Preparation and Testing of Cationic Flocculants from Kraft Lignin

Jul 23, 2009 - Erkki Pulkkinen, Airi Mäkelä, and Hannu Mikkonen. Department of Chemistry, University of Oulu, SF-90570 Oulu, Finland. Lignin. Chapte...
0 downloads 0 Views 696KB Size
Chapter 21

Preparation and Testing of Cationic Flocculants from Kraft Lignin Erkki Pulkkinen, Airi Mäkelä, and Hannu Mikkonen Department of Chemistry, University of Oulu, SF-90570 Oulu, Finland

Kraft lignin has been reacted to a quaternary ether derivative over several hours at temperatures ranging from room temperature to 65°C. Based on the nitrogen content (2.7-3.7%) of the purified product, 42-61% of the hydroxyl groups of lignin were etherified. The yield with respect to reagent was usually over 50%. In laboratory tests the lignin-based cationic ether effectively precipitated inorganic colloids from wastewaters. It is w e l l k n o w n t h a t the a c e t y l a t i o n , for e x a m p l e , of a r o m a t i c a n d a l i p h a t i c h y d r o x y l groups i n kraft l i g n i n can d r a s t i c a l l y change the s o l u b i l i t y of l i g n i n . T h e same occurs w h e n h y d r o x y l groups of kraft l i g n i n are reacted w i t h epoxy reagents h a v i n g q u a t e r n a r y a m m o n i u m groups i n the molecule.

NaOH *

iin-OH + C H o - C H C H ~

v

-

z

,



s

l

o

w

Ο

ν

glycidyltrimethylammonium chloride

Hgnin-OC^CHC^i^C^^CI

G

CH CHCH N®(CH3) CI + NaOH 2

CI

2

\

3

OH

N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride 0097-6156/89A)397--0284$06.00A) © 1989 American Chemical Society

0

21. P U L K K I N E N E T A L

Preparation and Testing of Cationic Flocculants

285

E v e n t h o u g h 3.0-4.4 m m o l s (from a t o t a l of 7.2 m m o l s ) of h y d r o x y l groups per g r a m of l i g n i n were c a t i o n i z e d b y these reagents, the p r o d u c t s were c o m p l e t e l y water soluble a n d effective flocculants. I n t h i s p a p e r we discuss the p r e p a r a t i o n a n d testing these c a t i o n i c l i g n i n derivatives.

Experimental Materials. C o m m e r c i a l k r a f t l i g n i n , I n d u l i n A T (Westvaco C o r p . ) , has a c o m b i n e d phenolic a n d a l i p h a t i c h y d r o x y l group content of 7.2 m m o l / g as d e t e r m i n e d b y q u a n t i t a t i v e S i N M R spectroscopy (1). T h e p i n e k r a f t l i g n i n f r o m the N u o t t a s a a r i m i l l of V e i t s i l u o t o C o r p . , F i n l a n d , has a corr e s p o n d i n g h y d r o x y l content of 7.7 m m o l / g . T h e g l y c i d y l t r i m e t h y l a m m o n i u m chloride reagent, c o n t a i n i n g 6 3 . 3 % e p o x y f u n c t i o n a l i t y , was a p r o d u c t of R a i s i o C o r p . , F i n l a n d . N - ( 3 - c h l o r o - 2 - h y d r o x y p r o p y l ) t r i m e t h y l a m m o n i u m chloride was prepared i n the l a b o r a t o r y (2,3). P r a e s t o l 41 I K ( S t o c k hausen C o r p . ) was used as a reference c a t i o n i c flocculant. 2 9

Flocculation Tests (4). A conventional j a r test procedure w i t h a s i x - p l a c e m u l t i p l e stirrer s y s t e m ( P h i p p s & B i r d , Inc.), a n d c r y s t a l l i n e s i l i c a p a r ticles ( M i n - U - S i l 5, P e n n s y l v a n i a G l a s s a n d S a n d C o r p . ) , or a l t e r n a t i v e l y m a t e r i a l dredged f r o m the b o t t o m of a waterway, were used as a c o l l o i d a l reference. A f t e r s t i r r i n g the m a i n b a t c h of the s i l i c a (600 or 1800 m g M i n U - S i l 5 i n 4000 m L of deionized water) for a n h o u r , 2 m L aqueous H C 1 was a d d e d a n d the p H adjusted w i t h s o l i d N a H C 0 3 to 4. T h e d r e d g i n g effluent (3700 m g / l i t e r , p H 5.1) was used as such as a s e t t l i n g reference. T o p e r f o r m the j a r test, 600 m L of the b a t c h d i s p e r s i o n was i n t r o d u c e d i n t o each 800 m L decanter flask a n d the dispersions were s t i r r e d at 100 r p m w h e n the flocculant dosages were a d d e d . Thereafter s t i r r i n g was c o n t i n u e d at 100 r p m for 20 m i n . , at 30 r p m for 20 m i n . , a n d t h e n allowed t o settle for 30 m i n . u n d i s t u r b e d . R e s i d u a l t u r b i d i t i e s were measured b y a H a c h t u r b i d i m e t e r o n 25 m L a l i q u o t s of the s u p e r n a t a n t l i q u i d s t a k e n 2 c m b e low the surface a n d p l o t t e d as f o r m a z i n t u r b i d i t y percent u n i t s (% F T U ) against flocculation dosage i n p p m solids. Stability of Floe. A f t e r s e t t l i n g for 30 m i n u t e s a n d m e a s u r i n g the r e s i d u a l t u r b i d i t y , a dispersion (600 m L ) was p o u r e d i n t o another flask a n d b a c k t o the o r i g i n a l flask. T h e p o u r i n g back a n d f o r t h was t h e n repeated t w i c e . A f t e r s e t t l i n g for 30 m i n . , the r e s i d u a l t u r b i d i t i e s were measured as before. Gelling of Lignin with Formaldehyde. A 5.12 g s a m p l e of a s o d i u m salt of l i g n i n ( 4 0 % nonvolatiles ( N . V . ) , 1 5 % N a O H d i g n i n ) was reacted w i t h 3 7 % C H 0 (0.71 m o l e / 1 0 0 g l i g n i n ) at 9 0 ° C i n a test tube (height 10 c m , w i d t h 2 cm) u n t i l g e l l i n g occurred after 130 m i n . T h e gel t i m e was measured w i t h a T e c a n G e l a t i o n T i m e r , G T 3 (disc 14 m m ) . 2

Reaction of Lignin and Gelled Lignin with Glycidyltrimethylammonium Chloride. G l y c i d y l t r i m e t h y l a m m o n i u m chloride was added t o a preprepared s o d i u m salt of l i g n i n (pre-stirred i n a s t e a m b a t h for 2 h) a n d the r e a c t i o n m i x t u r e was s t i r r e d at 60-70°C for 3 h ( T a b l e I). C a t i o n i z i n g the gelled l i g n i n (reacted w i t h C H 2 O for 130 m i n . ) was essentially

LIGNIN: PROPERTIES AND MATERIALS

286

c a r r i e d out i n the same way except t h a t the solids content of the r e a c t i o n m i x t u r e was 2 9 % i n s t e a d of 4 4 % . I n the r e a c t i o n of l i g n i n w i t h N - ( 3 - c h l o r o 2 - h y d r o x y p r o p y l ) t r i m e t h y l a m m o n i u m chloride the m o l a r r a t i o s of reagent to N a O H was 1:1 a n d h y d r o x y l groups to reagent 1:1. T h e r e a c t i o n was c a r r i e d out at r o o m t e m p e r a t u r e at 5 2 % N . V . T a b l e I. R e a c t i o n of K r a f t L i g n i n w i t h G l y c i d y l t r i m e t h y l a m m o n i u m C h l o ride 0

Weight Components Indulin A T Total O H hydroxyl carboxyl Reagent (63.2%) NaOH H 0 2

a

grams

grams

2.09

2.0

2.64 0.3 4.0

1.67 0.3

9.03

3.97

mmoles 17.2 14.4 2.8 11.0 7.5

Molar Ratio 1 1 0.76

Nonvolatiles

1 0.68

0.43

(N.V.):

44%

A f t e r r e a c t i n g at 60-70°C for 3 h , the isolated a n d d r i e d p r o d u c t weighed 4.5 g a n d , after p u r i f i c a t i o n w i t h b o t h e t h a n o l a n d u l t r a f i l t r a t i o n , p r o v i d e d 2.34 g p r o d u c t c o n t a i n i n g 2.7 a n d 2 . 9 % N , respectively. T h e l i g n i n recoveries i n p u r i f i c a t i o n were 80.3 a n d 8 2 . 8 % .

Purification of Cationized Lignin. T h e p u r i f i c a t i o n was c a r r i e d out either b y u l t r a f i l t r a t i o n of the n e u t r a l i z e d p r o d u c t m i x t u r e t h r o u g h a D i a f l o U M 2 m e m b r a n e ( A m i c o n C o r p . , exclusion l i m i t 1000 M W ) or b y s l u r r y i n g a finely g r o u n d 1 g s a m p l e of d r y crude c a t i o n i c ether at r o o m t e m p e r a t u r e i n 160 m L 9 4 % e t h a n o l . T h e filtered powder was washed w i t h 50 m L 9 4 % e t h a n o l a n d t h e n w i t h 10 m L d i e t h y l ether a n d b r o u g h t to a constant weight i n a v a c u u m desiccator. T h e u l t r a f i l t r a t i o n was preferred w h e n the n i t r o g e n content of the p u r i f i e d c a t i o n i c ether exceeded 3%. Results A s is presented i n F i g u r e 1, the flocculation test w i t h s i l i c a as a c o l l o i d a l reference can be used to o p t i m i z e the reaction t i m e . B y l e t t i n g the r e a c t i o n w i t h l i g n i n a n d N - ( 3 - c h l o r o - 2 - h y d r o x y p r o p y l ) t r i m e t h y l a m m o n i u m chloride advance at r o o m t e m p e r a t u r e for 100 h i n s t e a d of 50 h , the dosage req u i r e m e n t of the r e a c t i o n m i x t u r e was reduced to about half. T h e r e s i d u a l t u r b i d i t y already was sufficiently reduced after r e a c t i n g for 50 h . F i g u r e 2 indicates t h a t the flocculation performance of the c a t i o n i c l i g n i n ether p u rified b y u l t r a f i l t r a t i o n ( 2 . 9 % N ) or b y w a s h i n g w i t h e t h a n o l ( 2 . 7 % N ) was equal.

21. P U L K K I N E N E T A L

Preparation and Testing of Cationic Flocculants

287

F i g u r e 2. Effect of p u r i f i c a t i o n o n flocculation p e r f o r m a n c e : (O) unpurified; ( φ ) purified b y leaching w i t h e t h a n o l ; ( Δ ) purified b y u l t r a f i l t r a t i o n .

288

LIGNIN: PROPERTIES AND MATERIALS

A s seen i n T a b l e I, there was enough e p o x y reagent to convert o n l y 7 6 % of h y d r o x y l groups to the c a t i o n i c ether. A s s u m i n g t h a t the n i t r o ­ gen content (2.9%) f o u n d i n the purified s a m p l e ( 8 0 . 2 % l i g n i n recovery) is e q u a l l y d i s t r i b u t e d t h r o u g h the whole c a t i o n i c l i g n i n , one can e s t i m a t e t h a t 4 2 % of the h y d r o x y l groups were reacted a n d 5 5 % of the reagent was c o n s u m e d i n the d e r i v a t i z a t i o n . F i g u r e s 3 a a n d 3b show t h a t the flocculation performance of the p u ­ rified c a t i o n i c l i g n i n d e r i v a t i v e , prepared under the c o n d i t i o n s described i n T a b l e I, is e q u a l to t h a t o f the c o m m e r c i a l reference ( P r a e s t o l 41 I K ) . F i g u r e s 4 a a n d 4 b , o n the other h a n d , reveal t h a t the same c a t i o n i c l i g n i n derivative behaves p o o r l y i n the s t a b i l i t y test when c o m p a r e d to the c o m ­ m e r c i a l reference. F i g u r e s 4 a a n d 4b further show t h a t b y condensing the s o d i u m salt of l i g n i n w i t h formaldehyde ( 1 5 % N a O H d i g n i n , 0.7 mole C H 2 O per 100 g l i g n i n ) at 9 0 ° C for 130 m i n . , a n d subsequently r e a c t i n g the gelled p r o d u c t w i t h g l y c i d y l t r i m e t h y l a m m o n i u m chloride, the flocculation perfor­ m a n c e i n the s t a b i l i t y tests was i m p r o v e d , b u t d i d not reach t h a t of the c o m m e r c i a l reference. It can be assumed t h a t the b r i d g i n g a b i l i t y of l i n e a r c a t i o n i c p o l y a c r y l a m i d e s contributes p o s i t i v e l y i n the s t a b i l i t y test. A n i m p r o v e m e n t i n the flocculation a b i l i t y of the p u r i f i e d c a t i o n i c l i g n i n ether due to a n increase i n the m o l e c u l a r weight is clearly seen i n F i g u r e 5. T h e same figure reveals a moderate g a i n i n the flocculation perfor­ m a n c e relative to P r a e s t o l 41 I K w h e n the c a t i o n i c l i g n i n ether h a d 3.4% Ν i n s t e a d of 2 . 9 % Ν as i n the j a r test s h o w n i n F i g u r e 3a. A series of reactions was c a r r i e d out i n order to o p t i m i z e the r e a c t i o n conditions. A s seen i n T a b l e II, at best 3.7% of n i t r o g e n was f o u n d i n the p u r i f i e d c a t i o n i c l i g n i n , w h e n the r e a c t i o n t i m e was 5 or 8 h at 5 5 ° C ( E x p e r i m e n t s 1 a n d 3). P e r h a p s the reaction t i m e a n d t e m p e r a t u r e s h o u l d be lowered f u r t h e r . A t 3.7% Ν some 6 2 % of the h y d r o x y l groups, p r e s u m a b l y i n c l u d i n g a l l p h e n o l i c O H groups, were reacted. Since the procedure i n these e x p e r i m e n t s i n c o r p o r a t e d a smaller a m o u n t of water to avoid a base-catalyzed o p e n i n g of the o x i r a n e r i n g , h i g h solids contents (52-64%) were encountered. It is a d v i s a b l e to a d d p o w d e r e d l i g n i n first to the alkaline s o l u t i o n a n d m i x i n i t i a l l y at r o o m t e m p e r a t u r e a n d t h e n at the r e a c t i o n t e m p e r a t u r e . A s a m i x i n g device we used a r o u n d b o t t o m flask a t t a c h e d to a r o t a r y evaporator at a t m o s p h e r i c pressure a i d e d w i t h m a g n e t i c s t i r r i n g i n the flask. W h e n the s o d i u m salt o f l i g n i n a p p e a r e d to be homogeneous, the c a t i o n i c reagent was i n t r o d u c e d . T h e i n c o m p l e t e recovery b y u l t r a f i l t r a t i o n (56-92%) i n the e x p e r i m e n t s s h o w n i n T a b l e II engenders a n error when the n i t r o g e n content of the retentate is projected to represent t h a t of the whole s a m p l e . A s a m a t t e r o f fact, i n E x p e r i m e n t 1 we o b t a i n e d 1 g c a t i o n i c l i g n i n h a v i n g 3.7% n i t r o g e n b y u l t r a f i l t r a t i o n whereas b y e t h a n o l w a s h i n g 0.65 g w i t h 3.2% n i t r o g e n was o b t a i n e d . P o s s i b l y the l a t t e r m a t e r i a l was of higher m o l e c u l a r weight.

Reaction Mechanism U n d e r the e x p e r i m e n t a l c o n d i t i o n s there w i l l be c o m p e t i t i o n between

a

21. P U L K K I N E N E T A L

Preparation and Testing of Cationic Flocculants

289

F i g u r e 3. T e s t i n g of flocculation performance against (a) s i l i c a d i s p e r s i o n ; (b) d r e d g i n g effluent; ( Q ) c a t i o n i c l i g n i n ether; ( # ) P r a e s t o l 4 1 1 K .

LIGNIN: PROPERTIES AND MATERIALS

290

F i g u r e 4. C o m p a r i s o n of flocculation performance i n s t a b i l i t y test (a) against s i l i c a d i s p e r s i o n ; (b) against d r e d g i n g effluent; (O) c a t i o n i c l i g n i n ether; ( Δ ) C H 0 - c o n d e n s e d c a t i o n i c l i g n i n ether; (φ) P r a e s t o l 41 I K . 2

21. P U L K K I N E N E T A L

Preparation and Testing of Cationic Flocculants

291

% FTU

60 Γ

50 Γ

40 Γ

30 L

20 r*

10 h

0.02

0.04

0.06

0.08

0.1

0.12

ppm

F i g u r e 5. Effect o f m o l e c u l a r weight o n flocculation p e r f o r m a n c e o f c a t i o n i c l i g n i n d e r i v a t i v e : (Ç)) I n d u l i n A T , M 23000, N : 3.3%; ( Δ ) I n d u l i n A T , M 6300, N : 3.7%; ( * ) P r a e s t o l 41 I K , M i n - U - S i l 5 450 m g / l i t e r . w

w

292

LIGNIN: PROPERTIES AND MATERIALS

T a b l e II. C o n d i t i o n s for C a t i o n i z i n g L i g n i n

a

Reaction Cationic Lignin Exp. No.

Molar Ratios OH:Reagent:NaOH

Temp. °C

Time h

% Ν

% Recovery

Reagent % Yield

Reaction with Glycidyltrimethylammonium Chloride 1 2 3 4 5 6

1:0.9:0.2 1:0.9:0.2 1:0.9:0.2 1:1.0:0.2 1:1.0:0.2 1.1.0:0.2

Reaction with 7 8 9

52 52 52 65 65 65

74 65 69 51 58 42

56 65 63 68 61 92

3.7 3.6 3.7 3.3 3.4 2.7

5 8 8 5 8 20

N - ( 3 - c h l o r o - 2 - h y d r o x y p r o p y l ) t r i m e t h y l a m m o n i u m chloride

1:0.9:0.9 1:1.0:1.0 1:0.6:0.6

r.t. 65 65

50 51 44

70 65 74

2.9 3.2 2.1

50 10 12

4

E x p e r i m e n t s 1-6 were carried out i n a 1 g s a m p l e of I n d u l i n A T at 5 6 % N . V . I n e x p e r i m e n t 7 a 2 g s a m p l e of I n d u l i n A T was reacted at 5 2 % N . V . N u o t t a s a a r i l i g n i n (2 a n d 5 g) was reacted i n e x p e r i m e n t s 8 a n d 9 at 64 a n d 5 8 % N . V . , respectively. A l l the samples were p u r i f i e d b y u l t r a f i l t r a t i o n a n d the l i g n i n % recovery was d e t e r m i n e d f r o m the % n i t r o g e n a n d the y i e l d of the retentate. Reagent y i e l d s are corrected for u l t r a f i l t r a t i o n losses. R o o m temperature.

Lignin-O® + CHg-CHCHgN^CH^CI® H 0 2

lignin-OCH CHCH N®(CH3) CP 2

2

—=->

3

lignin-OCH CHCH N«iCH3) CP 2

2

3

OH O r P + CH -CHCH N®(CH ) CP 2

2

3

3

H 0 2

CH^CHCH^CHgJgCI© • OH

O® 9

CH -CHCH N®(CH ) Cr + OH© 2

OH OH

2

3

3

21. P U L K K I N E N E T A L .

Preparation and Testing of Cationic Flocculants 293

n u m b e r o f nucleophiles for opening the oxirane r i n g . Since t h e m o l a r a m o u n t o f s o d i u m h y d r o x i d e , w h i c h is first i n t r o d u c e d i n t o t h e r e a c t i o n m i x t u r e , nearly reaches t h e corresponding contents o f phenolic a n d c a r b o x y lie acid groups (Table I ) , l i g n i n phenoxide a n d c a r b o x y l a t e moieties must be t h e d o m i n a n t nucleophilic species a t the b e g i n n i n g . T h e m a i n reactions can be expressed b y the following equations. W h e t h e r o r n o t the reagent w i l l react w i t h t h e secondary h y d r o x y l group generated i n each r i n g o p e n i n g is at present u n k n o w n . T h e c h l o r o h y d r i n reaction w i t h s o d i u m h y d r o x i d e is assumed t o b e a two-step process i n w h i c h a r a t e - d e t e r m i n i n g i n t r a m o l e c u l a r displacement of chloride i o n b y negatively charged oxygen follows a p r i o r e q u i l i b r i u m between the h y d r o x i d e i o n a n d the h y d r o x y l group o f the h a l o h y d r i n (5). CI

CI

CHo-CHo + O H

ι

2

2

9

^

f a S t

^ CHo-CHo

*

I

OH

O

CI I CHo-CHo

ι

slow _ — >

2

9

CHo-CH + C r

9

\

y Q Ο Indeed, we have found t h a t N - ( 3 - c h l o r o - 2 - h y d r o x y p r o p y l ) t r i m e t h y l a m m o n i u m chloride is r e a d i l y converted w i t h s o d i u m h y d r o x i d e t o g l y c i d y l t r i ­ m e t h y l a m m o n i u m chloride, w h i c h obviously further reacts a t a slower rate w i t h l i g n i n nucleophiles t o f o r m cationic l i g n i n derivatives. 2

2

0

Conclusion E v e n a p a r t i a l conversion o f t h e h y d r o x y l groups o f kraft l i g n i n i n t o a c a t i o n i c ether derivative c o n t a i n i n g quaternary a m m o n i u m groups i m p a r t s water s o l u b i l i t y t o the derivative w h i c h is a p r o m i s i n g c a n d i d a t e as a p o t e n ­ t i a l flocculant i n l i q u i d / s o l i d separations i n i n d u s t r i a l a n d m u n i c i p a l water treatment. Literature C i t e d 1. 2. 3. 4.

Nieminen, M . ; Pulkkinen, E . ; Rahkamaa, E . Holzforschung, in press. Paschall, E . F . U.S. Patent 2 876 217, 1959. Paschall, E . F.; Minkema, W . H . U.S. Patent 2 995 513, 1961. Hudson, R. E., Jr.; Wagner, E . G . J. Am. Water Works Assoc. 1981, 40, 218-23. 5. Frost, Α. Α.; Pearson, R. G . Kinetics and Mechanism; John Wiley & Sons: New York, 1962; C h . 12, p. 288.

RECEIVED March 17,1989