t o r t e d b y the controller. T h e resultant rectified o u t p u t represents t h e o v e r l a p p i n g of the tops a n d i n v e r t e d bottoms of t h e t r a n s f o r m e d p r i m a r y voltages, a n d t h e e n s u i n g crests a n d valleys. T h e s e constitute t h e r i p p l e variations i n t h e d c o u t p u t , w h i c h are m e a s u r e d w i t h a " t r u e " r m s m e a s u r i n g i n strument.
T h e " t r u e " results f r o m the i n a b i l i t y o f o r d i n a r y ac p a n e l a n d
p o r t a b l e meters to r e a d the correct r m s v a l u e of t h e a l t e r n a t i n g c o m p o nent. T h e f o r m ( r i p p l e ) factor is t h e r m s a l t e r n a t i n g c o m p o n e n t d i v i d e d b y the average d c v a l u e ( this c a n b e ascertained w i t h a n y average r e a d i n g meter ). T a p s w i t c h a n d v a r i a b l e transformer
c o n t r o l l e d rectifiers h a v e
r i p p l e of 4 . 5 - 5 . 0 % t h r o u g h o u t the entire range of c o n t r o l .
a
Saturable
reactors a n d S C R ' s h a v e a f u l l o u t p u t v a l u e of 4 . 5 - 5 . 0 % , w h i c h increases to 5 0 - 1 0 0 % at l o w o u t p u t voltages ( 1 0 - 2 5 % ). A t y p i c a l l y specified v a l u e of r i p p l e c o r r e c t i o n is 1 0 % r i p p l e at 1 0 % voltage a n d current. O p i n i o n i n t h e electrocoating i n d u s t r y varies as to t h e necessity or degree of r i p p l e filtering r e q u i r e d .
T h e r e is some e v i d e n c e that r i p p l e
contributes to increased h e a t i n g effects i n the d e p o s i t e d film, a n d there is s u s p i c i o n that c o a t i n g r u p t u r e m a y b e r e l a t e d to r i p p l e crests. P a r t of
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
70
ELECTRODEPOSITION
O F COATINGS
the d i f f i c u l t y arises f r o m differences i n r i p p l e o u t p u t of l a b o r a t o r y a n d p r o d u c t i o n rectifiers, a n d this contributes to v a r i a t i o n i n the c o r r e s p o n d i n g results.
Practical Considerations F o r those not f a m i l i a r w i t h rectifiers, yet i n v o l v e d i n their selection,
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
a f e w g u i d e l i n e s that c a n be u s e d are: ( 1 ) T h e rectifier s h o u l d b e d e s i g n e d w i t h r e g a r d for the safety of o p e r a t i n g p e r s o n n e l , the parts b e i n g coated, a n d the rectifier. P r o p e r de s i g n a l l o w s f o r access to a l l parts of the u n i t b u t interlocks shut off a l l p o w e r i f e n t r y is a t t e m p t e d w h i l e e n e r g i z e d . T h e o u t p u t c u r r e n t s h o u l d b e l i m i t e d to the m a x i m u m of w h i c h the u n i t is safely c a p a b l e , a n d p r o v i s i o n s h o u l d b e m a d e to shut d o w n i n the event of a tank short. T h e o v e r a l l d e s i g n s h o u l d c o n f o r m to N E M A a n d J I C e l e c t r i c a l standards. ( 2 ) T h e d e s i g n a n d c o n s t r u c t i o n s h o u l d i n c o r p o r a t e c o m p o n e n t s of i n d u s t r i a l q u a l i t y a n d g o o d e n g i n e e r i n g practices to m a x i m i z e r e l i a b i l i t y . M a i n t e n a n c e m u s t be possible w i t h r e g u l a r p l a n t p e r s o n n e l , a n d a l l parts of the u n i t m u s t b e c a p a b l e of r a p i d r e p l a c e m e n t i n the event of a f a i l u r e . M a i n t e n a n c e s h o u l d p r e f e r a b l y be o n a subsystem basis, s u c h as p r i n t e d c i r c u i t b o a r d s , or a r e p l a c e a b l e chassis, so that service p e r s o n n e l are not r e q u i r e d to test c o m p o n e n t s or to b e i n t i m a t e l y f a m i l i a r w i t h the c i r c u i t r y . ( 3 ) T h e rectifier m u s t i n c l u d e a p p r o p r i a t e features that e m p h a s i z e e c o n o m i c a l o p e r a t i o n , p r o v i d e flexible o p e r a t i o n , a n d h a v e a m i n i m u m of m a i n t e n a n c e r e q u i r e m e n t s a n d m i n i m u m obsolescence.
Figure 3.
Current vs. time (HT-300). Horizontal: 3 sec/div; vertical: 0.8 amp/div.
Electrocoating Current Measurements T h e c u r r e n t as a f u n c t i o n of t i m e i n a n e l e c t r o c o a t i n g c y c l e is not constant, as i n a p l a t i n g b a t h , f o r e x a m p l e , b u t rather exhibits a large i n i t i a l d e m a n d w h i c h decreases as the d e p o s i t e d l a y e r accumulates.
In
this respect the c y c l e is s i m i l a r to that of a n o d i z i n g . T h e c u r r e n t c a n be
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
MITCHELL
71
Power Supplies
o b s e r v e d w i t h a n oscilloscope that v e r t i c a l l y d i s p l a y s t h e voltage d r o p across a c a l i b r a t e d resistor that is i n series w i t h t h e c u r r e n t flow w h i l e s w e e p i n g h o r i z o n t a l l y . T h e oscilloscope sweep is set t o b e i n i t i a t e d near t h e start o f t h e c o a t i n g c y c l e . A p e n recorder, w h i c h has a m u c h s l o w e r response t h a n a n oscilloscope, w i l l c o r r e c t l y d i s p l a y this c u r v e 5 - 1 0 sec onds after the i n i t i a l surge b u t w i l l n o t d i s p l a y the r a p i d c u r r e n t t r a n s i t i o n
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
at t h e b e g i n n i n g .
Figure 4.
Current vs. time (LT-300 v). Horiz: 3 sec/div; vert: 0.8 amp/div.
Figure 5.
Current vs. time (15303-300 v). Horiz: 3 sec/ div; vert: 1.6 amp/div.
L a b o r a t o r y experiments w e r e c o n d u c t e d to demonstrate t h e o s c i l l o g r a p h i c d i s p l a y of electrocoating c u r r e n t vs. t i m e , p a r t i c u l a r l y of t h e i n i t i a l surge. M e a s u r e m e n t s w e r e m a d e w i t h P a r k e r C o . B o n d e r i t e E P - 1 t r e a t e d panels i n a s o l u t i o n v o l u m e of a p p r o x i m a t e l y 1.7 liters, a c h r o m e p l a t e d steel c a t h o d e w i t h a n area of 90 s q c m , a n a n o d e area of a p p r o x i m a t e l y 100 s q c m ( o n e s i d e ) , a n d a n a n o d e - c a t h o d e s p a c i n g of 10 c m . T h e solution temperature was 2 4 ° C .
Coatings used were S h e r w i n W i l
liams K S 3 0 A ( h i g h t h r o w ) , K S 3 0 B ( l o w t h r o w ) , a n d P P G S15303 ( h i g h m e d i u m t h r o w ) , a n d i n a l l cases a p o t e n t i a l of 300 volts d c w a s u s e d . T h e results a n d e x p e r i m e n t a l a r r a n g e m e n t are s h o w n i n F i g u r e s 3 - 1 1 .
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
72
ELECTRODEPOSITION
O F COATINGS
I n F i g u r e 3 t h e h i g h t h r o w K S 3 0 A e x h i b i t e d a p e a k c u r r e n t of 3.4 a m p , w h i c h d r o p p e d to h a l f t h e i n i t i a l c u r r e n t i n a b o u t 0.5 sec. I n F i g u r e 4 the l o w t h r o w K S 3 0 B h a d a n i n i t i a l p e a k c u r r e n t of 2.7 a m p a n d d r o p p e d to h a l f this v a l u e i n a b o u t 3 sec. F i g u r e 5 shows that t h e S15303 h a d a n i n i t i a l c u r r e n t p e a k of 7.5 a m p w h i c h d r o p p e d to h a l f this a m o u n t i n a p p r o x i m a t e l y 1 sec. T h e results i n F i g u r e 6 w e r e o b t a i n e d u n d e r t h e same c o n d i t i o n s as those i n F i g u r e 5 except that t h e h o r i z o n t a l w a s c h a n g e d to 0.5 s e c / d i v i s i o n r a t h e r t h a n 3 s e c / d i v i s i o n . I n this case the i n i t i a l p e a k c u r r e n t is Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
8 a m p , w i t h a s e c o n d p e a k w h i c h occurs a b o u t 1.2 seconds after t h e first. T h e s e c o n d p e a k w a s later established as b e i n g t h e c u r r e n t surge t o the rear of the a n o d e w i t h respect to t h e cathode. F i g u r e 7 is a d u p l i c a t i o n of F i g u r e 3 except that t h e h o r i z o n t a l w a s c h a n g e d to 2 m s e c / d i v i s i o n to demonstrate better the i n i t i a l surge. T h e
Figure 6.
Current vs. time (15303-300 v). Horiz: 0.5 sec/div; vert: 1.6 amp/div.
Figure 7. Current vs. time (HT-300 ν). Horiz: 2 msec/div; vert: 0.8 amp/div.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
73
Power Supplies
M I T C H E L L
p o w e r s u p p l y r i p p l e (>—4.5% ) is c l e a r l y s h o w n , a n d this accounts f o r t h e w i d t h o f t h e c u r r e n t trace s h o w n i n t h e p r e v i o u s figures. T h e s l i g h t d i s t o r t i o n of the first c y c l e of r i p p l e is c a u s e d b y chatter of t h e r e l a y u s e d to a p p l y d c p o t e n t i a l . H o w e v e r , despite t h e i n c r e a s e d h o r i z o n t a l m a g n i f i c a t i o n , i t is d i f f i c u l t to estimate the surge r i s e t i m e , b u t i t is p r o b a b l y o n t h e o r d e r of 200 ^sec.
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
10
cm
(4")
A n o d e #1 (Front)
A n o d e #2 (Rear)
Cathode
0.95
Figure 8.
cm
(3/R")
Anode placement for outside front and rear measurements
F i g u r e 8 shows the e x p e r i m e n t a l a r r a n g e m e n t u s e d to o b t a i n t h e d a t a of F i g u r e 9. T h e anodes consisted of t w o p a n e l s w i t h t h e i r i n t e r i o r sur faces m a s k e d . Separate a n o d e leads ( c o m m o n c a t h o d e ) w e r e c o n n e c t e d to t h e p o w e r s u p p l y , a n d t h e a n o d e currents w e r e m o n i t o r e d separately. A n o d e surface 1 ( f r o n t ), nearest t h e c a t h o d e , is r e f e r e n c e d to the abscissa l i n e w h i c h is o n t h e b o t t o m ; a n o d e surface 2 ( r e a r ) , furthest f r o m the c a t h o d e , is r e f e r e n c e d to t h e abscissa l i n e w h i c h is s e c o n d f r o m t h e b o t t o m i n F i g u r e 9. T h e p e a k c u r r e n t o n a n o d e 1 is 4 a m p , a n d o n a n o d e 2 it is 0.8 a m p ; b o t h are a p p r o x i m a t e l y 0.8 a m p w i t h i n 1 . 5 - 2 sec after p o w e r is i n i t i a t e d .
T h e p e a k f o r a n o d e 2 occurs a b o u t 0.5 sec after that f o r
anode 1. F i g u r e 10 is a sketch of t h e e x p e r i m e n t a l a r r a n g e m e n t f o r o b t a i n i n g the d a t a s h o w n i n F i g u r e 11. T h e anodes a g a i n consisted o f t w o panels, b u t t h e exterior surfaces w e r e m a s k e d . Separate leads e n a b l e d separate m o n i t o r i n g as before, w i t h anodes 1 ( f r o n t ) a n d 2 ( r e a r ) r e f e r e n c e d as
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
74
ELECTRODEPOSITION
O F COATINGS
Figure 9. Current vs. time (HT-300 ν) outside front and rear. Horiz: 0.5 sec/div; vert: 0.8 amp/div. i n F i g u r e 9. A n o d e 1 exhibits a p e a k c u r r e n t of 1.5 a m p a n d decreases to h a l f this a m o u n t i n 0.2 sec. A n o d e 2 peaks to 0.8 a m p 0.15 sec after i n i t i a t i o n of p o w e r a n d decreases to h a l f this v a l u e i n 0.95 sec. F i g u r e 12 is a g r a p h s h o w i n g t h e c u r r e n t c y c l e f o r a p h o s p h a t e d m e t a l l i c area of ca. 1000 s q f t w h i c h is e n t e r i n g a large tank.
electrocoating
T h e voltage remains constant at a b o u t 170 volts t h r o u g h o u t t h e
45-second p e r i o d .
T h e c u r r e n t d e m a n d is i n i t i a l l y 1350 a m p , decreases 10
\
cr-,
(4")
!
! Cathode 0.95
Figure 10.
cm
(3/8")
Anode placement for inside front and rear measurement
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
75
Power Supplies
MITCHELL
to 1000 a m p i n 0.3 sec, a n d is d o w n to 800 a m p i n 4.3 sec, g r a d u a l l y decreasing
thereafter.
F i g u r e 13 has t h e same v e r t i c a l scale as F i g u r e 12, b u t t h e h o r i z o n t a l is c h a n g e d to 0.2 s e c / d i v i s i o n . T h e faster h o r i z o n t a l s w e e p exhibits less of the t o t a l c y c l e b u t m o r e of t h e i n i t i a l rise. E v e n at this sweep rate, the risetime of t h e i n i t i a l p u l s e is q u i t e short. L a b o r a t o r y measurements of samples i n s m a l l tanks i n d i c a t e a risetime of 2 0 0 - 1 0 0 0 /xsec. A c u r v e of this t y p e c a n b e i n t e g r a t e d to y i e l d t h e t o t a l n u m b e r of c o u l o m b s , a n d t h e w e i g h t of t h e s a m p l e w i l l g i v e the t o t a l grams of d e Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
p o s i t e d m a t e r i a l to d e t e r m i n e the c o u l o m b / g r a m r a t i o .
However, an
a m p e r e - h o u r m e t e r o r a c h a r t r e c o r d e r w i l l g i v e reasonable
accuracy
because t h e i n i t i a l surge exists f o r s u c h a short t i m e . A n a m p e r e - h o u r meter is c o m p l e t e l y acceptable, f o r e x a m p l e , i n c o n j u n c t i o n w i t h a n elec t r o c o a t i n g rectifier f o r i n t e g r a t e d m e a s u r e m e n t of the c u r r e n t to restore d e p l e t e d solids a u t o m a t i c a l l y o n a p e r i o d i c basis.
Figure 11. Current vs. time (HT-300 ν) inside front and rear. Horiz: 0.1 sec/ div; vert: 0.4 amp/div. 1500
1000 Current (Ampere) 500
0 0
10
20 Time
Figure 12.
30
40
50
(Second)
Current vs. time during electrocoat of 1000-sq ft area
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
76
ELECTRODEPOSITION
O F COATINGS
Since t h e d a t a f r o m t h e l a b o r a t o r y experiments are s i m i l a r t o that o b t a i n e d f r o m a p r o d u c t i o n f a c i l i t y ( e s p e c i a l l y i n i t i a l s u r g e ) , i t is c o n c l u d e d that t h e l a b o r a t o r y d a t a c a n b e u s e f u l i n d e s i g n i n g a p o w e r s u p p l y f o r electrocoating a p p l i c a t i o n s . F u r t h e r , t h e most r i g o r o u s d u t y r e q u i r e ment, i n terms of current d e m a n d , occurs d u r i n g t h e i n i t i a l c o a t i n g p e r i o d . H o w e v e r , this i n t e r v a l is short c o m p a r e d w i t h t h e t o t a l c o a t i n g t i m e , a n d this represents a transient c o n d i t i o n m o r e t h a n a steady-state o n e . T h e i n i t i a l current surge c a n b e p r e d i c t e d because i t represents t h e resistance of t h e c o a t i n g m a t e r i a l b e t w e e n t h e a n o d e a n d cathode, as Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
d e t e r m i n e d b y the specific resistance of t h e m a t e r i a l , electrode
areas,
electrode s p a c i n g , a n d a p p l i e d p o t e n t i a l . T h i s is m o r e easily d e t e r m i n e d for a n e x p e r i m e n t a l a r r a n g e m e n t t h a n f o r a c o m p l i c a t e d shape i n large production.
1000
Current (Ampere) 500
0 0
1 Time
Figure 13.
2
(Second)
Initial current surge during electrocoat of 1000sq ft area
F i n a l l y , n o t e that t h e i n i t i a l surge of 1350 a m p s h o w n i n F i g u r e 12 is e q u i v a l e n t to a n i n c o m i n g p r i m a r y ac c u r r e n t of 2 0 - 2 5 amp//xsec ( ne glecting circuit resistance).
Consequently, for the power supply circuit
designer, c o m p o n e n t s s u c h as S C r V s m u s t a n d c a n b e a p p r o p r i a t e l y se l e c t e d a n d p r o t e c t e d to ensure that r e l i a b l e o p e r a t i o n is o b t a i n e d u n d e r these transient c o n d i t i o n s .
Summary T h e i n f o r m a t i o n presented h e r e o n rectifiers w i l l h o p e f u l l y g i v e those better a c q u a i n t e d w i t h other aspects of electrocoating a n i n s i g h t i n t o a n i m p o r t a n t c o m p o n e n t of this system.
This information w i l l enable the
p r o s p e c t i v e p u r c h a s e r of s u c h e q u i p m e n t to ask k n o w l e d g e a b l e questions and
to u n d e r s t a n d some of t h e tradeoffs that m u s t b e c o n s i d e r e d , i n
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
4.
conjunction
77
Power Supplies
MITCHELL
with
the manufacturer,
to r e a l i z e
t h e most
economical
p e r f o r m a n c e , r e l i a b i l i t y , a n d safety.
Acknowledgment T h e a u t h o r a c k n o w l e d g e s h e l p f u l discussions w i t h M . K o l t u n i a k , V i c e - p r e s i d e n t of E n g i n e e r i n g .
Downloaded by UNIV OF CINCINNATI on November 14, 2014 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0119.ch004
Bibliography Sandford, J. E . , "Electrocoating: The Charge is O n , " Iron Age (Nov. 2, 1967). DeVittorio, J. M . , "The Electro-Mechanical Aspects of System Design for the Electrodeposition of Water Borne Coatings," The Sherwin-Williams Co. Streeter, K. L . , " D C Power Supplies for Electropainting," 1st Conference on Electropainting for the Seventies, Westinghouse Brake & Signal Co., Ltd. Koch, R. L . , "High Gloss White Electropaint," 1st Conference on Electropainting for the Seventies. Yeates, R. L . , "Electropainting," Draper, Teddington, England, 1966. Burnside, G . L., Brewer, G . E . F., Electrophoretic Coating Process, U.S. Patent 3,200,057 (1965). Oster, T . H., Cyclical Current Reversal for an Electrophoretic Deposition, U.S. Patent 3,200,058 (1965). "Canada Leads the World in Electrocoat Efficiency," Modern Finishing Methods (1969). Mitchell, C., " D C Control Systems for Electrocoating Applications," A S T M E paper FC69-127 (1969). Finn, S. R., Hasnip, J. Α., "Electrodeposition: A Current-Time Relationship," J. Oil Colour Chemists Assoc. (1965) 48. Cooke, Β. Α., Strivens, Τ. Α., "The Non-ohmic Nature of Conduction in the Electrodeposition of Paint Films," J. Oil Colour Chemists Assoc. (1968) 51. Ashby, D . , "Rectifiers to Provide Current for Electrodeposition Process," Trans. Inst. Metal Finishing (1964) 41. Burnside, G . L . , Brewer, G . E . F., Strosberg, G . G . , Igras, R. Α., "Prediction of Current Requirements (Ford process)," J. Paint Technol. (1966) 38 (493). LeBras, L . R., "Electrodeposition Theory and Mechanisms," J. Paint Technol. (1966) 38 (493). Berry, J. R., "Electrodeposition of Paint—I," Paint Technol (1963) 27 (12). Berry, J . R., "Electrodeposition of Paint—II," Paint Technol. (1964) 28 (1). Gloyer, S. W . , Hart, P. P., Cutforth, R. E . , "Electrodeposition: Theory and Practice," Official Digest (Feb. 1965). Tawn, A. R. H . , Berry, J. R., "The Electrodeposition of Paint: Some Basic Studies," J. Oil Colour Chemists Assoc. (Sept. 1965) 48. RECEIVED
May
28,
1971.
In Electrodeposition of Coatings; Brewer, G.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.