Prediction of Thermodynamic Properties of Alkyne-Containing

Jun 16, 2017 - The thermodynamics of alkyne-containing mixtures is fundamental to the petroleum and chemical industries. Such mixtures are made comple...
2 downloads 28 Views 877KB Size
Subscriber access provided by UNIV OF NEWCASTLE

Article

Prediction of thermodynamic properties of alkynecontaining mixtures with the E-PPR78 model Xiaochun Xu, Jean-Noel Jaubert, Romain Privat, and Philippe Arpentinier Ind. Eng. Chem. Res., Just Accepted Manuscript • DOI: 10.1021/acs.iecr.7b01586 • Publication Date (Web): 16 Jun 2017 Downloaded from http://pubs.acs.org on July 2, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Industrial & Engineering Chemistry Research is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model Xiaochun XU1, Jean-Noël JAUBERT1(*), Romain PRIVAT1 and Philippe ARPENTINIER2 1

Université de Lorraine, Ecole Nationale Supérieure des Industries Chimiques,

Laboratoire Réactions et Génie des Procédés (UMR CNRS 7274), 1 rue Grandville, 54000 Nancy, France. 2

Air Liquide, Centre de Recherche Paris Saclay, 1 chemin de la porte des loges, BP 126, 78354 Jouy-en-Josas, France

E-mail: [email protected] – Phone: +33 3 83 17 50 81 – Fax: +33 3 83 17 51 52 (*) author to whom the correspondence should be addressed

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 1 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Abstract The thermodynamics of alkyne-containing mixtures is fundamental to the petroleum and chemical industries. Such mixtures are made complex both by the quantity and the variety of the species present thus justifying the need for a predictive model capable of guesstimating energetic and phase-equilibrium mixture properties. In this respect, the E-PPR78 (Enhancedpredictive 1978, Peng–Robinson EoS) model appears as a suitable candidate since it combines the well-established Peng–Robinson equation of state and an original group-contribution method making it possible to estimate the temperature-dependent binary interaction parameters, kij(T), involved in the Van der Waals one-fluid mixing rules. With the 37 groups defined in previous works, such a model could be used to predict fluid-phase equilibria and energetic properties of systems containing hydrocarbons, permanent gases (CO2, N2, H2S, H2, CO, He, Ar, SO2, O2, NO, COS, NH3, NO2/N2O4, N2O), mercaptans, fluoro-compounds, and water. In this study, three alkyne groups (“HC≡CH”, “-C≡CH”, and “-C≡C-”) are added in order to accurately predict phase-equilibrium properties and enthalpies of mixing of alkynecontaining multicomponent mixtures. The determination of the group-interaction parameters (involved in the kij(T) expression) between 2 groups including at least one alkyne group is performed with the help of a comprehensive database of binary-system phase-equilibrium and mixing-enthalpy data.

Keyword: E-PPR78 model, alkyne groups, phase behavior, enthalpy of mixing, equation of state, prediction

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 2 Environment ACS Paragon Plus

Page 2 of 33

Page 3 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

1 Introduction Alkyne compounds are often used as reactants, intermediates and end products in the chemical, petrochemical and polymer industries. For instance, ethyne, the simplest alkyne, is normally used to welding, cutting or heat treating, and it is also a starting material in the synthesis processes for making polymers, e.g. polyethylene plastics. To optimize the design of processes and products relating to alkynes, accurate knowledge of the thermodynamics of alkyne-containing systems is essential. As an example, binary mixtures containing an alkane and an alkyne very often exhibit a homogeneous azeotrope. While the thermodynamic behavior of hydrocarbons, such as alkanes, alkenes, naphthenics and aromatics has been widely investigated in the literature, systems containing acetylenic hydrocarbons have received less attention. In the last ten years, the PPR78 (Predictive 1978, Peng-Robinson equation of state) model, originally proposed by Jaubert and co-workers 1, has proven its accuracy and reliability for phase-equilibrium prediction in systems containing hydrocarbons sulfur compounds

8, 14, 15

, water

16

, fatty acids

17, 18

, freons

19

1-4

, permanent gases

and even esters

5-13

,

20

. The PPR78

model also has been successfully applied to phase envelope prediction of petroleum fluids 2123

. The PPR78 model was thus highlighted as a significant modification of Peng-Robinson

equation of state (PR EoS), in a recently published comprehensive review

24

of the whole

time-line of PR EoS. Structurally speaking, the PPR78 model is a cubic equation of state, issued from the seminal Van der Waals EoS class, which combines the well-established PREoS

25

and an original group-contribution method making it possible to estimate the

temperature-dependent binary interaction parameters, kij(T), which are key-parameters of the model, accounting for molecular interactions between molecules i and j. Using the groupcontribution formalism, each molecule is seen as an aggregate of elementary molecular groups interacting each other. According to the group-contribution concept, the expression of the kij(T) quantity involves group-interaction parameters revealing the nature and the strengths of the physico-chemical interactions between elementary groups. Some years ago, Qian et al. 26 published predictions of enthalpy and heat-capacity changes on mixing with the PPR78 model. They concluded that these predictions could be highly improved by simultaneously fitting the group-interaction parameters on vapor-liquid equilibrium, enthalpy and heat-capacity changes on mixing data. Such a work was performed by Qian during his Ph.D. thesis

27

and the resulting model was called E-PPR78 (Enhanced-

Predictive Peng-Robinson, 1978). In continuation with our previous studies dealing with the

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 3 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 33

development of the E-PPR78 model, we report in this paper the extension of E-PPR78 to mixtures containing alkyne compounds. The model parameters (group-interaction parameters) related to three new defined groups: HC≡CH (acetylene molecule, also named ethyne), HC≡C− (mono-substituted carbon-carbon triple bond), and −C≡C− (di-substituted carboncarbon triple bond) are determined by minimizing deviations between model predictions and experimental binary-system phase-equilibrium and mixing-enthalpy data. 2 Database and reduction procedure Table 1 lists the 53 pure components involved in this study. The pure fluid physical properties (Tc, pc, ω and cpid) that were used in this study, originate from DIPPR database TDE database

29, 30

. Table 2 details the sources of the binary experimental data

28

or NIST

31-75

used in

our evaluations, along with the temperature, pressure and composition ranges for each binary system. Most of data available in the open literature were collected. Our database includes experimental data for 84 binary systems. The 56 parameters (28 Akl and 28 Bkl) determined in this study and which make it possible to estimate the temperature-dependent binary interaction parameters, kij(T), of the Peng-Robinson equation of state (the reader is referred to our first paper 1 for more information on these parameters), were obtained by minimizing an objective function accounting for the deviations between experimental data (vapor-liquid equilibrium data, critical data, enthalpy-of-mixing data …) and model predictions. The objective function expression is:

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 4 Environment ACS Paragon Plus

Page 5 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Fobj =

Fobj, bubble + Fobj, dew + Fobj, crit.comp + Fobj, crit.pressure + Fobj, az.comp + Fobj, az.pressure + Fobj, mix,enthalpy nbubble + ndew + 2ncrit + 2naz + nmix,enthalpy

nbubble   ∆x ∆x   Fobj, bubble = 100 ∑ 0.5  + with ∆x = x1, exp − x1, cal = x2, exp − x2, cal  x1, exp x2, exp   i =1  i  ndew  ∆y ∆y   F = 100 0.5  +  with ∆y = y1, exp − y1, cal = y2, exp − y2, cal ∑ obj, dew   i =1  y1, exp y2, exp i   ncrit  ∆xc ∆xc  F = 100 0.5  +  with ∆xc = xc1, exp − xc1, cal = xc2, exp − xc2, cal ∑ obj, crit, comp x  x i =1 c1, exp c2, exp  i  (1) n   crit  p − p cm, exp cm, cal   Fobj, crit, pressure = 100∑   p = i 1 cm, exp   i  naz  ∆xaz ∆xaz  F = 100 0.5  + with ∆xaz = xaz1, exp − xaz1, cal = xaz2, exp − xaz2, cal ∑ obj, az, comp  xaz1, exp xaz2, exp   i =1   i   naz  p − paz, cal   Fobj, az, pressure = 100∑  az, exp     paz, exp i =1  i  nmix,enthalpy   ∆h M  M M M  Fobj, mix, enthalpy = 100 ∑  M  with ∆h = hexp − hcal h i = 1   exp i

where nbubble, ndew, ncrit, naz and nmix,enthalpy are the number of bubble points, dew points, mixture critical points, azeotropic points, and enthalpy change on mixing points, respectively. The variable, x1, is the mole fraction of the most volatile component in the liquid phase, and x2 is the mole fraction of the heaviest component (x2 = 1 - x1) at fixed temperature and pressure. Similarly, y1 is the mole fraction of the most volatile component in the vapor phase, and y2 is the mole fraction of the heaviest component (y2 = 1 - y1) at a fixed temperature and pressure. The variable xc1 is the critical mole fraction of the most volatile component, and xc2 is the critical mole fraction of the heaviest component at a fixed temperature. pcm is the binary critical pressure at a fixed temperature. The variable xaz1 is the azeotropic mole fraction of the most volatile component, and xaz2 is the azeotropic mole fraction of the heaviest component at a fixed temperature. paz is the azeotropic pressure at a fixed temperature. hM is the enthalpy change on mixing at fixed temperature, pressure and composition. It is worth noting that, the isothermal or isobaric phase diagrams of many binary systems involved in current study are quite narrow (in other words, at a given temperature and pressure, the liquid and vapor compositions are very close), since the two components in these binary systems exhibit similar volatility (at given temperature, their vapor pressures are nearly the same). As explained by Qian et al. 4, the key to being able to satisfactorily predict the Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 5 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

phase behavior of such binary systems is to perfectly estimating the vapor pressures of the corresponding pure components, otherwise the correlation of bubble- and dew-point data becomes impossible, even by adjusting binary interaction parameter (kij). Unfortunately, although very precise in most cases, the PR EoS is not always able to reproduce the experimental vapor pressures with a sufficient level of accuracy. As it makes no sense to adjust a kij coefficient (or equivalently, group-interaction parameters) to reproduce the phase behavior of a mixture for which, the pure-component vapor pressures are inaccurately predicted at a given temperature, it was decided not to take into account the binary data points at this specific temperature in our data-fitting procedure. Similar issues were previously encountered in our studies dealing with alkene- or fluorocompound- containing mixtures 4, 19. 3 Result and discussion Let us start with some general statistics: the average overall deviation on the liquid-phase composition is: nbubble

∆x1 = ∆x2 =

∑ ( ∆x ) i =1

i

= 0.0271 , and

nbubble

Fobj,bubble nbubble

= 8.12% .

The average overall deviation on the gas-phase composition is: ndew

∆y1 = ∆y2 =

∑ ( ∆y ) i =1

i

ndew

= 0.0153 , and

Fobj,dew ndew

= 6.21% .

The average overall deviation on the critical composition is: ncrit

∑ ( ∆x ) c

∆xc1 = ∆xc2 =

i =1

i

ncrit

= 0.0099 , and

Fobj, crit, comp ncrit

= 2.10% .

The average overall relative deviation on the binary critical pressure is:

Fobj, crit, pressure ncrit

= 0.44% .

The average overall deviation on the azeotropic composition is: naz

∑ ( ∆x ) az

∆xaz1 = ∆xaz 2 =

i =1

naz

i

= 0.0447 , and

Fobj, az, comp naz

= 10.04% .

The average overall relative deviation on the binary azeotropic pressure is:

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 6 Environment ACS Paragon Plus

Page 6 of 33

Page 7 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Fobj, az, pressure naz

= 2.22% .

The average overall relative deviation on the enthalpy change of mixing is: Fobj, mix, enthalpy nmix,enthalpy

= 23.27% .

As introduced in a previous paper

26

, in order to better evaluate the capacity of an EoS to

M M predict enthalpy of mixing (hM), a new criterion converting the difference ∆h M = hexp in − hcal

term of temperature effect is proposed: ∆Th =

∆h M cp

(2)

where cp is the molar isobaric heat-capacity of the mixture. The quantity ∆Th indicates the misestimating of the final temperature of a mixture obtained by mixing two pure compounds in isobaric and adiabatic condition. The average ∆Th for all hM data points present in our database is: nmix,enthalpy

∑ ( ∆T ) h

∆Th =

i =1

nmix,enthalpy

i

= 0.41 K

For each system, the average overall deviations on the liquid phase composition ( ∆x , ∆x% ), ∆y% ), the binary critical composition ( ∆xc

the gas phase composition ( ∆y

,

binary critical pressure ( ∆pcm

∆pcm % ), the azeotropic composition ( ∆xaz

azeotropic pressure ( ∆paz

,

,

,

,

∆xc % ), the

∆xaz % ), the

∆paz % ), the enthalpy change on mixing ( ∆ h M % ) and the

enthalpy change on mixing in term of temperature ( ∆Th ) are listed in Table 3. These results indicate that the E-PPR78 model remains an accurate predictive model for correlating the phase-equilibrium and mixing-enthalpy properties of binary systems involving acetylenic hydrocarbons, even if the deviations observed in this study are higher than those observed with other hydrocarbons

1-3

. We unfortunately did not find a similar work with a SAFT-type

EoS 76 for possible comparison. Note again that, some binary data points were not involved in the current study, because their corresponding pure-component vapor pressures could not be calculated accurately using the PR EoS, as previously explained. Figures 1 and 2 show a series of phase diagrams for mixtures consisting of one alkyne and one alkane. A satisfactory agreement is observed between model predictions and experimental Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 7 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

data. It is however noticeable that, due to the lack of experimental data, it was not possible to determine some interactions between alkyne groups (groups 38-40) and alkane groups (groups 1-6), as seen in Table S1 (see the supplementary material for the present article available on the publisher website). For alkyne + alkane systems, enthalpies of mixing (hM) are normally positive, as seen in Figure 3. The E-PPR78 model can correctly predict the sign and the order of magnitude of hM for these systems, although the model slightly underestimates the hM values in some cases. Some typical results for mixtures containing an alkyne and an aromatic compound are presented in Figure 4. It can be observed that vapor-liquid-equilibria and enthalpies of mixing are accurately correlated by the E-PPR78 model. In particular, while the hM values of alkyne + aromatic compound systems can be either positive or negative, the E-PPR78 model is able to capture the signs of hM for these systems, as highlighted in Figure 4d. For binary systems containing an alkyne and a naphthenic compound, we did not find any experimental phase-equilibrium data in the literature; nevertheless, Letcher et al. 59, 61 reported experimental hM data for many such systems at room temperature (298.15 K). By default, these data were therefore considered for determining the E-PPR78 model group-interaction parameters A10-39 (between groups “HC≡C−” and “CH2,cycl”), and A11-39 (between groups “HC≡C−” and “−CHcycl/−Ccycl−”), while setting the group interaction parameters B10-39 = A1039 and

B11-39 = A11-39 (it is recalled that the general expression of kij(T) involving the A and B

group-interaction parameters can be found in any of our previous studies 1-23). As a purpose of illustration, Figures 5 and 6 highlight that mixing-enthalpy data are accurately correlated by the E-PPR78 model for the 1-hexyne + a naphthenic compound systems, the 1-heptyne + a naphthenic compound systems and 1-octyne + a naphthenic compound systems. The results for binary systems containing an alkyne and an alkene are illustrated in Figures 7 and 8. It is shown that the phase behaviors and mixing enthalpies of the related binary systems could be well reproduced by E-PPR78 model. The experimental phase-equilibrium data and enthalpy-of-mixing data for binary mixtures consisting of two alkynes or consisting of one alkyne and one non-hydrocarbon compound are very scarce. The results of the ethyne + propyne, 1-pentyne + 2-pentyne, and 1-octyne + 2octyne are presented in Figures 9a, 9b and 9c, respectively. The prediction results are satisfactorily consistent with experiment results. Figures 10a and 10b show some phase diagrams of CO2 + alkyne mixtures. While for the CO2 + 1-butyne system, the model inaccuracy is very close to the experimental uncertainty, the deviations between experimental and calculated bubble points are much more important for Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 8 Environment ACS Paragon Plus

Page 8 of 33

Page 9 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

the CO2 + 1-hexyne system. New phase-behavior phenomena are encountered in systems mixing water and one alkyne: liquid phase split and liquid-liquid-vapor three-phase equilibrium line appear on isothermal phase diagrams. The prediction results for mixtures: ethyne + water and propyne + water are presented in Figures 10c-10e, together with experimental data. At this step, the capability of the E-PPR78 model to predict the 3-phase line location of both systems at different temperatures should be noted. Finally, Figure 10f, shows that the E-PPR78 model correlates efficiently the vapor-liquid equilibrium data of the ethyne + 1,1-difluoroethane system.

4 Conclusion In this paper, three new groups: “HC≡CH”, “HC≡C−”, and “−C≡C−” were added to the EPPR78 model in order to make it possible to predict the phase behaviors and energetic properties of systems including alkynes. The new group-interaction parameters of the EPPR78 model were determined by minimizing deviations between model and experimental data available in open literatures. In this study, accurate fluid-phase equilibrium predictions were obtained in wide temperature, pressure and composition ranges. We can however regret the extremely small number of critical data. As a consequence, calculated critical loci 77 were never compared to experimental ones. To conclude, there are today 40 groups defined by the E-PPR78 model making it possible to describe a large variety of chemical compounds: hydrocarbons (alkanes, alkenes, alkynes, cycloalkane, naphthenic compounds …), permanent gases (CO2, N2, H2S, H2, CO, He, Ar, SO2, O2, NO, COS, NH3, NO2/N2O4, N2O), mercaptans, fluoro-compounds, and water. The EPPR78 model can be used as a reference model for any process involving any of the above components.

Supporting Information Group–interaction parameters: (Akl = Alk)/MPa and (Bkl = Blk)/MPa. This information is available free of charge via the Internet at http://pubs.acs.org/.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 9 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

120

(a)

(b) T1 = 413.15 K, k12 = 0.176202 T2 = 433.15 K, k12 = 0.148540

40

T3 = 453.15 K, k12 = 0.116132 T4 = 473.15 K, k12 = 0.076839

T1 = 177.40 K, k12 = 0.133570 T3 = 255.37 K, k12 = 0.148315

p / bar

p / bar

T2 = 235.93 K, k12 = 0.144395 T4 = 277.59 K, k12 = 0.152977 T5 = 288.71 K, k12 = 0.155382

20

60

0

0 0.0

0.5

x1, y1

1.0

0.0

35

(c)

0.5

1.0

x1, y1

(d)

T1 = 253.15 K, k12 = 0.078304

5

T2 = 278.15 K, k12 = 0.072347

T1 = 303.15 K, k12 = 0.068729 T2 = 313.15 K, k12 = 0.067761 T3 = 328.15 K, k12 = 0.066715

T4 = 353.15 K, k12 = 0.065842

p / bar

p / bar

25

3

15

1

5 0.0

12

0.5

x1, y1

1.0

0.0

12

(e) T1 = 233.15 K, k12 = 0.063082

0.5

1.0

0.5

1.0

x1, y1

(f) T = 303.15 K, k12 = 0.015547

T2 = 253.15 K, k12 = 0.049084 T3 = 273.15 K, k12 = 0.038321 T4 = 303.15 K, k12 = 0.026245

8

8

p / bar

p / bar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 33

4

4

0

0 0.0

0.5

x1, y1

1.0

0.0

x1, y1

Figure 1. Isothermal phase diagrams for alkyne + alkane systems: (a) ethyne (1) + ethane (2), (b) ethyne (1) + n-hexane (2), (c-d) propane (1) + propyne (2), (e) propane (1) + 1-pentyne (2), and (f) propane (1) + 1-hexyne. : experimental bubble points, : experimental dew points, ◊: experimental azeotropic points, : experimental critical points. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 10 Environment ACS Paragon Plus

Page 11 of 33

1.0

1.0

(a)

(b)

T1 = 303.15 K, k12 = -0.009035

T1 = 298.15 K, k12 = -0.015678

T2 = 313.15 K, k12 = -0.009371

T2 = 303.15 K, k12 = -0.015719

T3 = 323.15 K, k12 = -0.009678

T3 = 313.15 K, k12 = -0.015801

T4 = 333.15 K, k12 = -0.009959

T4 = 323.15 K, k12 = -0.015882

T5 = 343.15 K, k12 = -0.010218

T5 = 333.15 K, k12 = -0.015962

p / bar

p / bar

T6 = 343.15 K, k12 = -0.016043

0.5

0.5

0.0

0.0 0.0

12

0.5

x1, y1

1.0

(c)

0.0

0.10

T = 303.15 K, k12 = -0.052098

0.5

1.0

0.5

1.0

0.5

1.0

x1, y1

(d) T1 = 263.15 K, k12 = -0.055549 T2 = 273.15 K, k12 = -0.049389 T3 = 283.15 K, k12 = -0.046487 T4 = 293.15 K, k12 = -0.045305

8

p / bar

p / bar

T5 = 298.15 K, k12 = -0.045093

0.05

4

0

0.00 0.0

0.6

0.5

x1, y1

1.0

0.0

306

(e)

x1, y1

(f)

T1 = 303.15 K, k12 = -0.045047 T2 = 313.15 K, k12 = -0.045294 T3 = 323.15 K, k12 = -0.045819 T4 = 333.15 K, k12 = -0.046496 T5 = 343.15 K, k12 = -0.047258

0.4

T/K

p / bar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

302

0.2

P = 1.01 bar

0.0

298 0.0

0.5

x1, y1

1.0

0.0

x1, y1

Figure 2. Phase diagrams for alkyne + alkane systems: (a) 1-hexyne (1) + n-octane (2), (b) 1hexyne (1) + n-decane (2), (c) propane (1) + 2-hexyne (2), (d-e) 2-hexyne (1) + n-octane (2), and (f) 2-methylbutane (1) + 2-methyl-1-buten-3-yne (2). : experimental bubble points, : experimental dew points, ◊: experimental azeotropic points. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 11 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

600

600 (a)

(b)

T = 298.15 K

T = 298.15 K

M

M

h / J/mol

400

h / J/mol

400

200

200

0 0.0

0.5

0 0.0

1.0

z1 600

0.5

1.0

z1 600

(c)

(d) T = 298.15 K

T1 = 298.15 K T2 = 318.15 K

400

M

M

h / J/mol

h / J/mol

400

200

200

0 0.0

z1

0 0.0

1.0

0.5

1.0

z1 400

(e) T = 298.15 K

(f) T = 298.15 K

h / J/mol

600

0.5

h / J/mol

400

M

200

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 33

200

0 0.0

0.5

z1

1.0

0 0.0

0.5

1.0

z1

Figure 3. Enthalpy changes on mixing for alkyne + alkane systems: (a) 1-hexyne (1) + nhexane (2), (b) n-hexane (1) + 1-heptyne (2), (c) n-heptane (1) + 1-heptyne (2), (d) n-heptane (1) + 1-octyne (2), (e) 3-heptyne (1) + n-dodecane (2), and (f) n-octane (1) + 4-octyne (2). : experimental bubble points, : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 12 Environment ACS Paragon Plus

Page 13 of 33

500

420

(a)

(b)

370

T/K

T/K

400

320

300 P1 = 4.9 bar

P = 0.99 bar 1-buten-3-yne (1) + benzene (2) 1-buten-3-yne (1) + methylbenzene (2) 1-buten-3-yne (1) + 1,4-dimethylbenzene (2)

P2 = 9.8 bar P3 = 19.6 bar

200

P4 = 29.4 bar

0.0

410

270 0.5

x1, y1

1.0

0.0

300

(c)

0.5

x1, y1

1.0

(d) T = 298.15 K

h / J/mol

390

370

benzene (1) + 3-hexyne (2) benzene (1) + 1-heptyne (2) benzene (1) + 1-octyne (2) methylbenzene (1) + 4-octyne (2) 1-heptyne (1) + 1,3,5-trimethylbenzene (2) 1-octyne (1) + ethylbenzene (2)

P1 = 0.266 bar P2 = 0.533 bar P3 = 0.799 bar

350

0

M

T/K

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

P4 = 1.013 bar

0.0

0.5

x1, y1

1.0

-300 0.0

0.5

1.0

z1

Figure 4. Isobaric phase diagrams (a-c) and enthalpy changes on mixing (d) for alkyne + aromatic systems: (a) ethyne (1) + benzene (2); (b) 1-buten-3-yne (1) + benzene (2), 1-buten3-yne (1) + methylbenzene (2), 1-buten-3-yne (1) + 1,4-dimethylbenzene (2); (c) 1-octyne (1) + ethylbenzene (2); (d) benzene (1) + 3-hexyne (2), benzene (1) + 1-heptyne (2), benzene (1) + 1-octyne (2), methylbenzene (1) + 4-octyne (2), 1-heptyne (1) + 1,3,5-trimethylbenzne (2), 1-octyne (1) + ethylbenzene (2). : experimental bubble points, : experimental dew points, : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 13 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

600

800

(a)

(b) T = 298.15 K

T = 298.15 K

h / J/mol

h / J/mol

400

M

M

400

200

0

0 0.0

800

0.5

z1

0.0

1.0

800

(c)

0.5

1.0

0.5

1.0

0.5

1.0

z1

(d) T = 298.15 K

h / J/mol

h / J/mol

T = 298.15 K

400

M

M

400

0

0 0.0

800

0.5

z1

1.0

0.0

800

(e) T = 298.15 K

z1

(f)

h / J/mol

T = 298.15 K

h / J/mol

400

M

400

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 33

0

0 0.0

0.5

z1

1.0

0.0

z1

Figure 5. Enthalpy changes on mixing for 1-hexyne + a naphthenic compound systems: (a) cyclopentane (1) + 1-hexyne (2), (b) 1-hexyne (1) + cyclohexane (2), (c) 1-hexyne (1) + cycloheptane (2), (d) 1-hexyne (1) + cyclooctane (2), (e) 1-hexyne (1) + cisdecahydronaphthalene (2), and (f) 1-hexyne (1) + bicyclohexane (2). : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 14 Environment ACS Paragon Plus

Page 15 of 33

600

800

(a)

(b) T = 298.15 K

T = 298.15 K

h / J/mol

h / J/mol

400

M

M

400

200

0

0 0.0

800

0.5

z1

0.0

1.0

600

(c)

0.5

1.0

0.5

1.0

0.5

1.0

z1

(d) T = 298.15 K

T = 298.15 K

h / J/mol

h / J/mol

400

M

M

400

200

0

0 0.0

800

0.5

z1

1.0

0.0

800

(e)

z1

(f)

T = 298.15 K

T = 298.15 K

h / J/mol

h / J/mol

400

400

M

M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

0

0 0.0

0.5

z1

1.0

0.0

z1

Figure 6. Enthalpy changes on mixing for 1-heptyne + a naphthenic compound and 1-octyne + a naphthenic compound systems: (a) cyclopentane (1) + 1-heptyne (2), (b) 1-heptyne (1) + cycloheptane (2), (c) 1-heptyne (1) + cyclodecane (2), (d) 1-heptyne (1) + cisdecahydronaphthalene (2), (e) cyclohexane (1) + 1-octyne (2), and (f) 1-octyne (1) + cyclooctane (2). : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 15 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

18

40

(a)

(b)

T1 = 253.15 K, k12 = 0.032587

T1 = 328.15 K, k12 = 0.013115

T2 = 278.15 K, k12 = 0.023388

T2 = 353.15 K, k12 = 0.010259

T3 = 303.15 K, k12 = 0.017270 T4 = 313.15 K, k12 = 0.015417

p / bar

30

p / bar

12

6

20

0

10 0.0

8

0.5

x1, y1

1.0

0.0

20

(c)

0.5

1.0

0.5

1.0

0.5

1.0

x1, y1

(d)

T1 = 278.15 K, k12 = 0.008836

T1 = 323.15 K, k12 = 0.010573

T2 = 293.15 K, k12 = 0.009133

T2 = 338.15 K, k12 = 0.011557

T3 = 308.15 K, k12 = 0.009743

T3 = 343.15 K, k12 = 0.011911

p / bar

p / bar

15 4

10

0

5 0.0

1.2

0.5

x1, y1

1.0

0.0

308

(e)

x1, y1

(f)

T1 = 273.15 K, k12 = 0.021080

T/K

T2 = 283.15 K, k12 = 0.022380

p / bar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 33

0.7

300

P = 1.01 bar

0.2

292 0.0

0.5

x1, y1

1.0

0.0

x1, y1

Figure 7. Phase diagrams for binary systems: (a-b) propene (1) + propyne (2), (c-d) propyne (1) + 1,3-butadiene (2), (e) 1-buten-3-yne (1) + 2-methyl-1,3-butadiene (2), and (f) 3-methyl1-butene (1) + 2-methyl-1-buten-3-yne (2). : experimental bubble points, : experimental dew points. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 16 Environment ACS Paragon Plus

Page 17 of 33

1.2

(a)

(b) 307

T1 = 293.15 K, k12 = -0.005428 T2 = 303.15 K, k12 = -0.006654

T/K

p / bar

1.0

303

0.8

P = 1.013 bar

0.6

299 0.0

430

0.5

1.0

x1, y1

0.0

120

(c)

x1, y1

0.5

1.0

0.5

1.0

(d)

h / J/mol

T = 298.15 K

T/K

60

M

410

P1 = 0.53 bar P2 = 0.80 bar

390

P3 = 1.01 bar

0.0

0.5

0 0.0

1.0

x1, y1 120

z1

(e) T = 298.15 K

60

M

h / J/mol

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

0 0.0

0.5

1.0

z1

Figure 8. Phase diagrams (a-c) and enthalpy changes on mixing (d-e) for binary systems: (a-b) 2-butyne (1) + 2-methyl-1,3-butadiene (2), (c) trans-3-nonene (1) + 3-nonyne (2), (d) 1octene (1) + 2-octyne (2), and (e) 1-nonene (1) + 4-nonyne (2). : experimental bubble points, : experimental dew points, : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 17 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

60

330

(a)

(b)

T1 = 273.30 K, k12 = -0.032266 T2 = 293.30 K, k12 = -0.021831 T3 = 308.30 K, k12 = -0.016221

40

T/K

p / bar

320

20

P = 1.013 bar

0

310 0.0

0.5

1.0

x1, y1 0

0.0

0.5

x1, y1

1.0

(c)

-30

M

h / J/mol

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 33

-60

T = 298.15 K

-90 0.0

0.5

1.0

z1

Figure 9. Phase diagrams (a-b) and enthalpy changes on mixing (c) for binary alkyne systems: (a) ethyne (1) + propyne (2), (b) 1-pentyne (1) + 2-pentyne (2), and (c) 1-octyne (1) + 2octyne (2). : experimental bubble points, : experimental dew points, : experimental enthalpy changes on mixing. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 18 Environment ACS Paragon Plus

Page 19 of 33

100

(a)

(b) T1 = 308.06 K, k12 = 0.063304

T2 = 313.00 K, k12 = 0.036392

T2 = 322.99 K, k12 = 0.064153

T3 = 333.00 K, k12 = 0.041090

T3 = 332.65 K, k12 = 0.064834

p / bar

T1 = 303.00 K, k12 = 0.034152

p / bar

80

40

50

0

0 0.0

60

0.5

1.0

x1, y1

0.0

10

(c)

0.5

x1, y1

1.0

(d) T1 = 294.26 K, k12 = -0.161954 T2 = 310.93 K, k12 = -0.136895

p / bar

p / bar

40 5

40

10

ZOOM

20

T1 = 274.15 K, k12 = -0.236669

5

T2 = 283.15 K, k12 = -0.228583 T3 = 293.15 K, k12 = -0.219128

ZOOM

0 0.00

0.02

T4 = 303.15 K, k12 = -0.209165

0.04

x1, y1

0

0 0.000

0

0.0

40

p / bar

p / bar

20

0.5

x1, y1

1.0

x0.004 , y1 1

0.0

(e)

0.008

0.5

1.0

0.5

1.0

x1, y1

(f)

T1 = 344.26 K, k12 = -0.114705

60

T2 = 377.59 K, k12 = -0.113090

T1 = 303.20 K, k12 = -0.077438 T2 = 323.20 K, k12 = -0.118385

p / bar

40

p / bar

20 20

ZOOM

20

p / bar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

10

0 0.000

0.005

x1, y1

0.010

0

0 0.0

0.5

x1, y1

1.0

0.0

x1, y1

Figure 10. Isothermal phase diagrams for carbon dioxide + alkyne systems: (a) carbon dioxide (1) + 1-butyne (2), (b) carbon dioxide (1) + 1-hexyne (2), (c) ethyne (1) + water (2), (d-e) propyne (1) + water (2), and (f) ethyne (1) + 1,1-difluoroethane (2). : experimental bubble points, : experimental dew points. Solid line: correlated curves with the E-PPR78 model.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 19 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 33

Table 1. List of compounds involved in this study. Compounds

Short name

formula

Tc / K

pc / bar

ω

Source of Tc, pc and ω

Source of ideal gas cp

carbon dioxide water 1,1-difluoroethane ethane propane n-hexane n-heptane n-octane n-nonane n-decane n-dodecane 2-methylbutane benzene methylbenzene ethylbenzene 1,4-dimethylbenzene 1,3,5-trimethylbenzene cyclopentane cyclohexane cycloheptane cyclooctane cyclodecane bicyclohexane cis-decahydronaphthalene propene 1-octene 1-nonene trans-3-nonene 3-methyl-1-butene 2-methyl-2-butene 1,3-butadiene 2-methyl-1,3-butadiene ethyne 1-propyne 1-butyne 1-pentyne 1-hexyne 1-heptyne 1-octyne 1-nonyne 1-decyne 2-butyne 2-pentyne 2-hexyne 3-hexyne 3-heptyne 2-octyne 3-octyne 4-octyne 3-nonyne 4-nonyne 1-buten-3-yne 2-methyl-1-buten-3-yne

CO2 H2O R152a 2 3 6 7 8 9 10 12 2m4 B mB eB 14mB 135mB C5 C6 C7 C8 C10 biC6 cCC6 a3 a8 a9 t3a9 3m1a4 2m2a4 13a4 2m13a4 ay2 ay3 ay4 ay5 ay6 ay7 ay8 ay9 ay10 2ay4 2ay5 2ay6 3ay6 3ay7 2ay8 3ay8 4ay8 3ay9 4ay9 1a3ay4 2m1a3ay4

CO2 H2O C2H4F2 C2H6 C3H8 C6H14 C7H16 C8H18 C9H20 C10H22 C12H26 C5H12 C6H6 C7H8 C8H10 C8H10 C9H12 C5H10 C6H12 C7H14 C8H16 C10H20 C12H22 C10H18 C3H6 C8H16 C9H18 C9H18 C5H10 C5H10 C4H6 C5H8 C2H2 C3H4 C4H6 C5H8 C6H10 C7H12 C8H14 C9H16 C10H18 C4H6 C5H8 C6H10 C6H10 C7H12 C8H14 C8H14 C8H14 C9H16 C9H16 C4H4 C5H6

304.12 647.14 386.41 305.32 369.83 507.60 540.20 568.70 594.60 617.70 658.00 460.39 562.05 591.75 617.15 616.20 637.30 511.76 553.50 604.30 647.20 709.00 727.00 703.60 364.90 567.00 594.00 596.80 452.70 470.00 425.00 474.90 308.30 402.40 440.00 498.40 533.50 564.00 590.70 614.30 630.70 473.20 545.00 575.10 597.50 621.80 627.80 645.60 642.70 622.70 620.40 448.00 477.00

73.74 220.64 45.16 48.72 42.48 30.25 27.40 24.90 22.90 21.10 18.20 33.81 48.95 41.08 36.09 35.11 31.27 45.02 40.73 38.40 35.70 32.2587 25.60 32.00 46.00 26.80 23.30 23.9264 35.50 38.60 43.20 38.08 61.14 56.30 46.00 42.4169 43.3557 38.9683 33.6464 30.3207 24.3100 48.70 43.4500 61.5723 83.1600 34.6510 44.4538 31.0162 30.8770 31.3422 26.0622 49.7300 41.9200

0.2250 0.3330 0.2760 0.0990 0.1520 0.3000 0.3500 0.3990 0.4450 0.4900 0.5760 0.2290 0.2100 0.2640 0.3040 0.3220 0.3990 0.1960 0.2110 0.2420 0.2540 0.30626 0.4280 0.27906 0.1420 0.3930 0.4110 0.41567 0.2110 0.3390 0.1950 0.2298 0.1890 0.2115 0.2450 0.16828 0.26261 0.3187 0.35571 0.40695 0.43930 0.2385 0.06550 0.24563 0.19091 0.05205 0.32647 0.09824 0.09526 0.42047 0.35138 0.19043 0.22890

DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE DIPPR NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE

DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR DIPPR NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE NIST TDE DIPPR DIPPR

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 20 Environment ACS Paragon Plus

Page 21 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

Table 2. Binary systems database. System: (1) + (2)

T range (K)

p range (bar)

x1 range

y1 range

Nb

Nd

ay2-2 ay2-3 ay2-6 ay2-a3 ay2-B ay2-H2O ay2-R152a 3-ay3 3-ay5 3-ay6 ay6-6 ay6-7 ay6-8 ay6-10 6-ay7 7-ay7

177.40-288.71 283.15-364.82 413.15-473.15 295.54-356.37 283.15-313.15 274.15-303.15 303.20-323.20 253.15-353.15 233.15-303.15 303.15 298.15 298.15-343.15 303.15-343.15 298.15-343.15 298.15 298.15-318.15

1.01-47.33 14.07-63.78 10.13-104.36 14.48-63.43 4.90-29.42 4.90-39.23 7.80-65.75 1.63-32.27 0.53-8.01 2.87-9.43

0.041-0.550 0.140-0.834 0.002-0.665 0.1250-0.8855 0.0662-0.7280 0.0031-0.0210 0.0312-0.9093 0.055-0.932 0.2671-0.7932 0.2188-0.8782 0.0500-0.9500 0.1144-0.7704 0.1205-0.8841 0.1195-0.8507 0.2567-0.7714 0.0500-0.9500

0.092-0.550 0.140-0.834 0.110-0.798 0.1250-0.8855

6 31 22 31 15 17 16 106 16 14

2 31 22 32

ay7-8 ay7-12 7-ay8 8-ay8 ay9-9 1a3ay4-B B-ay7 B-ay8 1a3ay4-mB 1a3ay4-14mB ay7-135mB ay8-135mB ay8-eB C5-ay6 ay6-C6 ay6-C7 ay6-C8 C5-ay7 C6-ay7 ay7-C7 ay7-C8 ay7-C10 C5-ay8 C6-ay8 ay8-C7 ay8-C8 ay8-C10 C6-ay10 ay6-biC6 ay6-cCC6 ay7-biC6 ay7-cCC6 a3-ay3 ay3-13a4 a8-ay8 ay9-a9 1a3ay4-2m13a4 ay5-2m13a4 ay5-2m2a4 2m4-2m1a3ay4 3m1a4-2m1a3ay4 ay2-ay3 CO2-ay4 CO2-ay6 ay3-H2O 3-2ay6 2ay6-8 6-3ay6 3ay6-7 3ay6-8 3ay6-10 3ay7-12 8-2ay8 8-3ay8

298.15 298.15 298.15 298.15-318.15 298.15-318.15 291.85-347.15 298.15 298.15 292.35-377.15 289.35-398.15 298.15 298.15 298.15-407.46 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 253.15-353.15 278.15-343.15 298.15 298.15 273.15-283.15 307.58-312.27 310.92-312.19 299.35-303.72 293.35-304.65 273.30-308.30 303.00-333.00 308.06-332.65 294.26-377.59 303.15 263.15-343.15 298.15 298.15 263.15-343.15 298.15 298.15 298.15-318.15 298.15-318.15

0.50-0.89 0.06-1.01 0.05-0.84

0.99-1.01

0.99 0.99

0.27-1.01

1.0

1.46-36.38 1.54-17.03

0.32-1.20 1.01 1.01 1.01 1.01 3.23-11.75 2.9-84.4 20.62-84.53 1.20-11.78 2.82-9.53 0.006-1.01

0.006-1.01

0.2930-0.8850 0.0950-0.9080 0.2420-0.6470 0.0950-0.9020 0.1460-0.8760 0.0228-0.5480 0.2339-0.8247 0.0854-0.9389 0.0103-0.5520 0.0138-0.6300 0.1431-0.8756 0.1066-0.8968 0.166-0.842 0.0872-0.9360 0.0499-0.9393 0.0886-0.8835 0.0754-0.9088 0.0621-0.9142 0.1052-0.9214 0.1328-0.9264 0.1565-0.9089 0.0946-0.9169 0.0754-0.9388 0.0835-0.9244 0.0876-0.9064 0.1012-0.9152 0.1408-0.9377 0.0894-0.9368 0.1732-0.7724 0.1724-0.6578 0.1714-0.7496 0.1364-0.6999 0.090-0.938 0.050-0.950 0.223-0.698 0.190-0.828 0.0682-0.9645 0.100-0.900 0.200-0.900 0.100-0.900 0.05-0.95 0.031-0.137 0.0440-0.9560 0.3490-0.9260 0.00014-0.00668 0.2215-0.8933 0.2454-0.7572 0.05-0.95 0.0672-0.955 0.2180-0.7637 0.1259-0.9715 0.177-0.870 0.148-0.852 0.172-0.855

0.1016-0.9627 0.8320

Nc

Naz

NhM

4 4

16 1

20 9 14 9 7 54

6 25 44

9 8 8 44 29 0.1930-0.9640

12

7 9 21

0.2380-0.9870 0.2970-0.9940

17 21

9 10 14 12 9 13 21 14 12 13 19 12 12 27 14 13 12 12 11 20 9 11 9 10

32

0.0889-0.9702

57 107

95 6 11

0.0875-0.873 0.210-0.875 0.166-0.881 0.096-0.960 0.118-0.518 0.1790-0.9910 0.9541-0.9883

16 9 7 9 10 12 88 51 39 5 50

9 7 9 10 12 69 51

1 1

50

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 21 Environment ACS Paragon Plus

14 23 10 9 6 9 27 25

ref 31 32 33 32 34 35, 36 37 38-40 41 41 42 43, 44 45, 46 44, 47 48 42, 49, 50 51 52 51 49 49 53, 54 48 52, 55 53, 54 53, 54 56 56 57, 58 59 44, 59 59 59 59 59 59 59 59 59 59 59 59 59 60 61 61 61 61 39, 40 62, 63 64 64 65 66 66 67 68 69 70 71 72 41 46 42 44 46 44 52 50 50

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

8-4ay8 298.15 0.162-0.878 28 2ay4-2m4 297.25-299.76 1.01 0.100-0.800 0.129-0.763 8 8 1 2m4-2ay5 302.55-323.15 1.01 0.100-0.900 0.260-0.954 9 9 B-3ay6 298.15 0.0721-0.8525 10 eB-2ay8 298.15 0.180-0.773 13 mB-4ay8 298.15 0.185-0.780 8 C6-3ay6 298.15 0.0601-0.9496 9 a8-2ay8 298.15 0.240-0.930 7 t3a9-3ay9 400.45-428.56 0.53-1.01 0.121-0.799 15 a9-4ay9 298.15 0.176-0.840 9 2ay4-2m13a4 293.15-306.50 0.63-1.13 0.0462-0.9720 0.1267-0.9200 25 9 ay5-2ay5 313.57-328.45 1.01 0.0500-0.9500 0.086-0.9703 11 11 ay8-2ay8 298.15 0.285-0.720 6 ay8-3ay8 392.38-396.71 0.80 0.189-0.804 6 sum 1015 428 4 8 770 Nb = number of bubble points; Nd = number of dew points; Nc = number of critical points; Naz = number of azeotropic points; NhM = number of enthalpy change on mixing points.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 22 Environment ACS Paragon Plus

Page 22 of 33

50 67, 73 66 44 52, 64 51 44 64 74 52 67, 75 68 64 57

Page 23 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Industrial & Engineering Chemistry Research

Table 3. Results of modeling phase equilibrium properties of binary systems using the E-PPR78 model. System: (1) + (2)

Nb

ay2-2 ay2-3 ay2-6 ay2-a3 ay2-B ay2-H2O ay2-R152a 3-ay3 3-ay5 3-ay6 ay6-6 ay6-7 ay6-8 ay6-10 6-ay7 7-ay7 ay7-8 ay7-12 7-ay8 8-ay8 ay9-9 1a3ay4-B B-ay7 B-ay8 1a3ay4-mB 1a3ay4-14mB ay7-135mB ay8-135mB ay8-eB C5-ay6 ay6-C6 ay6-C7 ay6-C8 C5-ay7 C6-ay7 ay7-C7 ay7-C8 ay7-C10 C5-ay8 C6-ay8 ay8-C7 ay8-C8 ay8-C10 C6-ay10

6 19 21 16 15 17 16 88 16 14

Nd 2 26 22 27

Nc

Naz

NhM

4 4

16 1

20 9 14 9 7

6 25 44

∆x

∆x

0.0194 0.0237 0.0221 0.0689 0.0204 0.0007 0.0151 0.0271 0.0336 0.0099

(%) 7.27 6.76 7.53 24.04 5.22 2.83 6.17 6.45 8.05 2.39

0.0741 0.0329 0.0292

19.63 9.41 8.08

0.0142

4.22

∆y

0.0089 0.0180 0.0334 0.0320

∆y (%) 4.60 4.91 8.64 9.30

0.0415

12.61

∆xc

0.0099

∆xc

∆ p cm

∆ p cm

(%)

(bar)

(%)

2.10

0.36

∆xaz

∆xaz

∆paz

∆paz

0.0330

(%) 6.77

(bar) 0.79

(%) 3.72

0.0209

7.47

0.50

2.23

0.44

AARD (%)

7

19.63 9.41 8.08

0.0219

7.78

32

9 10

0.0097 0.0096 14 12 9 13 21 14 12 13 19 12 12 27 14 13 12 12 11 20

0.0087

3.65 4.90

0.0267 0.0037

8.54 6.86

2.46

ACS Paragon Plus Environment

0.54 0.90 1.17 1.52 0.27 0.65 0.88 1.36 0.18 0.60 0.53

8.54 43.94

0.07 0.32

24.47 56.65 5.39 7.62 30.51 27.78 23.84 13.58 18.09 12.93 13.95 21.31 29.35 8.94 7.04 11.02 45.28 7.66

0.16 0.49 0.01 0.20 0.97 0.90 0.68 0.25 0.54 0.35 0.31 0.32 0.49 0.23 0.13 0.21 0.62 0.16

5.34 5.53

2.46

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 23

22.03 38.08 49.73 65.89 11.21 30.05 36.80 71.06 9.01 33.11 33.99

5.53

9 21 17 21

∆ Th

5.93 5.69 7.03 14.79 5.22 2.83 9.39 6.42 8.05 2.39

9 8 8 44 29 12

∆hM

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

ay6-biC6 9 ay6-cCC6 11 ay7-biC6 9 ay7-cCC6 10 a3-ay3 56 0.0332 9.72 9.72 ay3-13a4 107 95 0.0063 2.51 0.0044 1.92 2.23 a8-ay8 6 ay9-a9 11 1a3ay4-2m13a4 14 0.0209 8.06 8.06 ay5-2m13a4 9 9 0.0321 8.70 0.0283 8.38 8.54 ay5-2m2a4 5 5 1 0.0354 10.49 0.0403 11.50 0.1653 37.38 0.0011 0.18 12.29 2m4-2m1a3ay4 9 9 1 0.0116 4.77 0.0170 5.71 0.0039 0.85 0.0004 0.04 4.76 0.0176 6.74 0.0083 3.25 5.00 3m1a4-2m1a3ay4 10 10 ay2-ay3 12 12 0.0057 3.99 0.0189 4.41 4.20 CO2-ay4 88 69 0.0070 2.53 0.0095 4.82 3.54 CO2-ay6 51 51 0.1124 28.69 0.0051 10.16 19.42 ay3-H2O 39 0.0006 9.49 9.49 3-2ay6 5 0.0076 1.96 1.96 2ay6-8 50 14 0.0355 8.40 8.40 6-3ay6 23 3ay6-7 10 3ay6-8 50 9 0.0596 14.39 14.39 3ay6-10 6 3ay7-12 9 8-2ay8 27 8-3ay8 25 8-4ay8 28 2ay4-2m4 8 8 1 0.0447 9.83 0.0362 8.01 0.0355 7.53 0.004 0.0049 0.49 2m4-2ay5 9 9 0.0730 17.91 0.0382 12.87 15.39 B-3ay6 10 eB-2ay8 13 mB-4ay8 8 C6-3ay6 9 a8-2ay8 7 t3a9-3ay9 15 0.0176 4.81 4.81 a9-4ay9 9 2ay4-2m13a4 25 9 0.0196 11.04 0.0084 3.69 9.10 ay5-2ay5 11 11 0.0066 4.99 0.0218 8.05 6.52 ay8-2ay8 6 ay8-3ay8 6 0.0584 14.69 14.69 Average 7.75 Nb: the number of bubble points; Nd: the number of dew points; Nc: the number of mixture critical points; Naz = the number of azeotropic points; NhM = the number of enthalpy changes on mixing points

∆x : average absolute deviation on liquid phase composition ; ∆x (%): average relative deviation on liquid phase composition; ∆ y : average absolute deviation on vapor phase composition ; ∆ y (%): average relative deviation on vapor phase composition; ∆xaz : average absolute deviation on azeotropic composition; ∆xaz (%): average relative deviation on azeotropic composition; ∆paz : average absolute deviation on azeotropic pressure; ∆paz (%): average relative deviation on azeotropic pressure

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 24

ACS Paragon Plus Environment

Page 24 of 33

9.17 10.47 18.36 8.12

0.19 0.27 0.37 0.17

10.99 10.45

0.10 0.08

36.44 26.94 26.51 20.37 26.71 7.30 17.16 13.81 6.05 8.37

0.48 0.47 0.43 0.35 0.38 0.12 0.23 0.17 0.08

23.53 21.65 30.01 20.72 15.12

0.02 0.06 0.10 0.28 0.05

7.91

0.02

2.66

0.01

22.18

0.39

Page 25 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Industrial & Engineering Chemistry Research

∆xc : average absolute deviation on critical composition ; ∆xc (%): average relative deviation on critical composition; ∆ p cm : average absolute deviation on critical pressure ; ∆ p cm (%): average relative deviation on critical pressure;

AARD (%): overall average absolute relative deviation of liquid phase composition, vapor phase composition, azeotropic composition, azeotropic pressure, critical composition and critical pressure;

∆ h M (%): average relative deviation of enthalpy changes on mixing; ∆ Th : absolute deviation of enthalpy changes on mixing in terms of temperature; ∆ T h : average of ∆ Th Note: in case that x1 / y1 ≤ 0.01 or ≥ 0.99 and the corresponding relative deviation on this bubble point or dew point is larger than 0.45, the deviations on this point were not taken into account

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 25

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

References 1. Jaubert, J.-N.; Mutelet, F., VLE predictions with the Peng-Robinson equation of state and temperature dependent kij calculated through a group contribution method. Fluid Phase Equilib. 2004, 224, (2), 285-304.

2.

Jaubert, J.-N.; Vitu, S.; Mutelet, F.; Corriou, J.-P., Extension of the PPR78 model

(predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing aromatic compounds. Fluid Phase Equilib.

2005, 237, (1-2), 193-211. 3.

Vitu, S.; Jaubert, J.-N.; Mutelet, F., Extension of the PPR78 model (Predictive 1978,

Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method) to systems containing naphthenic compounds. Fluid Phase Equilib. 2006, 243, (1-2), 9-28. 4.

Qian, J.-W.; Jaubert, J.-N.; Privat, R., Prediction of the phase behavior of alkene-

containing binary systems with the PPR78 model. Fluid Phase Equilib. 2013, 354, 212-235. 5.

Mutelet, F.; Vitu, S.; Privat, R.; Jaubert, J.-N., Solubility of CO2 in branched alkanes

in order to extend the PPR78 model (predictive 1978, Peng-Robinson EOS with temperaturedependent kij calculated through a group contribution method) to such systems. Fluid Phase Equilib. 2005, 238, (2), 157-168.

6.

Privat, R.; Jaubert, J.-N.; Mutelet, F., Addition of the Nitrogen Group to the PPR78

Model (Predictive 1978, Peng Robinson EOS with Temperature-Dependent kij Calculated through a Group Contribution Method). Ind. Eng. Chem. Res. 2008, 47, (6), 2033-2048. 7.

Privat, R.; Jaubert, J.-N.; Mutelet, F., Use of the PPR78 Model To Predict New

Equilibrium Data of Binary Systems Involving Hydrocarbons and Nitrogen. Comparison with Other GCEOS. Ind. Eng. Chem. Res. 2008, 47, (19), 7483-7489. 8.

Privat, R.; Mutelet, F.; Jaubert, J.-N., Addition of the Hydrogen Sulfide Group to the

PPR78 Model (Predictive 1978, Peng-Robinson Equation of State with Temperature Dependent kij Calculated through a Group Contribution Method). Ind. Eng. Chem. Res. 2008, 47, (24), 10041-10052. 9.

Vitu, S.; Privat, R.; Jaubert, J.-N.; Mutelet, F., Predicting the phase equilibria of CO2 +

hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method). J. Supercrit. Fluids 2008, 45, (1), 1-26. 10.

Qian, J.-W.; Jaubert, J.-N.; Privat, R., Phase equilibria in hydrogen-containing binary

systems modeled with the Peng-Robinson equation of state and temperature-dependent binary

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 26 Environment ACS Paragon Plus

Page 26 of 33

Page 27 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

interaction parameters calculated through a group-contribution method. J. Supercrit. Fluids

2013, 75, 58-71. 11.

Plee, V.; Jaubert, J.-N.; Privat, R.; Arpentinier, P., Extension of the E-PPR78 equation

of state to predict fluid phase equilibria of natural gases containing carbon monoxide, helium4 and argon. J. Pet. Sci. Eng. 2015, 133, 744-770. 12.

Xu, X.; Privat, R.; Jaubert, J.-N., Addition of the Sulfur Dioxide Group (SO2), the

Oxygen Group (O2), and the Nitric Oxide Group (NO) to the E-PPR78 Model. Ind. Eng. Chem. Res. 2015, 54, (38), 9494-9504.

13.

Xu, X.; Lasala, S.; Privat, R.; Jaubert, J.-N., E-PPR78: A proper cubic EoS for

modelling fluids involved in the design and operation of carbon dioxide capture and storage (CCS) processes. Int. J. Greenhouse Gas Control 2017, 56, 126-154. 14.

Privat, R.; Jaubert, J.-N.; Mutelet, F., Addition of the sulfhydryl group (-SH) to the

PPR78 model (predictive 1978, Peng-Robinson EOS with temperature dependent kij calculated through a group contribution method). J. Chem. Thermodyn. 2008, 40, (9), 13311341. 15.

Privat, R.; Jaubert, J.-N., Addition of the sulfhydryl group (SH) to the PPR78 model:

Estimation of missing group-interaction parameters for systems containing mercaptans and carbon dioxide or nitrogen or methane, from newly published data. Fluid Phase Equilib. 2012, 334, 197-203. 16.

Qian, J.-W.; Privat, R.; Jaubert, J.-N., Predicting the Phase Equilibria, Critical

Phenomena, and Mixing Enthalpies of Binary Aqueous Systems Containing Alkanes, Cycloalkanes, Aromatics, Alkenes, and Gases (N2, CO2, H2S, H2) with the PPR78 Equation of State. Ind. Eng. Chem. Res. 2013, 52, (46), 16457-16490. 17.

Jaubert, J.-N.; Coniglio, L., The Group Contribution Concept: A Useful Tool To

Correlate Binary Systems and To Predict the Phase Behavior of Multicomponent Systems Involving Supercritical CO2 and Fatty Acids. Ind. Eng. Chem. Res. 1999, 38, (12), 5011-5018. 18.

Jaubert, J.-N.; Coniglio, L.; Denet, F., From the Correlation of Binary Systems

Involving Supercritical CO2 and Fatty Acid Esters to the Prediction of (CO2-Fish Oils) Phase Behavior. Ind. Eng. Chem. Res. 1999, 38, (8), 3162-3171. 19.

Qian, J.-W.; Privat, R.; Jaubert, J.-N.; Coquelet, C.; Ramjugernath, D., Fluid-phase-

equilibrium prediction of fluorocompound-containing binary systems with the predictive EPPR78 model. Int. J. Refrig. 2017, 73, 65-90.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 27 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

20.

Page 28 of 33

Juntarachat, N.; Privat, R.; Coniglio, L.; Jaubert, J.-N., Development of a Predictive

Equation of State for CO2 + Ethyl Ester Mixtures Based on Critical Points Measurements. J. Chem. Eng. Data 2014, 59, (10), 3205-3219.

21.

Neau, E.; Jaubert, J. N.; Rogalski, M., Characterization of heavy oils. Ind. Eng. Chem.

Res. 1993, 32, (6), 1196-1203.

22.

Jaubert, J.-N.; Privat, R.; Mutelet, F., Predicting the phase equilibria of synthetic

petroleum fluids with the PPR78 approach. AIChE J. 2010, 56, (12), 3225-3235. 23.

Xu, X.; Jaubert, J.-N.; Privat, R.; Duchet-Suchaux, P.; Brana-Mulero, F., Predicting

Binary-Interaction Parameters of Cubic Equations of State for Petroleum Fluids Containing Pseudo-components. Ind. Eng. Chem. Res. 2015, 54, (10), 2816-2824. 24.

Lopez-Echeverry, J. S.: Reif-Achermana, S.; Araujo-Lopez, E., Peng-Robinson

equation of state: 40 years through cubics. Fluid Phase Equilib. 2017, 447, 39-71. 25.

Robinson, D. B.; Peng, D. Y. The characterization of the heptanes and heavier

fractions for the GPA Peng–Robinson programs; Report, Gas processors association: 1978. 26.

Qian, J.-W.; Privat, R.; Jaubert, J.-N.; Duchet-Suchaux, P., Enthalpy and heat capacity

changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state. Energy Fuels 2013, 27, (11), 7150-7178. 27.

Qian, J.-W. Développement du modèle E-PPR78 pour prédire les équilibres de phases

et les grandeurs de mélange de systèmes complexes d'intérêt pétrolier sur de larges gammes de températures et de pressions. Ph.D. Thesis, University of Lorraine, 2011. 28.

Brigham Young University (BYU) DIPPR Thermophysical Properties Laboratory,

DIPPR Information and Data Evaluation Manager (DIADEM), 9.0.1; 2015. URL:

https://www.aiche.org/dippr/events-products/801-database 29.

National Institute of Standards and Technology (NIST) Thermodynamics Research

Center, NIST Thermodata Engine, Version 7.1. URL: http://trc.nist.gov/tde.html 30.

Aspen

Technology

Inc.,

Aspen

Properties,

V8.4;

2013.

URL:

http://www.aspentech.com/products/engineering/aspen-properties/ 31.

Hogan, R. J.; Nelson, W. T.; Hanson, G. H.; Cines, M. R., Ethane-ethylene-acetylene

system. Vapor-liquid equilibrium data at -35°, 0°, and 40°F. Ind. Eng. Chem. 1955, 47, 22102215. 32.

McCurdy, J. L.; Katz, D. L., Phase equilibria in the systems propylene-acetylene and

propane-acetylene. Oil Gas J. 1945, 43, (No. 44), 102-104. 33.

Mislavskaya, V. S.; Khodeeva, S. M., Liquefied Acetylene as Solvent. II. The System

Acetylene - n-Hexane. Russ. J. Phys. Chem. 1969, 43, (7), 1062-1063. Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 28 Environment ACS Paragon Plus

Page 29 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

34.

Kiyama, R.; Hiraoka, H., Solubilities of compressed acetylene gas in liquids. III.

Solubility of compressed acetylene gas in benzene. Rev. Phys. Chem. Jpn. 1955, 25, 52-57. 35.

Potter, R. W., II; Babcock, R. S.; Czamanske, G. K., An investigation of the critical

liquid-vapor properties of dilute potassium chloride solutions. J. Solution Chem. 1976, 5, (3), 223-230. 36.

Hiraoka, H., The solubilities of compressed acetylene gas in liquids. I. The solubility

of compressed acetylene gas in water. Rev. Phys. Chem. Jpn. 1954, 24, 13-18. 37.

Lim, J. S.; Lee, Y.-W.; Kim, J.-D.; Lee, Y. Y.; Lee, J., Vapor-Liquid Equilibria for

1,1-Difluoroethane + Acetylene and 1,1-Difluoroethane + 1,1-Dichloroethane at 303.2 K and 323.2 K. J. Chem. Eng. Data 1996, 41, (5), 1168-1170. 38.

Walls, W. S.; Dean, M. R. Separation of Methylacetylene from C4 Hydrocarbons. US

Patent, 1945.

39.

Doering, K. E.; Preuss, H. Vapor pressures of mixtures propane – propyne. FIZ Report,

1967, 6191. 40.

Kyser, E. A. Experimental Vapor-Liquid Equilibria of Propyne with Propane, Propene

and Propadiene. Thesis, University of Missouri-Rolla, 1987. 41.

Tsuji, T.; Sato, T.; Kondo, T.; Uematsu, R.; Hiaki, T.; Namba, M., Bubble point

pressure for five binaries concerning liquefied petroleum gas, propane + 1-pentyne, propane + 1-hexyne, propane + 2-hexyne, propane + cyclopentene, propane + 1,5-cyclooctadiene. In 18th European Conference on Thermophysical Properties, 2008.

42.

Woycicki, W.; Rhensius, P., Excess enthalpies of binary mixtures containing

unsaturated hydrocarbons. 3. n-Alkane + n-alkyne and tetrachloromethane + n-alkyne. J. Chem. Thermodyn. 1979, 11, (2), 153-158.

43.

Ait-Kaci, A.; Belaribi, G.; Michou-Saucet, C.; Jose, J., Excess Gibbs energy. 1-

Hexyne - heptane system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1992, (1), 34. 44.

Wilhelm, E.; Inglese, A.; Grolier, J. P. E.; Kehiaian, H. V., Thermodynamics of binary

mixtures containing alkynes. I. Excess enthalpies of binary mixtures of 1-hexyne and 3hexyne with some hydrocarbons at 298.15 K. Monatsh. Chem. 1978, 109, (1), 235-243. 45.

Alt-Kaci, A.; Jose, J.; Belaribi, G., Liquid-vapor equilibrium. 1-Hexyne-octane system.

Int. DATA Ser., Sel. Data Mixtures, Ser. A 1989, (2), 105.

46.

Boukais-Belaribi, G.; Belaribi, B. F.; Ait-Kaci, A.; Jose, J., Thermodynamics of n-

octane + hexynes binary mixtures. Fluid Phase Equilib. 2000, 167, (1), 83-97. 47.

Belaribi, B. F.; Ait-Kaci, A.; Jose, J., Liquid vapor equilibrium. Decane-1-hexyne

system. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1991, (1), 74. Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 29 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

48.

Page 30 of 33

Letcher, T. M.; Baxter, R. C., Excess enthalpies and excess volumes of (benzene or

cyclohexane or n-hexane + an alkene or an alkyne) at 298.15 K. J. Chem. Thermodyn. 1987, 19, (3), 321-326. 49.

Otsa, E.; Mikhkel'son, V. Y.; Kudryavtseva, L. S., Heats of mixing in n-alkane-n-1-

alkyne systems. Zh. Fiz. Khim. 1979, 53, (4), 899-901. 50.

Otsa, E.; Kudryavtseva, L. S.; Eisen, O., Thermodynamic studies on n-alkane - n-

alkyne systems. 1. Heats of mixing. Monatsh. Chem. 1980, 111, (1), 37-42. 51.

Kudryavtseva, L. S.; Otsa, E.; Kirss, H., Heat of mixing of n-alkynes with carbon

tetrachloride, toluene, and n-alkanes. Termodinam. Organ. Soedin., Gor'kii 1981, 79-81. 52.

Siimer, E.; Kuus, M.; Kudryavtseva, L., Excess enthalpies of systems containing

unsaturated hydrocarbons by UNIFAC group contribution. Thermochim. Acta 1992, 209, 103110. 53.

Fried, V.; Vitovec, J., Liquid-vapor equilibriums. XXIII. The phase equilibriums in the

binary systems vinylacetylene-benzene, vinylacetylene-toluene, and vinylacetylene-p-xylene. Collect. Czech. Chem. Commun. 1960, 25, 1642-1648.

54.

Vitovec, J.; Fried, V., Solubility of vinylacetylene in benzene, toluene, and p-xylene.

Collect. Czech. Chem. Commun. 1960, 25, 2218-2221.

55.

Letcher, T. M.; Schoonbaert, F. E. Z.; Mercer-Chalmers, J., The excess enthalpy and

excess volume of (benzene + oct-1-yne) at 298.15 K. J. Chem. Thermodyn. 1990, 22, (8), 815-816. 56.

Letcher, T. M.; Prasad, A. K., The excess enthalpy and excess volume of (1,3,5-

trimethylbenzene + an alk-1-yne) at the temperature 298.15 K. J. Chem. Thermodyn. 1991, 23, (7), 643-646. 57. of

Kirss, H.; Siimer, E.; Kudryavtseva, L., Isobaric vapor-liquid equilibria in the mixtures 1-heptyne+butanal,

1-octyne+3-octyne,

+ethylbenzene

and

+dibutyl

ether,

2-

octyne+dibutyl ether and +1-butanol, and 3-octyne+1-octene. Thermochim. Acta 1993, 228, (1-2), 283-289. 58.

Kudryavtseva, L.; Kuus, M.; Kirss, H.; Vink, I., Effect of molecular structure on the

excess enthalpies of mixtures with unsaturated hydrocarbons. Eesti NSV Tead. Akad. Toim., Keem. 1989, 38, (2), 84-92.

59.

Letcher, T. M.; Taylor, S.; Baxter, R., Excess molar enthalpies of (a cycloalkane + an

alk-1-yne) at 298.15K. J. Chem. Thermodyn. 1988, 20, (11), 1265-1269.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 30 Environment ACS Paragon Plus

Page 31 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

60.

Wagner, H.; Lichtenthaler, R.N., Excess Properties of Liquid Cyclohexane -

Hydrocarbon Mixtures. I. Experimental Results of the Excess Enthalpy. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 65-68.

61.

Letcher, T. M.; Baxter, R. C., Excess enthalpies and excess volumes of (a bicyclic

compound + 1-hexene or 1-hexyne or 1-heptene or 1-heptyne) at 298.15 K. J. Chem. Thermodyn. 1988, 20, (1), 39-47.

62.

Preuss, H.; Roscher, T. Determination of the VLE in the system 1,3-butadiene –

propyne. FIZ Report, 1980, 11051. 63.

Gripka, P. J. VLE for 1,3-Butadiene with 1,2-Butadiene and Propyne. Thesis,

University of Missouri-Rolla, 1988. 64.

Kirss, H.; Kuus, M.; Siimer, E.; Kudryavtseva, L., Measurement, correlation and

prediction of binary vapor-liquid equilibria and enthalpies of mixing for systems containing isomeric alkynes. Thermochim. Acta 1992, 195, 85-94. 65.

Doering, K. E.; Preuss, H. Vapor pressures of mixtures vinylacetylene – isoprene. FIZ

Report, 1967, 12271.

66.

Korotkova, V. N.; Pavlov, S. Y.; Karpacheva, L. L.; Serafimov, L. A.; Kofman, L. S.,

Vapor-Liquid Phase Equilibrium in the Binary Mixtures Containing C5 Hydrocarbons of the Acetylene Series. Prom-st. Sint. Kauch. 1969, (6), 6-8. 67.

Korotkova, V. N.; Bolkhova, L. A.; Karpacheva, L. L.; Pavlov, S. Y.; Serafimov, L.

A.; Kofman, L. S., Vapor-Liquid Phase Equilibrium in the Binary Mixtures Containing C5 Hydrocarbons of the Acetylene Series. Prom-st. Sint. Kauch. 1970, 1-3. 68.

Korotkova, V. N.; Pavlov, S. Y.; Karpacheva, L. L.; Kofman, L. S.; Serafimov, L. A.,

Vapor-Liquid Phase Equilibrium in Binary Mixtures Containing C5-hydrocarbons of the Acetylene Series. III. Prom-st. Sint. Kauch. 1971, (3), 7-8. 69.

Burch, R. J.; Leeds, M. W., Vapor-liquid equilibriums in the acetylene-propyne

system. Chem. & Eng. Data Ser. 1957, 2, (No. 1), 3-7. 70.

Bardas, M.; Dahmen, N.; Kraska, T.; Wagner, K. D.; Yelash, L., Isothermal vapor-

liquid equilibria of binary systems of carbon dioxide and 1-butyne, compared to other binary CO2 + C4Hn systems in terms of global parameters. Phys. Chem. Chem. Phys. 2002, 4, (6), 987-991. 71.

Jennings, D. W.; Teja, A. S., Vapor-liquid equilibria in the carbon dioxide-1-hexene

and carbon dioxide-1-hexyne systems. J. Chem. Eng. Data 1989, 34, (3), 305-309. 72.

Inga, R. F.; McKetta, J. J., Solubility of propyne in water. J. Chem. Eng. Data 1961, 6,

337-338. Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 31 Environment ACS Paragon Plus

Industrial & Engineering Chemistry Research

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

73.

Pavlov, S. Y.; Karpacheva, L. L.; Korotkova, V. N.; Kirnos, A. B., Combined Phase

Equilibrium Data of C4- and C5-hydrocarbon systems. IV. Azeotropy. Prom-st. Sint. Kauch.

1974, 1-3. 74.

Otsa, E.; Kirjanen, I.; Kudryavtseva, L. S., Study and calculation of liquid-vapor

equilibrium in systems containing n-alkynes. Eesti NSV Tead. Akad. Toim., Keem. 1979, 28, (2), 113-121. 75.

Doering, K. E.; Preuss, H., Vapor pressures of mixtures isoprene - 2-butyne. FIZ

Report. 1968, 6121.

76.

Chen, Y.; Mutelet, F.; Jaubert, J.N., Modeling the solubility of carbon dioxide in

imidazolium based ionic liquids with the PC–SAFT equation of state. J. Phys. Chem. B. 2012, 116, 14375–14388. 77.

Privat, R.; Jaubert, J.-N., Classification of global fluid-phase equilibrium behaviors in

binary systems. Chem. Eng. Res. Des. 2013, 91, 1807–1839.

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 32 Environment ACS Paragon Plus

Page 32 of 33

Page 33 of 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Industrial & Engineering Chemistry Research

TOC graphic

MERCAPTANS AROMATIC

WATER

FLUOROCOMPOUNDS

ALKENES

NAPHTHENES

CH3 C ALKANES CH3

H2 N2 H2S CO2 PERMANENT GASES

≡C CH≡ ≡C C2H2 C≡ ALKYNES

E-PPR78 presents: 3 new groups

Prediction of thermodynamic properties of alkyne-containing mixtures with the E-PPR78 model 33 Environment ACS Paragon Plus