6 Prediction of Isobaric Vapor-Liquid Equilibrium Data for Mixtures of Water and Simple Alcohols
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
A. ANDIAPPAN and A. Y. McLEAN Annamalainagas University, Tamifnedu, India and Nova Scotia Technical College, Halifax, Nova Scotia
The Non-Random, Two Liquid Equation was used in an attempt to develop a method for predicting isobaric vapor– liquid equilibrium data for multicomponent systems of water and simple alcohols—i.e., ethanol, 1-propanol, 2-methyl-1propanol (2-butanol), and 3-methyl-1-butanol (isoamyl alcohol). Methods were developed to obtain binary equilibrium data indirectly from boiling point measurements. The binary data were used in the Non-Random, Two Liquid Equation to predict vapor-liquid equilibrium data for the ternary mixtures, water-ethanol-1-propanol, water—ethanol-2-methyl1-propanol, and water-ethanol-3-methyl-1-butanol. Equilibrium data for these systems are reported.
/
T p h e d e s i g n of a z e o t r o p i c o r extractive d i s t i l l a t i o n c o l u m n s , as w i t h c o n A
v e n t i o n a l c o l u m n s , d e m a n d s a k n o w l e d g e of the v a p o r - l i q u i d e q u i l i b -
r i u m p r o p e r t i e s o f the system to b e d i s t i l l e d . S u c h k n o w l e d g e is o b t a i n e d e x p e r i m e n t a l l y o r c a l c u l a t e d f r o m o t h e r properties of the c o m p o n e n t s o f the system.
S i n c e the systems i n a z e o t r o p i c o r e x t r a c t i v e d i s t i l l a t i o n
processes h a v e at least three c o m p o n e n t s , d i r e c t m e a s u r e m e n t
of t h e
e q u i l i b r i u m p r o p e r t i e s is l a b o r i o u s a n d , therefore, expensive, so m e t h o d s of c a l c u l a t i o n o f these d a t a are d e s i r a b l e . F o r a z e o t r o p i c d i s t i l l a t i o n e s p e c i a l l y the systems are n o n - i d e a l w h i c h makes c a l c u l a t i n g v a p o r - l i q u i d e q u i l i b r i u m p r o p e r t i e s m o r e difficult t h a n , for e x a m p l e , i n d i s t i l l a t i o n of m i x t u r e s of s i m p l e h y d r o c a r b o n s . W o r k p r e d i c t i n g the v a p o r - l i q u i d e q u i l i b r i u m properties of t e r n a r y m i x t u r e s o f 93 In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
94
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
water, e t h a n o l , a n d o n e of the s i m p l e alcohols—i.e., 1-propanol, 2 - m e t h y l 1-propanol, 3 - m e t h y l - l - b u t a n o l , ( a l l f o r m b i n a r y azeotropes w i t h w a t e r ) — i s p r e s e n t e d here. A q u e o u s solutions of these alcohols o c c u r w h e n sugar solutions are fermented
a n d m a y b e separated b y d i s t i l l i n g t h e m i x t u r e s .
It is a
c o m m o n , e c o n o m i c a l l y v a l u a b l e process for m a n u f a c t u r i n g p o t a b l e l i q u o r s a n d for p r o d u c i n g i n d u s t r i a l a l c o h o l f r o m f e r m e n t e d molasses solutions o r p u l p m i l l wastes.
O n e of the authors ( A . Y . M . ) reports t h a t d e s i g n
a n d o p e r a t i o n of these c o l u m n s is h a m p e r e d b y l a c k of v a p o r - l i q u i d e q u i l i b r i u m d a t a , e s p e c i a l l y for m a k i n g p o t a b l e l i q u o r s , w h e r e
small
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
a m o u n t s of t h e alcohols other t h a n e t h a n o l greatly affect the flavor a n d , therefore, the p r o d u c t ' s m a r k e t a b i l i t y . Prediction of Vapor—Liquid Equilibrium
Data
A system c o n s i s t i n g of a l i q u i d m i x t u r e a n d v a p o r is i n e q u i l i b r i u m if, for a n y c o m p o n e n t i, the fugacities i n the v a p o r a n d l i q u i d phases, fi
Y
a n d /i
L
are e q u a l .
/i = /, V
(1)
L
A s the fugacities are not i n themselves q u a n t i t i e s w h i c h are easily estab l i s h e d e x p e r i m e n t a l l y , i t is necessary to relate t h e m to easily d e t e r m i n a b l e quantities—e.g., t e m p e r a t u r e , pressure, a n d c o m p o s i t i o n .
T h i s is d o n e
b y i n t r o d u c i n g the f u g a c i t y a n d a c t i v i t y coefficients Φ* a n d y ι w h i c h are defined as f o l l o w s ,
w h e r e y is t h e c o m p o s i t i o n o f c o m p o n e n t f i n t h e v a p o r phase, Ρ is the {
t o t a l pressure of t h e system, x is t h e c o m p o s i t i o n of c o m p o n e n t i i n the {
l i q u i d phase, a n d
fi
0L
is the f u g a c i t y of c o m p o n e n t i i n the l i q u i d at a
reference state. T h i s reference state is the f u g a c i t y of p u r e l i q u i d i at the t e m p e r a t u r e a n d pressure of t h e system. E q u a t i o n 1 t h e n becomes Φ-ϊ^Ρ
=
JiXiU
(3)
0lj
A t c o n d i t i o n s w h e n it is safe to assume t h a t t h e gas p h a s e w i l l b e h a v e i n a n ideal manner—i.e.,
at l o w
pressure w i t h a l l c o m p o n e n t s
con
densable—
«^land/^^P, Pi
s
8
is t h e v a p o r pressure of p u r e l i q u i d i at t h e t e m p e r a t u r e o f t h e system,
a n d e q u i l i b r i u m is d e s c r i b e d b y the e q u a t i o n , yP
— ytiPi*
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(4)
6.
ANDiAPPAN
A N D M C L E A N
Isobaric Vapor-Liquid
Equilibrium
95
A t c o n d i t i o n s w h e r e i t is i n c o r r e c t t o assume i d e a l b e h a v i o r f o r t h e gas a n d /i
phase, et al.
are calculated b y procedures described b y Prausnitz
0L
(1).
T h e calculation of y
i9
t h e a c t i v i t y coefficient, establishes γ* as a f u n c
t i o n of c o m p o s i t i o n , as w e l l as t e m p e r a t u r e a n d pressure. T h i s is d o n e b y r e l a t i n g γ* t o t h e excess G i b b s energy G , — L e . , b y t h e e q u a t i o n E
a n d expressing G
E
o r g , t h e m o l a r excess G i b b s energy, i n terms of E
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
composition. T h e p r o b l e m o f expressing t h e excess G i b b s energy as a f u n c t i o n o f c o m p o s i t i o n has b e e n researched extensively, a n d m a n y m e t h o d s of v a r y i n g a c c u r a c y a n d usefulness h a v e b e e n p r o p o s e d . A n extensive d i s c u s s i o n of these m e t h o d s is g i v e n b y H a l a et al. (2), m o n expressions—e.g.,
w h o s h o w that m a n y c o m
those o f v a n L a a r a n d M a r g u l e s — a r e
f r o m t h e g e n e r a l expression of W o h l C u k o r a n d P r a u s n i t z (4),
deduced
(3).
h o w e v e r , p o i n t o u t that W o h l ' s
expression p r e c l u d e s other expressions f o r t h e c o m p o s i t i o n
general
dependence
of t h e excess free energy, i n c l u d i n g that o f W i l s o n ( 5 ) , w h i c h has b e e n u s e d b y several authors t o p r e d i c t a n d correlate v a p o r - l i q u i d e q u i l i b r i u m W i l s o n s equation and the modification proposed b y Renon and
(1,6,7).
P r a u s n i t z (8)
u s e t h e l o c a l m o l e f r a c t i o n concept, p r o d u c e d
because
molecules i n s o l u t i o n aggregate as a result o f t h e v a r i a t i o n i n i n t e r m o l e c u l a r forces.
T h e l o c a l m o l e f r a c t i o n c o n c e p t results i n a m o r e u s e f u l
d e s c r i p t i o n o f t h e b e h a v i o r of m o l e c u l e s i n a n o n - i d e a l m i x t u r e . The Wilson Equation and the Two-Liquid
(NRTL)
Non-Random
Equation
T h e W i l s o n e q u a t i o n , u s e d b y P r a u s n i t z et al. (1) (6,7),
a n d other w o r k e r s
equals or surpasses earlier t w o - p a r a m e t e r equations i n c o r r e l a t i n g
v a p o r - l i q u i d e q u i l i b r i u m d a t a f o r a large n u m b e r of n o n - i d e a l systems. T h e e q u a t i o n w h i c h is sufficiently d i s c u s s e d elsewhere
( J ) contains t w o
adjustable parameters p e r b i n a r y a n d p r e d i c t s m u l t i c o m p o n e n t e q u i l i b r i u m d a t a u s i n g t h e b i n a r y parameters only. N o m u l t i c o m p o n e n t e x p e r i m e n t a l d a t a are necessary as f o r t h e v a n L a a r t y p e e q u a t i o n s o f t h i r d o r d e r a n d above. O n e l i m i t a t i o n of t h e W i l s o n e q u a t i o n has b e e n that i t c a n n o t b e a p p l i e d t o systems w h e r e t h e n o n - i d e a l i t y is s u c h that t w o l i q u i d phases are
formed—e.g.,
water-2-methyl-l-propanol
and
water-3-methyl-l-
butanol.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
96
E X T R A C T I V E
A N D A Z E O T R O P I C
DISTILLATION
R e n o n a n d P r a u s n i t z ( 8 ) p r o p o s e d a n o t h e r e q u a t i o n , b a s e d also o n the l o c a l m o l e f r a c t i o n c o n c e p t , w h i c h w o u l d a v o i d this l i m i t a t i o n a n d c o u l d b e a p p l i e d to partially miscible mixtures. T h e relationship between a c t i v i t y coefficient a n d l i q u i d p h a s e c o m p o s i t i o n is g i v e n b y t h e e q u a t i o n Ν
/
i n y ^ i f ^ 2
+ t ^ ^ K - i ^ M ^
Gx ki
'
k
k-\
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
where Ν =
(ëa
Ν
=
2 Gx
1
kj
k
k=l
I
2
\
k=l
1
)
)
(5
GjcjXk
number of components
~~ ëu) is t h e adjustable p a r a m e t e r ( t w o p e r b i n a r y ) s i m i l a r t o that
contained i n the W i l s o n equation.
is a n e m p i r i c a l non-randomness
parameter. R e n o n a n d P r a u s n i t z ( 8 ) r e c o m m e n d values o f
f o r v a r i o u s classes
of m i x t u r e s . I f these v a l u e s a r e v a l i d t h e n E q u a t i o n 5 has o n l y t w o a d justable p a r a m e t e r s p e r b i n a r y .
T h e N R T L e q u a t i o n w a s u s e d i n this
work. Experimental T o test t h e N R T L
equation for predicting V L E data for ternary
mixtures, experimental data for the ternary mixtures a n d for the binary c o m p o n e n t s o f t h e m i x t u r e s a r e necessary.
A literature survey
showed
t h a t d a t a w e r e n o t r e a d i l y a v a i l a b l e f o r a n y o f t h e ternaries o r f o r t h e two binaries ethanol-3-methyl-l-propanol a n d 3-methyl-l-butanol-water, a n d i t w a s therefore necessary to o b t a i n these d a t a e x p e r i m e n t a l l y . T h e direct measurement of v a p o r - l i q u i d e q u i l i b r i u m data for part i a l l y m i s c i b l e m i x t u r e s s u c h as 3 - m e t h y l - l - b u t a n o l - w a t e r is difficult, a n d a l t h o u g h stills h a v e b e e n d e s i g n e d f o r this p u r p o s e (9, 10), t h e d a t a w a s i n d i r e c t l y o b t a i n e d f r o m measurements
o f pressure, P , t e m p e r a t u r e , t,
a n d l i q u i d c o m p o s i t i o n , x. I t w a s also felt that a test o f t h e v a l i d i t y o f the N R T L
equation i n predicting the V L E data for the ternary mix-
tures w o u l d b e t h e successful p r e d i c t i o n o f t h e b o i l i n g p o i n t . T h i s e l i m inates
the complicated
analytical procedures
necessary
i n the direct
measurement of ternary V L E data. A modified version of the M-100 b o i l i n g point apparatus, made b y the James F . S c a n l o n C o . , W h i t t i e r , C a l i f , w a s u s e d ; t e m p e r a t u r e w a s measured b y a H e w l e t t - P a c k a r d m o d e l 2801A quartz thermometer. A l l measurements w e r e m a d e at a t m o s p h e r i c pressure w i t h t h e t e m p e r a t u r e c o r r e c t e d t h e n t o 760 m m H g .
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
ANDiAPPAN
A N D
Isobaric Vapor-Liquid
M C L E A N
T a b l e I.
97
F u g a c i t y Coefficients
Component
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
Equilibrium
Temperature,
°C
Φ,
Water
80 90 130 100
0.9925 0.9960 1.0150 1.0000
Ethanol
80 90 100
1.0015 1.0119 1.0240
1-Propanol
80 90 100
0.9898 0.9954 1.0018
2-Methyl-l-propanol
80 90 100
0.9726 0.9809 0.9904
3-Methyl-l-butanol
80 90 100 130
0.9535 0.9608 0.9686 C.9991
T o extract y f r o m P, t, x, d a t a o b t a i n e d for the b i n a r y system, a c o m p u t e r p r o g r a m u s i n g the N R T L e q u a t i o n w a s p r e p a r e d . U p o n re c e i v i n g the i n p u t data—i.e., P, x 1 a n d a v a l u e of a, u s u a l l y a r o u n d 0.475 — v a l u e s of the adjustable parameters (gi2-g22) a n d ( g 2 i - g n ) w e r e as s u m e d . T h e a c t i v i t y coefficients w e r e c a l c u l a t e d u s i n g E q u a t i o n 5 a n d values of y w e r e c a l c u l a t e d u s i n g E q u a t i o n 4. T o justify u s i n g E q u a t i o n 4, values of the f u g a c i t y coefficients w e r e c a l c u l a t e d . T h e s e values ( T a b l e I ) are b e l i e v e d sufficiently near u n i t y to p e r m i t that the effects of gas p h a s e n o n i d e a l i t y c a n b e i g n o r e d . T h e s u m of t/i a n d y w a s c o m p a r e d w i t h u n i t y , a n d the p r o c e d u r e w a s r e p e a t e d u n t i l s u m y w a s w i t h i n a g r e e d l i m i t s of u n i t y . T h i s p r o g r a m also a l l o w e d the c a l c u l a t i n g of b i n a r y energy parameters u s e d i n p r e d i c t i n g properties of the t e r n a r y systems. 9
2
A n a d d i t i o n a l p r o g r a m took the energy parameters of the b i n a r y systems m a k i n g u p ternary m i x t u r e s a n d c a l c u l a t e d t h e b o i l i n g p o i n t of the t e r n a r y a n d the e q u i l i b r i u m c o m p o s i t i o n of the v a p o r phase. C o m p a r i s o n of the m e a s u r e d b o i l i n g p o i n t w i t h the p r e d i c t e d b o i l i n g p o i n t for the same c o m p o s i t i o n a n d pressure was u s e d as a c r i t e r i o n of successful p e r f o r m a n c e of the N R T L e q u a t i o n . T o illustrate the consistency b e t w e e n the t w o programs, d a t a for the e t h a n o l - w a t e r system r e p o r t e d b y R i e d e r a n d T h o m p s o n ( 11 ) w e r e u s e d . T h e first p r o g r a m estimated the values of the energy parameters a n d c a l c u l a t e d the vapor-phase c o m p o s i t i o n , y, w i t h a root m e a n square d e v i a t i o n ( R M S D ) of 0.00847. T h e m e a n a r i t h m e t i c d e v i a t i o n b e t w e e n the
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
98
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
s u m y a n d u n i t y w a s 0.0064. T h e e s t i m a t e d parameters w e r e u s e d i n the s e c o n d p r o g r a m w h i c h p r e d i c t e d t h e same values of y a n d also p r e d i c t e d the t e m p e r a t u r e of the b o i l i n g m i x t u r e . T h e p r e d i c t e d a n d e x p e r i m e n t a l t e m p e r a t u r e a g r e e d w i t h a R M S D v a l u e of 0.22°C. T h e p r o c e d u r e e s t a b l i s h i n g the v a p o r - l i q u i d e q u i l i b r i u m d a t a for t h e b i n a r y system was tested u s i n g the homogeneous water, a n d the heterogeneous
system,
1-propanol-
system, 2 - m e t h y l - l - p r o p a n o l - w a t e r , u s i n g
the d a t a of M u r t i a n d V a n W i n k l e (12)
and Ellis and Garbett
(9).
T h e R M S D v a l u e b e t w e e n the e x p e r i m e n t a l a n d t h e c a l c u l a t e d values of y w e r e 0.011 a n d 0.0155, respectively, T h e c o m p a r i s o n b e t w e e n
ex
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
p e r i m e n t a l a n d c a l c u l a t e d V L E d a t a is s h o w n i n F i g u r e 1 a n d F i g -
Figure
1. Comparison of calculated librium data at 760 mm Hg.
•
Indirectly
Ο
Directly
measured, Gadwa
ψ
Directly
measured, Murti and Van
and experimental vapor-liquid 1-Propanol (1)-Water (2).
measured, present work (15) Winkle
(12)
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
equi
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
6.
ANDiAPPAN
Figure 2. librium
A N D
M C L E A N
Isobaric Vapor-Liquid
Equilibrium
99
Comparison of calculated and experimental vapor-liquid equi data at 760 mm Hg. 2-Methyl-l-Propanol (1)-Water (2).
ψ Indirectly measured, present work Ο Directly measured, Ellis and Garbett
(9)
u r e 2, a n d they agree w e l l e n o u g h to justify u s i n g t h e i n d i r e c t m e t h o d of e s t a b l i s h i n g t h e V L E d a t a o n t h e system, e t h a n o l - 2 - m e t h y l - l - p r o p a n o l and 3-methyl-l-butanol-water. D i r e c t m e a s u r e m e n t of t h e V L E d a t a for t h e e t h a n o l - 2 - m e t h y l - l p r o p a n o l system w e r e also m a d e , u s i n g a M E S 1 0 0 m o d e l e q u i l i b r i u m s u p p l i e d b y the James F . S c a n l o n C o . Results and Discussion Binary System.
T h e e t h a n o l - 2 - m e t h y l - p r o p a n o l system was
to b e h a v e i n a n e x p e c t e d i d e a l w a y .
T h e x-y
found
d a t a , that was d i r e c t l y
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
100
E X T R A C T I V E AND
Table II.
AZEOTROPIC DISTILLATION
Vapor—Liquid Equilibrium Data at 760 mm. H g Ethanol ( l ) - M e t h y l - l - P r o p a n o l (2)
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
t°c 104.15 101.88 101.55 101.03 98.07 94.67 94.08 90.96 89.34 87.56 86.75 86.11 85.24 84.18 83.67 82.54 81.45 81.11 80.06
Table III.
0.050 0.080 0.085 0.090 0.155 0.220 0.243 0.330 0.382 0.465 0.490 0.510 0.560 0.610 0.635 0.705 0.770 0.800 0.870
0.126 0.200 0.215 0.235 0.332 0.460 0.479 0.595 0.658 0.712 0.742 0.770 0.790 0.817 0.845 0.875 0.915 0.920 0.950
Vapor—Liquid Equilibrium Data at 760 mm. H g 3-Methyl-1-Butanol ( l ) - W a t e r (2) t
°c
99.17 97.99 97.82
XJ
Yi
0.0009 0.0024
0.0386
0.0155
0.0031
0.0482
96.60
0.0051
96.27
0.0072
0.0725 0.0932
96.14
0.0073
0.0942
95.90
0.0205
95.26
0.0616
0.1603 0.1694
97.32
0.5766
0.1810
104.03
0.6536
0.2323
109.86
0.7698
0.3495
119.65
0.8873
125.76 126.96
0.9347 0.9427
0.5710 0.7158
128.54
0.9696
0.7449 0.8512
129.84
0.9884
0.9394
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
ANDiAPPAN
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
6.
A N D
M C L E A N
Isobaric Vapor-Liquid
0
Figure
Equilibrium
5
3.
Vapor-liquid
101
1
equilibrium data at 760 mm Hg. 2-Methyl-l-Propanol (2).
Ethanol
(1)-
Ο Directly measured y Indirectly measured — Ideal behavior m e a s u r e d , are p r e s e n t e d i n T a b l e II.
F i g u r e 3 shows t h e c o m p a r i s o n
w i t h the d i r e c t l y m e a s u r e d d a t a , the i n d i r e c t l y m e a s u r e d d a t a , a n d the data calculated from Raoult's L a w . T h e v a p o r - l i q u i d e q u i l i b r i u m d a t a for t h e 3 - m e t h y l - l - b u t a n o l - w a t e r system are s h o w n i n T a b l e I I I a n d F i g u r e 4. T h e b o i l i n g p o i n t measure ments a g r e e d w i t h those r e p o r t e d i n T i m m e r m a n s (13).
T h e v a l u e of
a =
alcohol-water
0.45 as suggested b y R e n o n a n d P r a u s n i t z ( 8 )
for
systems w a s not suitable. V a r i o u s other values of a w e r e t r i e d , a n d a v a l u e of
a
=
0.3 w a s f o u n d to agree best. T h i s fit c a n b e e s t a b l i s h e d b y u s i n g
the m e t h o d d e s c r i b e d to test t h e consistency of t h e equations—i.e.,
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
the
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
102
E X T R A C T I V E
0
Figure
A N D AZEOTROPIC
DISTILLATION
5
4.
Vapor-liquid
Table IV.
1
equilibrium data at 760 mm Hg. Butanol (1)-Water ( 2 ) .
3-Methyl-l-
N R T L Parameters for the Binary Systems Isobaric Systems at 1 A t m . Reference
E t h a n o l U ) - W a t e r (2) 1 - P r o p a n o l ( i ) - W a t e r (2) 2 - M e t h y l - l - P r o p a n o l (1)-Water (2) 3 - M e t h y l - l - B u t a n o l U ) - W a t e r (2) E t h a n o l (1 ) - l - P r o p a n o l (2) Ethanol (i)-3-Methyl-lB u t a n o l (2) Ethanol (J)-2-Methyl-lP r o p a n o l [2)
( gia-fW
a
cal./gram mole
(
gai-gu) cal./gram mole
16
0.475 0.500 0.475 0.300 0.500
121.0 438.4 611.5 -386.9 465.5
1161.5 1762.9 2475.7 3483.8 -324.5
16
0.475
20.8
7.4
11 15,12 9 —
—
—
0
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
0
6.
ANDiAPPAN
A N D
Table V .
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
Xj
103
Equilibrium
Vapor—Liquid Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l (2)-l-Propanol (3)
, χ*
0.1763 0.3742 0.5397 0.7271 0.1642 0.3216 0.4759 0.6350 0.1293 0.2707 0.4214 0.5519 0.1201 0.2421 0 3764 0.4812 0.1246 0.2046 0.3030 0.4071 0.0962 0.1896 0.3096 0.0853 0.1911 0.1125 0.1524 0.0851
Isobaric Vapor-Liquid
M C L E A N
0.0905 0.0992 0.0944 0.0987 0.1920 0.1949 0.1966 0.1984 0.2698 0.2956 0.3123 0.3076 0.4024 0.3935 0.3777 0.3934 0.4861 0.4837 0.4944 0.4939 0.6059 0.6054 0.5907 0.7030 0.7026 0.7007 0.7319 0.8319
y/ 0.3133 0.4527 0.5143 0.5345 0.2720 0.3909 0.4526 0.4768 0.2152 0.3297 0.3932 0.4217 0.1793 0.2852 0.3566 0.3797 0.1702 0.2388 0.2936 0.3312 0.1248 0.2045 0.2731 0.1036 0.1889 0.1264 0.1579 0.0920
0.1353 0.1426 0.1503 0.2100 0.2730 0.2649 0.2828 0.3395 0.3752 0.3822 0.4123 0.4510 0.5203 0.4857 0.4750 0.5214 0.5966 0.5744 0.5797 0.5994 0.7064 0.6785 0.6652 0.7814 0.7518 0.7691 0.7792 0.8648
t°C
t
89.13 86.70 86.14 85.75 87.57 85.55 84.63 84.04 86.89 84.47 83.12 82.54 84.85 83.30 82.43 81.60 83.47 82.42 81.35 80.63 82.14 80.92 80.03 80.94 79.65 80.59 79.69 79.24
89.07 86.40 85.60 85.46 87.65 85.47 84.57 83.94 87.19 84.59 83.12 82.51 85.12 83.45 82.47 81.52 83.79 82.65 81.47 80.67 82.39 81.03 80.01 81.11 79.68 80.01 79.30 79.07
°C
"Predicted using N R T L equation. Measured. 5
c a l c u l a t i o n of the parameters w i t h the first p r o g r a m a n d the use of the p a r a m e t e r s to c a l c u l a t e t h e i n i t i a l t e m p e r a t u r e . Ternary System. T h e values of a l l b i n a r y parameters u s e d i n p r e d i c t i n g t h e t e r n a r y d a t a are s h o w n i n T a b l e I V . T h e p r e d i c t e d values of the v a p o r - l i q u i d e q u i l i b r i u m data—i.e., the b o i l i n g p o i n t , a n d t h e c o m p o s i t i o n of the v a p o r phase, y, f o r g i v e n values of t h e l i q u i d c o m p o s i t i o n , x, are p r e s e n t e d i n T a b l e s V , V I , a n d V I I .
A l s o s h o w n are t h e m e a s u r e d
b o i l i n g p o i n t s for the g i v e n values of the l i q u i d c o m p o s i t i o n . T h e R M S D v a l u e b e t w e e n t h e p r e d i c t e d a n d m e a s u r e d b o i l i n g p o i n t s for the sys tems w a t e r - e t h a n o l - l - p r o p a n o l , w a t e r - e t h a n o l - 2 - m e t h y l - l - p r o p a n o l , a n d w a t e r - e t h a n o l - 2 - m e t h y l - l - b u t a n o l are 0.23°C, 0.69°C, a n d 2.14°C.
It
seems therefore that since t h e N R T L e q u a t i o n successfully p r e d i c t s t e m p e r a t u r e , t h e p r e d i c t e d values of y c a n b e a c c e p t e d confidently.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
104
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
T o test the m e t h o d of p r e d i c t i n g some d i r e c t l y m e a s u r e d t e r n a r y d a t a , t h e p r e d i c t e d results for the system w a t e r - e t h a n o l - l - p r o p a n o l w e r e u s e d to c a l c u l a t e r e l a t i v e v o l a t i l i t i e s w h i c h w e r e c o m p a r e d w i t h t h e ex p e r i m e n t a l l y d e t e r m i n e d v a l u e s of C a r l s o n et al. (14).
This comparison
is s h o w n o n F i g u r e 5. T h e c o m p a r i s o n seems to i n d i c a t e that the m e t h o d of p r e d i c t i n g is satisfactory a n d gives less scatter t h a n t h e e x p e r i m e n t a l l y d e t e r m i n e d values of r e l a t i v e v o l a t i l i t y .
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
Table VI. Vapor—Liquid Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l (2)-2-Methyl-l-Propanol (3) x»
y."
t°C
t°C
0.1937
0.0999
0.4203
0.1632
93.28
93.0
0.3582
0.1062
0.5294
0.1574
90.13
89.25
0.5377
0.1003
0.5945
0.1548
88.78
87.67
0.7115
0.1014
0.6098
0.1912
88.09
86.93
0.1589
0.2002
0.3300
0.3163
91.78
0.3156
0.1996
0.4521
0.2854
88.68
91.46 87.72
0.5570
0.1820
0.5377
0.2813
86.88
85.92
0.6352
0.2066
0.5208
0.3492
85.71
84.87
0.1264
0.3072
0.2468
0.4635
90.05
89.89
0.3006
0.2943
0.3947
0.4012
86.86
86.09
0.4103
0.3056
0.4323
0.4161
85.33
84.59 85.1 87.76
0.5562
0.2981
0.4572
0.4474
84.09
0.1255
0.3990
0.2158
0.5602
0.2611
0.3974
0.3274
87.85 85.24
0.3722
0.3897
0.3791
0.5145 0.5041
0.4789
0.3993
0.3930
0.5414
82.53
82.23
0.0959
0.4984
0.1556
0.6666
86.29
86.38
0.1934
0.5010
0.2470
0.6228
84.18
83.96
0.3099
0.4949
0.3135
0.4991
0.3385
82.55 81.32
82.28
0.4006
0.6009 0.6149
0.0954
0.6042
0.7448
83.97
84.08
0.1347
83.95
85.09 83.46
81.10
0.2124
0.5908
0.2339
0.6877
82.05
81.93
0.4614
0.4118
0.3870
0.5465
80.23
0.1021
0.6959
0.1266
0.7982
82.46 81.94
0.1952
0.1955 0.0865
0.7680 0.8764
80.14
0.0757
0.7051 0.8162
80.15
80.11 80.25
0.1805
0.7530
0.1768
0.7997
79.49
79.49
0.0526
0.8987
0.0577
0.9264
79.09
79.19
Predicted using N R T L equation. * Measured.
β
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
81.99
6.
ANDiAPPAN
Isobaric Vapor-Liquid
A N D M C L E A N
105
Equilibrium
Table VII. V a p o r - L i q u i d Equilibrium Data at 760 mm H g Water ( l ) - E t h a n o l ( 2 ) - 3 - M e t h y l - l - B u t a n o l (3) Xi
XJ
y/
t°C
t °C
0.7422
0.0101
0.8790
0.0198
95.08
94.37
0.4982
0.0127
0.8318
0.0266
97.93
94.67
0.3477
0.0120
0.7503
0.0311
103.20
99.58
0.8455
0.0589
94.46
93.57 100.44
0.7248
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
y/
0.0303
0.6809 0.8464
0.0729
104.88
0.0565
93.78
0.8412
0.0277
94.56 95.22
0.0241
0.8492
0.0456
95.14
94.13
0.0384
0.7685
0.0826
98.26
95.68
0.6338
0.1773
0.6234
0.3225
89.45
89.41
0.5055
0.2112
05744
0.3604
89.97
89.71
96.20
92.15
0.2944
0.0263
0.7784 0.8878
0.0269 0.0094
0.0344 0.4465
95.40
0.2774
0.1984
0.4574
0.4082
0.2087
0.1867
0.3944
0.4306
99.46
93.92
0.3781
0.3232
0.4331
0.5084
88.31
88.31 86.25
0.6071
0.2999
0.4801
0.4971
84.75
0.1377
0.3002
0.2369
0.6182
96.57
91.73
0.1984
0.3953
0.2684
0.6495
90.32
88.62
0.2802
0.4149
0.3265
0.6180
87.35
87.39
0.4460
0.3727
0.4225
0.5431
85.22
86.62
0.1335
0.4835
0.1774
0.7491
89.05
87.69
0.1857
0.5114
0.2212
0.7262
86.56
86.65
0.3912
0.5172
0.3319
0.6538
81.75
84.07
0.1047
0.6257
0.1248
0.8307
85.20
85.37
0.1939
0.6103
0.2054
0.7648
83.33
84.63
0.2963
0.5946
0.2709
0.7134
81.50
83.62
0.1112
0.6845
0.1247
0.8441
83.31
84.20
0.1353
0.7158
0.1428
0.8359
81.85
83.40
0.2135
0.6820
0.2050
0.7806
83.94
82.97
0.0453
0.8104
0.0511
0.9280
81.67
82.76
0.1022
0.8118
0.1059
0.8824
80.21
82.00
0.1547
0.7925
0.1498
0.8434
79.49
81.51
0.9551
80.02
80.09
0.0312
0.8920
0.0499
0.8998
0.0532
0.9402
79.38
79.45
0.0680
0.8989
0.0706
0.9252
78.96
78.99
α 6
0.0343
Predicted using N R T L equation. Measured.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
106
E X T R A C T I V E
A N D
A Z E O T R O P I C
DISTILLATION
Ο >
•
> < L—OOfCpCBDO
MOLE Figure
5.
FRACTION
OF WATER IN
LIQUID
Comparison of calculated and experimental volatilities panol relative to ethanol in presence of water
of 1-pro-
Ο Indirectly measured, present work ψ Directly measured, Carbon et al. (14) Conclusion T h e n o n - r a n d o m , t w o - l i q u i d (NRTL) a n d P r a u s n i t z (8)
equation proposed b y Renon
seems to p r e d i c t successfully m u l t i c o m p o n e n t ( t e r n a r y )
m i x t u r e s of a l c o h o l s a n d w a t e r .
T h e alcohols s t u d i e d i n t h i s w o r k etha
n o l , 1 - p r o p a n o l , 2 - m e t h y l - l - p r o p a n o l , a n d 3 - m e t h y l - l - b u t a n o l , w h i c h oc c u r f r o m the f e r m e n t a t i o n
of
sugar solutions, s h o w h i g h l y n o n - i d e a l
b e h a v i o r i n a q u e o u s solutions a n d present a severe test of t h e effectiveness of a n y p r e d i c t i o n m e t h o d . T h e success of the N R T L e q u a t i o n i n u n d e r g o i n g this test w o u l d suggest that i t w i l l b e a p o w e r f u l t o o l i n t h e d e s i g n of processes i n v o l v i n g a z e o t r o p i c or extractive d i s t i l l a t i o n . T h e effect of the a d d i t i o n of a t h i r d
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
ANDiAPPAN
A N D
M C L E A N
Isobaric Vapor-Liquid
Equilibrium
107
c o m p o n e n t t o a difficult to separate b i n a r y m i x t u r e c a n b e p r e d i c t e d w i t h a d e g r e e of confidence, c e r t a i n l y f o r a l c o h o l - w a t e r mixtures. O n l y e q u i l i b r i u m d a t a f o r t h e b i n a r y c o m p o n e n t s of t h e system are necessary, a n d this w o r k shows that e v e n f o r systems of l i m i t e d l i q u i d - p h a s e m i s c i b i l i t y , t h e N R T L e q u a t i o n c a n b e u s e d to extract t h e necessary i n f o r m a t i o n
from
Downloaded by HARVARD UNIV on May 31, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0115.ch006
measurements of b o i l i n g p o i n t , l i q u i d c o m p o s i t i o n , a n d pressure alone.
Literature Cited 1. Prausnitz, J. M., Eckert, C. Α., Orye, R. V., O'Connell, J. P., "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," p. 14, Prentice Hall, New Jersey, 1967. 2. Hala, E., Pick, J., Fried, V., Vilim, O., "Vapor-Liquid Equilibrium," p. 33, Pergamon, London, 1967. 3. Wohl, K., Trans. Amer. Inst. Chem. Eng. (1946) 42, 215. 4. Cukor, P. M., Prausnitz, J. M., Int. Symp. "Distillation," p. 73, Inst. Chem. Eng., London (Sept. 9, 1969). 5. Wilson, G. M.,J.Amer. Chem. Soc. (1964) 86, 127. 6. Garrett, G. R., VanWinkle, Matthew,J.Chem. Eng. Data (1969) 14, 302. 7. Gurukul, S. Μ. Κ. Α., Raju, Β. N.,J.Chem. Eng. Data (1966) 11, 501. 8. Renon, H., Prausnitz, J. M., A.I.Ch.E. J. (1968) 14, 135. 9. Ellis, S. R. M., Garbett, R. D., Ind. Eng. Chem. (1960) 52, 385. 10. Othmer, D. F., Gilmont, R., Conti, J. J., Ind. Eng. Chem. (1960) 52, 625. 11. Rieder, R. M., Thompson, A. R., Ind. Eng. Chem. (1949) 41, 2905. 12. Murti, P. S., VanWinkle, Matthew, Ind. Eng. Chem., J. Chem. Eng. Data (1958) 3, 72. 13. Timmermans, J., "The Physico Chemical Constants of Binary Systems," Vol. 4, p. 237, Interscience, New York (1960). 14. Carlson, C. S., Smith, P. V., Jr., Morrell, C. E., Ind. Eng. Chem. (1954) 46, 350. 15. Gadwa, T. W., Chemical Engineering Thesis, M.I.T., 1936. 16. Gay, L., Chim. et Ind. (1927) 18, 187.
In Extractive and Azeotropic Distillation; Tassios, D.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.