Preparation and Evaluation of a Zirconia ... - ACS Publications

Mar 31, 2016 - ABSTRACT: A zirconia/oligosiloxane nanocomposite encapsu- lant has been developed and tested in a high-power LED package...
0 downloads 0 Views 3MB Size
Subscriber access provided by UNIV OF CALIFORNIA SAN DIEGO LIBRARIES

Article

The preparation and evaluation of a zirconia/ oligosiloxane nanocomposite for LED encapsulation Pao-Tang Chung, Shian-Hau Chiou, Chin-Yao Tseng, and Anthony Shiaw Tseh Chiang ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.6b02082 • Publication Date (Web): 31 Mar 2016 Downloaded from http://pubs.acs.org on April 10, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Applied Materials & Interfaces is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

The preparation and evaluation of a zirconia/oligosiloxane nanocomposite for LED encapsulation Pao-Tang Chung, Shian-Hau Chiou, Chin-Yao Tseng, Anthony Shiaw-Tseh Chiang* Department of Chemical & Materials Engineering, National Central University, JungLi, TaoYuan, Taiwan, ROC 32054 KEYWORDS: LED, encapsulation, nanocomposite, oligosiloxane, zirconia

ACS Paragon Plus Environment

1

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 2 of 31

ABSTRACT

A zirconia/oligosiloxane nanocomposite encapsulant has been developed and tested in a highpower LED package against commercial silicone resins. The composite was a marriage of zirconia nanocrystals modified with BA (butyric acid) and MPTMS (3-methacryloxy propyl trimethoxysilane) and a high index methacryloxy-oligosiloxanes resin made from MPTMS plus dimethyl, diphenyl, and triphenyl silanes. The modified zirconia had an index of 1.762 (@589nm) and was dispersible in many solvents. The oligosiloxane resin, on the other hand, had an index of 1.5413 with good encapsulation properties and low viscosity allowing the incorporation of more zirconia. The final nanocomposite showed a refractive index of 1.625 with high transparency and a wavelength-independent scattering, both desirable for the light extraction from LED. When tested in a high-power LED package, the composite encapsulant resulted in 13% more light output compared to the commercial encapsulant (OE-6630, Dow Corning Corp.) and showed longer than 1000 hours of lifetime (L70) under the steady state Temperature Humidity Bias (THB) test.

ACS Paragon Plus Environment

2

Page 3 of 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

INTRODUCTION

The internal quantum efficiency of solid-state lighting, or light emitting diodes (LEDs), has dramatically improved over the past decades, thus enabled the production of high-quality lighting in versatile applications. However, to take full advantage of the quantum efficiency, continuous studies on improving the external efficiency of an LED package are still needed. Among the many aspects affecting the external efficiency, the development of a better encapsulation material with high transparency, long-term thermal and moisture stability, good heat conductivity and high refractive index (RI) is essential. High-RI encapsulant is needed to alleviate the interface index mismatch and to improve the extraction of light. Good heat conductivity helps to dissipate the heat and reduces the junction temperature of the LED chip, thus promotes the quantum yield.

The epoxy resin has been the popular LED encapsulant for its good insulation to moisture, strong adhesion to metal, mechanical robustness and, most importantly, low cost. There are several ways to increase the RI of an epoxy encapsulant, such as the curing with a cationic initiator1, the inclusion of thiol compounds2 as well as TiO2 or ZrO2 nanocrystals3-5. The incorporation of ZrO2 nanocrystal also increases the thermal conductivity and brings a lower junction temperature4. However, the long-term thermal and moisture stability of epoxy-based encapsulant is only suitable for LED operated at 1000

C-2

0.992/1

39.5

52.3

55.0

24.4

1.5950

1.5941 1.5936 424

C-3

1.491/1

47.5

58.5

61.6

32.6

1.6146

1.6131 1.6127 322

C-4

1.866/1

51.7

61.8

64.4

37.7

-

1.6248 -

-

79.4

83.5

83.5

100

1.7620 c -

-

Filler 1/0

a: Calculated based on the TGA residue of filler (83.5%) and S-3(21.3%). b: Calculated based on the density of filler (3.11 g/mL) and that of cured silicone (1.01 g/mL). c: Estimated from the zirconia contents in the filler and confirmed with index measured on 2Phenoxy ethyl acrylate dispersions at various filler loadings.

ACS Paragon Plus Environment

24

Page 25 of 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

ASSOCIATED CONTENT

Supporting Information. The specifications of the LED packages, the characteristics of the modified zirconia (1H NMR spectrum, RI, DLS), the

29

Si NMR spectra of the oligosiloxane resins, pictures of the

encapsulations, TGA analysis results of the composites and the view angle of the packages. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION Corresponding Author *Email: [email protected]. ACKNOWLEDGMENT This work was supported by the National Science council (NSC) of ROC through grant NSC 102-2622-E-008 -003.

ACS Paragon Plus Environment

25

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 31

REFERENCES

1. Zhou, Y.; Tran, N.; Lin, Y. C.; He, Y. Z.; Shi, F. G. One-component, Low-temperature, and Fast Cure Epoxy Encapsulant with High Refractive Index for LED Applications. IEEE Trans. Adv. Packag. 2008, 31 (3), 484-489.

2. Li, H.-T.; Hsu, C.-W.; Chen, K.-C. Enhancement of Light Efficiency of LED using a Novel High Refractive Encapsulant. 58th IEEE Electron. Compon. Technol. Conf., 2008, 19261930.

3. Chau, J. L. H.; Liu, H. W.; Su, W. F. Fabrication of Hybrid Surface-Modified TitaniaEpoxy Nanocomposite Films. J. Phys. Chem. Solids 2009, 70 (10), 1385-1389.

4. Chung, P. T.; Yang, C. T.; Wang, S. H.; Chen, C. W.; Chiang, A. S. T.; Liu, C. Y. ZrO2/Epoxy Nanocomposite for LED Encapsulation. Mater. Chem. Phys 2012, 136 (2-3), 868-876.

5. Tao, P.; Li, Y.; Siegel, R. W.; Schadler, L. S. Transparent Dispensible High-Refractive Index ZrO2/Epoxy Nanocomposites for LED Encapsulation. J. Appl. Polym. Sci. 2013, 130 (5), 3785-3793.

6. Kim, J. S.; Yang, S.; Bae, B. S. Thermally Stable Transparent Sol-Gel based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation. Chem. Mater. 2010, 22 (11), 3549-3555.

7. Tokumitsu, S. Surface-Modified Zirconia Nanocrystal Particle and Method for Producing Same. US patent 8,759,560, 2014.

ACS Paragon Plus Environment

26

Page 27 of 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

8. Lee, S.; Shin, H. J.; Yoon, S. M.; Yi, D. K.; Choi, J. Y.; Paik, U. Refractive Index Engineering of Transparent ZrO2-Polydimethylsiloxane Nanocomposites. J. Mater. Chem. 2008, 18 (15), 1751-1755.

9. Li, Y.; Tao, P.; Viswanath, A.; Benicewicz, B. C.; Schadler, L. S. Bimodal Surface Ligand Engineering: The Key to Tunable Nanocomposites. Langmuir 2013, 29 (4), 1211-1220.

10. Li, Y.; Tao, P.; Siegel, R. W.; Schadler, L. Multifunctional Silicone Nanocomposites for Advanced LED Encapsulation. Mater. Res. Soc. Symp. Proc. 2013; 1573, 901.

11. Li, Y.; Wang, L.; Natarajan, B.; Tao, P.; Benicewicz, B. C.; Ullal, C.; Schadler, L. S. Bimodal "Matrix-free" Polymer Nanocomposites. RSC Adv. 2015, 5 (19), 14788-14795.

12. Otsuka, T.; Chujo, Y. Composite Composition of Inorganic Oxide Particles and Silicone Resin, Method of Manufacturing the Same, Transparent Composite, and Method of Manufacturing The Same. US patent 9,006,354 B2, Apr.14, 2015.

13. Mosley, D. W.; Khanarian, G.; Conner, D. M.; Thorsen, D. L.; Zhang, T. L.; Wills, M. High Refractive Index Thermally Stable Phenoxyphenyl and Phenylthiophenyl Silicones for Light-Emitting Diode Applications. J. Appl. Polym. Sci. 2014, 131 (3), 39824.

14. Kim, H.; Bae, J. Y.; Kim, Y. H.; Kim, Y. B.; Bae, B. S. Low Temperature Curable Epoxy Siloxane Hybrid Materials for LED Encapsulant. J. Appl. Polym. Sci. 2014, 131 (6), 39968.

15. Bae, J. Y.; Kim, Y.; Kim, H. Y.; Lim, Y. W.; Bae, B. S. Sol-Gel Synthesized Linear Oligosiloxane-Based Hybrid Material for a Thermally-Resistant Light Emitting Diode (LED) Encapsulant. RSC Adv. 2013, 3 (23), 8871-8877.

ACS Paragon Plus Environment

27

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 31

16. Kim, J. S.; Yang, S. C.; Kwak, S. Y.; Choi, Y.; Paik, K. W.; Bae, B. S. High Performance Encapsulant for Light-Emitting Diodes (Leds) by a Sol-Gel Derived Hydrogen Siloxane Hybrid. J. Mater. Chem. 2012, 22 (16), 7954-7960.

17. Yang, S.; Kwak, S. Y.; Jin, J.; Kim, J. S.; Choi, Y.; Paik, K. W.; Bae, B. S. Thermally Resistant UV-Curable Epoxy-Siloxane Hybrid Materials for Light Emitting Diode (LED) Encapsulation. J. Mater. Chem. 2012, 22 (18), 8874-8880.

18. Jin, J.; Yang, S.; Bae, B. S. Network Structure-Property Relationship in UV-Cured Organic/Inorganic Hybrid Nanocomposites. Polym. Chem. 2011, 2 (1), 168-174.

19. Yang, S.; Kim, J. S.; Jin, J.; Kwak, S. Y.; Bae, B. S. Cycloaliphatic Epoxy OligosiloxaneDerived Hybrid Materials for a High-Refractive Index LED Encapsulant. J. Appl. Polym. Sci. 2011, 122 (4), 2478-2485.

20. Kim, J. S.; Yang, S.; Bae, B. S. Thermal Stability of Sol-Gel Derived Methacrylate Oligosiloxane-Based Hybrids for LED Encapsulants. J. Sol-Gel Sci. Technol. 2010, 53 (2), 434-440.

21. Bae, J. Y.; Yang, S.; Jin, J. H.; Jung, K.; Kim, J. S.; Bae, B. S. Fabrication of Transparent Methacrylate

Zirconium

Siloxane

Hybrid

Materials

using

Sol-Gel

Synthesized

Oligosiloxane Resin. J. Sol-Gel Sci. Technol. 2011, 58 (1), 114-120.

22. Kim, Y. H.; Bae, J. Y.; Jin, J.; Bae, B. S. Sol-Gel Derived Transparent Zirconium-Phenyl Siloxane Hybrid for Robust High Refractive Index LED Encapsulant. ACS Appl. Mater. Interfaces 2014, 6 (5), 3115-3121.

ACS Paragon Plus Environment

28

Page 29 of 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

23. Eo, Y. J.; Lee, T. H.; Kim, S. Y.; Kang, J. K.; Han, Y. S.; Bae, B. S. Synthesis and Molecular Structure Analysis of Nano-Sized Methacryl-Grafted Polysiloxane Resin for Fabrication of Nano Hybrid Materials. J. Polym. Sci. Pol. Phys. 2005, 43 (7), 827-836.

24. Jin, J.; Yang, S.; Bae, B. S. Fabrication of a High Thermal-Stable Methacrylate-Silicate Hybrid Nanocomposite: Hydrolytic versus Non-Hydrolytic Sol-Gel Synthesis of MethacrylOligosiloxanes. J. Sol-Gel Sci. Technol. 2012, 61 (2), 321-327.

25. Chiang, A. S.-T.; Wang, S. h.; Pai, C. t.; Chen, C. W. Metal Oxide Nanoparticle Material. US Patent Application 20150329373 A1, Nov. 19, 2015.

26. Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products; LM-79-08; Illuminating Engineering Society: 2008.

27. JESD22- A101-C Steady State Temperature Humidity Bias Life Test. 2009.

28. Aspnes, D. E. Local-Field Effects and Effective-Medium Theory: a Microscopic Perspective. Am. J. Phys. 1982, 50 (8), 704-709.

29. Bae, B. S.; Yang, S.-C. Resin Composition for LED Encapsulation. US patent Appl. 20100025724 A1, Feb. 4, 2010.

30. Lei, I. A.; Lai, D. F.; Don, T. M.; Chen, W. C.; Yu, Y. Y.; Chiu, W. Y. Silicone Hybrid Materials useful for the Encapsulation of Light-Emitting Diodes. Mater. Chem. Phys 2014, 144 (1-2), 41-48.

ACS Paragon Plus Environment

29

ACS Applied Materials & Interfaces

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 30 of 31

31. Liu, Y.; Lin, Z. Y.; Zhao, X. Y.; Tuan, C. C.; Moon, K. S.; Yoo, S.; Jang, M. G.; Wong, C. P. High Refractive Index and Transparent Nanocomposites as Encapsulant for High Brightness LED Packaging. IEEE Trans. Compon., Packag., Manuf. Technol. 2014, 4 (7), 1125-1130.

32. Mont, F. W.; Kim, J. K.; Schubert, M. F.; Schubert, E. F.; Siegel, R. W. High-RefractiveIndex TiO2-Nanoparticle-Loaded Encapsulants for Light-Emitting Diodes. J. Appl. Phys. 2008, 103 (8), 3120.

ACS Paragon Plus Environment

30

Page 31 of 31

TOC graphic

Light Output power (mW)

500 400 300 200 100 0 0

100 200 300 Injection current (mA)

100 Relative output power(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Applied Materials & Interfaces

95 90 85 80 OE-6336 OE-6630 ZrO2/oligosiloxane

75 70 65 60 0

200

400 600 Time(hr)

800 1000

ACS Paragon Plus Environment

31