Preparation of Chiral Building Blocks by Biochemical Methods

Jones, Sih and Perlman (2), an increasing number of organic chemists has become involved in studies on the application of biochemical systems in organ...
1 downloads 0 Views 797KB Size
Chapter 24

Preparation of Chiral Building Blocks by Biochemical Methods

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

Kenji Mori Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan Microbial or enzymatic preparations of the chiral building blocks useful in organic synthesis are reviewed. Conversions of these chiral building blocks to important bioactive natural products are also illustrated. In s p i t e o f t h e r e m a r k a b l e p r o g r e s s i n t h e f i e l d o f c h e m i c a l asymmetric synthesis m i c r o b i a l o r enzymatic processes a r e s t i l l a t t r a c t i v e t o p r e p a r a t i v e c h e m i s t s who w a n t t o s y n t h e s i z e e n a n t i o m e r i c a l l y pure b i o a c t i v e n a t u r a l p r o d u c t s i n amounts s u f f i c i e n t f o r extensive b i o l o g i c a l evaluation. S i n c e t h e p u b l i c a t i o n i n 1976 o f a s t a n d a r d r e f e r e n c e b o o k b y Jones, S i h and P e r l m a n (2), an i n c r e a s i n g number o f o r g a n i c c h e m i s t s has become i n v o l v e d i n s t u d i e s on t h e a p p l i c a t i o n o f b i o c h e m i c a l systems i n o r g a n i c c h e m i s t r y . T h e i r approach i s o f t e n d i f f e r e n t f r o m t h a t by b i o c h e m i s t s , because o r g a n i c c h e m i s t s a r e much more aware o f the g e n e r a l u t i l i t y o f a c h i r a l b u i l d i n g b l o c k o b t a i n a b l e by a p a r t i c u l a r biochemical reaction. Our team a t t h e U n i v e r s i t y o f Tokyo h a s pursued, o v e r a decade, b i o c h e m i c a l methods l e a d i n g t o v e r s a t i l e c h i r a l b u i l d i n g b l o c k s f o r o r g a n i c s y n t h e s i s (3). T h i s paper summarizes o u r r e c e n t work on t h e subject. 0t-Amino A c i d s as C h i r a l B u i l d i n g B l o c k s E n a n t i o m e r i c a l l y p u r e α-amino a c i d s c a n r e a d i l y be p r e - p a r e d by r e s o l v i n g ( i ) - N - a c e t y l (or c h l o r o a c e t y l ) - a - a m i n o a c i d w i t h amino acylase of Aspergillus origin. T h i s m i c r o b i a l enzyme i s unexpensive, s t a b l e , and o f b r o a d s u b s t r a t e s p e c i f i c i t y a l l o w i n g t h e r e s o l u t i o n o f α-amino a c i d s w i t h a b r a n c h e d - o r a l o n g - c h a i n a l k y l group. α-Amino A c i d I t s e l f a s a B u i l d i n g B l o c k - S y n t h e s i s o f G i z z e r o s i n e . A d i s e a s e named " b l a c k v o m i t " i s a b i g p r o b l e m i n p o u l t r y i n d u s t r y . The d i s e a s e i s a c c o m p a n i e d b y g i z z a r d e r o s i o n o r u l c e r a t i o n i n c h i c k s , a n d known t o be c a u s e d b y b r o w n f i s h m e a l i n t h e d i e t . I n 1983 O k a z a k i e t a l . i s o l a t e d 2 mg o f a t o x i c compound f r o m 10 k g o f h e a t e d m a c k e r e l meal. The t o x i n c a u s e d s e v e r e g i z z a r d e r o s i o n i n c h i c k s w i t h i n a week when f e d t o t h e m a t t h e l e v e l o f c a . 50 y g / d a y

c

0097-6156/89/0389-0348$06.00/0 1989 American Chemical Society

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

24.

MORI

Preparation of Chiral Building Blocks

349

(4) . T h i s t o x i n was named g i z z e r o s i n e and a s s i g n e d s t r u c t u r e 1 w i t h unknown a b s o l u t e c o n f i g u r a t i o n ( 4 ) . Our s y n t h e s i s o f (±)-l by t h e r e d u c t i v e c o u p l i n g o f h i s t a m i n e d i h y d r o c h l o r i d e (2) and an a l d e h y d e 3 c o n f i r m e d t h e proposed s t r u c t u r e (5). To c l a r i f y t h e a b o s l u t e c o n f i g u r a t i o n o f g i z z e r o s i n e , i t s e n a n t i o m e r s w e r e s y n t h e s i z e d a s shown i n F i g u r e 1. R e s o l u t i o n o f ( ± ) - 4 a w i t h a m i n o a c y l a s e s m o o t h l y y i e l d e d ( S ) - 4 b and ( R ) - 4 a . Only (5) - l was found t o be t o x i c when f e d t o c h i c k s (6). α-Hydroxy A c i d and Epoxide as B u i l d i n g B l o c k s . D e a m i n a t i o n o f an ga m i n o a c i d w i t h n i t r o u s a c i d i s known t o g i v e t h e c o r r e s p o n d i n g g hydroxy a c i d w i t h r e t e n t i o n o f c o n f i g u r a t i o n . An g-hydroxy a c i d can be c o n v e r t e d t o an e p o x i d e . B o t h g - h y d r o x y a c i d s and e p o x i d e s a r e v e r s a t i l e c h i r a l b u i l d i n g b l o c k s i n n a t u r a l p r o d u c t s s y n t h e s e s (30· A l c o h o l as a C h i r a l B u i l d i n g B l o c k V a r i o u s l i p a s e s and e s t e r a s e s a r e u s e d f o r t h e p r e p a r a t i o n o f o p t i c a l l y a c t i v e a l c o h o l s , w h i c h can s e r v e as c h i r a l b u i l d i n g b l o c k s . ( l S , 4 R ) - 4 - t - B u t y l d i m e t h y l s i l y l o x y - 3 - c h l o r o - 2 - c y c l o p e n t e n - l - o l as a B u i l d i n g B l o c k f o r P u n a g l a n d i n 4. P u n a g l a n d i n 4 (PUG 4, F i g u r e 2) i s one o f the c h l o r i n a t e d m a r i n e p r o s t a n o i d s i s o l a t e d f r o m the H a w a i i a n o c t o c o r a l T e l e s t o r u s e i by S c h e u e r e t a l . ( 2 ) · In our s y n t h e s i s of PUG 4, t h e key c h i r a l b u i l d i n g b l o c k 9 was p r e p a r e d by t r e a t i n g a s t e r e o i s o m e r i c m i x t u r e of 8 w i t h p i g p a n c r e a t i c l i p a s e (PPL)(8). F o r t u i t o u s l y , t h e d e s i r e d s t e r e o i s o m e r 9 o f 100% e.e. was t h e o n l y p r o d u c t (25% y i e l d ) o f P P L - c a t a l y z e d h y d r o l y s i s . O x i d a t i o n o f 9 gave 10, w h i c h was s u b s e q u e n t l y c o n v e r t e d t o PUG 4(8). ( R ) - 2 - Ace t o x y me t h y 1-3 -pheny 1 - 1 - p r o p a n o l a s a B u i l d i n g B l o c k f o r Af a c t o r . A - f a c t o r ( 1 4 , F i g u r e 3) i s t h e i n d u c e r o f t h e b i o s y n t h e s i s o f s t r e p t o m y c i n i n i n a c t i v e mutants o f S t r e p t o m y c e s g r i s e u s (9). I t also induces the formation of spores in asporophological m o d i f i c a t i o n s o f £u g r i s e u s (9). Our f i r s t c h i r a l s y n t h e s i s o f 14 employed ( S ) - p a r a c o n i c a c i d (13) as t h e key i n t e r m e d i a t e , w h i c h was o b t a i n e d by the c o n v e n t i o n a l o p t i c a l r e s o l u t i o n (10,11). We r e c e n t l y d e v e l o p e d a r o u t e i n w h i c h (S)-13 was p r e p a r e d by an e n z y m a t i c p r o c e s s ( M o r i , K.; C h i b a , N., The U n i v e r s i t y o f T o k y o , u n p u b l i s h e d d a t a ) . T r e a t m e n t o f d i a c e t a t e 11 w i t h PPL gave (R)-12 o f 86% e.e. C o n v e r s i o n o f ( R ) - 1 2 t o ( S ) - 1 3 was f o l l o w e d by i t s p u r i f i c a t i o n a s an a m i n e s a l t t o g i v e p u r e ( S ) - 1 3 , w h i c h was converted i n s e v e r a l steps to A-factor (14). β-Hydroxy E s t e r s as C h i r a l B u i l d i n g B l o c k s Due t o t h e i r b i f u n c t i o n a l n a t u r e , β - h y d r o x y e s t e r s a r e v e r s a t i l e b u i l d i n g b l o c k s i n o r g a n i c s y n t h e s i s as d e t a i l e d below. P r e p a r a t o n o f t h e E n a n t i o m e r s o f E t h y l 3-Hydroxybutanoate. Reduction o f e t h y l a c e t o a c e t a t e w i t h y e a s t y i e l d s e t h y l (S)-3-hydroxybutanoate (15) a s shown i n F i g u r e 4 ( 1 2 - 1 4 ) . P u r i f i c a t i o n o f c r u d e 15 a s i t s c r y s t a l l i n e 3 , 5 - d i n i t r o b e n z o a t e g i v e s (S)-15 o f 100% e.e. (14,15). E t h y l ( R ) - 3 - h y d r o x y b u t a n o a t e (15) o f 100% e.e. i s p r e p a r e d by e t h a n o l y s i s o f p o l y - 3 - h y d r o x y b u t a n o a t e (PHB)(16,17). Seebach e t a l . used PHB g e n e r a t e d by A l c a l i q e n e s eutrophus (16), w h i l e we employed Zoogloea ramigera(15,17). E t h y l 3-Hydroxybutanoate as a B u i l d i n g B l o c k f o r S u l c a t o l and P i t y o l . ( S ) - S u l c a t o l (16, F i g u r e 5) i s t h e a g g r e g a t i o n pheromone of G n a t h o t r i c h u s r e t u s u s . T h i s was s y n t h e s i z e d i n 73% o v e r a l l y i e l d f r o m ( S ) - 1 5 a s shown i n F i g u r e 5 (13,18). S u l c a t o l (16) was c o n v e r t e d t o p i t y o l (17) by t r e a t m e n t w i t h t h a l l i u m ( I I I ) t r i a c e t a t e . P i t y o l (17) is a male-specific a t t r a c t a n t of the bark b e e t l e P i t y o p h t h o r u s p i t y o q r a p h u s ( 18).

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

350

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

H

H

H 0 C ^ X

NHAc

C

2

NHC0CH Cl

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

H

H

2

f)

C0 Bn •

C0,Bn

2

H

NHC0 Bn 2

2

(S)-£ COo

+ 2

L

>

NHC0 Bn

H'

(S)-£

H

2

e)

b,c,d)

O H C ^ O ^

NHCOCH Cl

(R)-4a

(S)-Afe

(±)-4q

(S)-4b

° 2

H NH

2

NHC0 Bn 2

H

(S)-2

(SH-2HCI

F i g u r e 1. S y n t h e s i s o f g i z z e r o s i n e . Reagents: a) A s p e r g i l l u s amino acylase, 37 °C, 48 h; b) CbzCl/toluene, NaOH aq-An (92%); c) CS2CO3/DMF; d) BnBr/DMF (45%); e) BH THF ( 8 3 % ) ; f ) (COCl) /DMSO-CH Cl2, E t N (quant.); g) NaBH CN, MS 3A /MeOH (69%); h) H /Pd-C/EtOH; i ) d i l HC1, Recrystallization from MeOH (33%). 3

o

2

2

3

3

2

OSi

4-

V OAc

4+

CI

OAc

b)

>

V ÔH

9

8

os'i-f ! I

"A 10

Figure 2. Synthesis of (1 S,4R)-4-t-butyldimethylsilyloxy-3chloro-2-cyclopenten-1-ol. Reagents: a) PPL (25%); b) PDC/DMF (91%).

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

24. MORI

351

Preparation of Chiral Building Blocks

C I 0 Et 2

a)

PhCH Br

OAc

b.c)

d)

PhCH —^

PhCH -^

2

2

2

OAc

C0 Et 2

/v^C0 H 2

0

P h C H

A

c

f.g.h.i)

2"K H*'

>

OH

c.d) > 50-70V.

> \À/C0 Me 2

93V. e.e.

\ λ / 0 V

2

Μ ·

V

(R)-18

OH

OH f.c.d)

~40V.' Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

(S).J8 Figure 5. Synthesis of ( S ) - s u l c a t o l and (2R,5S)-pityol. Reagents: a) DHP, TsOH (quant.); b) LAH/ether (89%); c) TSCI/C5H5N (quant.); d) Me2C=CHMgBr Cul/THF (quant.); e) AcOH-THF-H 0, Δ (82%); f ) Tl(OAc) /HBF -An-H20 (99%; 12% after MPLC purification). f

2

OH A/ 2 (SH5 C 0

3

OH

OTHP E t

4

d.e)

a.b.c), OTs

f)

Λ Λ Λ (S)-16 Sulcatol

^0' " f OH (2R,5S)-17 Pityol Figure 6. Preparation of the enantiomers of methyl 3 hydroxypentanoate. Reagents: a) Candida rugosa; b) MeOHH2SO4 (80%); c) 3 5-(02N)9CeH3C02H DMAP, DCC/CH Cl2; r e c r y s t a l l i z a t i o n ; d) KOH/THF-MeOH-H20; e) Saccharomyces cerevisiae (70%); f) I^CX^/MeOH. f

f

2

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

354

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

OH ^A^C02Me

a,b,c,d,e )

f) v

0CH2Ph

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

(R)-18 e

( 93 / e.e.) e

QSif

0

m)

I) 20 (1007.e.e.) OH 1

0

OH

1

(1

: 2.8)

OH

0

OH

Γ

(4S,6S,7S)-19

(4R,6S,7S)-19

Figure 7. Synthesis of (4S,6S,7S)-serricornin. Reagents: a) LDA, Mel; b) DHP, PPTS (61% from 18); c) LAH (99%); d) NaH, P h C H C l (94%); e) TsOH, MeOH (quant.); f ) , 3,5(02N)2C6H C02H, PI13P, Et02CN=NC02Et, r e c r y s t a l l i z a t i o n (40%); g) KOH (95%); h) t-BuMe2SiCl, imidazole (quant.); i ) H /Pd-C (97%), j ) T s C l 7 c H N ; k) Nal (99.6%, 2 steps); 1) Et200, LDA (80%); m) AcOH-THF-H 0 (43%). 2

3

2

5

5

2

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

24. MORI

355

Preparation of Chiral Building Blocks

Ο

Ο

OSi-|-

(+)-23 Sporogen-AO 1

Figure 8. Synthesis o f (+)-sporogen-AO 1. Reagents: a) baker's yeast (74%); b) DHP, PPTS (quant.); c) LAH/ether (98%); d) TsCl/C5H5N (95%); e) PPTS/MeOH; f ) aq HC104~ether (85%); g) t-BuOK/t-BuOH (78.5%); h) Ph P, Et0 CN=NC02Et, PhC02H/THF; LiOH/MeOH (80%); i ) t-BuMe SiCl, imidazole-DMF (quant.); j ) Li/NH -t-BuOH, M e l (83%); k) M e S i I (Me Si)2NH; CH2=CHCOMe B F OEt2/i-PrOH-MeN0 (68%); 1) p y r r o l i d i n e / C H (78.6%); m) LDA, MeCHO (92%); n) (COCl)2, DMSO E t N (78.5%); o) DDQ/ether (83%); p) t-BuOOH-Triton Β (70%); q) Me SiCH MgCl; H2SO4-THF; HF-MeCN (88%). 3

2

2

3

3

3

f

6

f

3

2

6

3

3

2

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

r

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

356

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

Figure 9. Synthesis of the enantiomers of p o l y g o d i a l . Reagents: a) baker's yeast (63-79%); b) t-BuMe SiCl (81%); c) LDA/THF-HMPA, Mel (89%); d) NaC=CH/liq NH (99%); e) CuSO^xylene, Δ (51%); f ) H /Pd-CaC03, q u i n o l i n e i n npentane (quant.); g) Me0 CC=CC0 Me, 110°C, 30 h (97%); h) aq HF-MeCN (27% of 27 and 27% of 28 after MPLC); i ) DBU/THF, Δ; H /Pd-C (80% from 27); j ) TfC1-DMAP/CH C1 (86%); k) H /Pd (89%); 1) LAH/ether (82%); m) (C0C1) , DMSO Et3N/CH Cl (63%); n) DBU/THF 2

3

2

2

2

2

2

2

2

2

f

Figure 10. Synthesis of juvenile hormones I and II.

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

2

2

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

24. MORI

357

Preparation of Chiral Building Blocks

B a e y e r - V i l l i g e r o x i d a t i o n r e a c t i o n t o cleave the cyclohexane r i n g (31). ( 2S, 3S ) - 2 - E t h y 1 - 3 - h y d r o x y - 2 - m e t h y l c y c l o h e x a n o n e a s a B u i l d i n g B l o c k f o r J u v e n i l e Hormones I a n d I I . R e d u c t i o n o f a p r o c h i r a l 1,3d i k e t o n e 30 w i t h P i c h i a t e r r i c o l a KI 0117 f u r n i s h e s (2S,3S)-31 o f 99% e.e. (32). As shown i n F i g u r e 10, 31 was e m p l o y e d a s t h e s t a r t i n g m a t e r i a l f o r the s y n t h e s i s o f e n a n t i o m e r i c a l l y pure (+)-juvenile h o r m o n e s I a n d I I (32). P u r i f i c a t i o n o f 3 1 was a c h i e v e d by r e c r y s t a l l i z a t i o n o f 3 2 , whose B a e y e r - V i l l i g e r o x i d a t i o n g a v e a c r y s t a l l i n e l a c t o n e 33. M e t h a n o l y s i s o f t h e l a c t o n e 33 was f o l l w e d by p r o t e c t i o n o f the g l y c o l system t o g i v e 34. T h i s was c o n v e r t e d t o j u v e n i l e hormones I (35) and I I (36). ( I S , 4 R , 5 S ) - 5 - H y d r o x y - l - m e t h y l b i c y c l o [ 2 . 2 . 1 ]heptan-3-one as a B u i l d i n g B l o c k f o r G l y c i n o e c l e p i n A. R e d u c t i o n o f l - m e t h y l b i c y c l o [ 2.2.1 ] heptane-3,5-dione (37) w i t h baker's y e a s t g i v e s (lS,4R,5S)-5-hydroxyl - m e t h y l b i c y c l o [ 2 . 2 . 1 ] h e p t a n - 3 - o n e (38) o f 8 0 - 8 7 % e.e. a s shown i n F i g u r e 11 ( M o r i , K.; W a t a n a b e , H., T h e U n i v e r s i t y o f T o k y o , unpublished data). By e m p l o y i n g two β-hydroxy ketones 25 and 38 a s t h e b u i l d i n g b l o c k s , g l y c i n o e c l e p i n A (40) was s y n t h e s i z e d v i a 3 9 ( M o r i , K.j Watanabe, H., t h e U n i v e r s i t y o f T o k y o , u n p u b l i s h e d d a t a ) . G l y c i n o e c l e p i n A i s a degraded t r i t e r p e n o i d w i t h s i g n i f i c a n t h a t c h s t i m u l a t i n g a c t i v i t y f o r t h e soybean c y s t nematode (33, 34).

CÛ2H Glycinoeclepin A 40

Figure 11.

Synthesis of glycinoeclepin A.

Acknowledgments I thank my co-workers whose names appear i n t h e r e f e r e n c e s f o r t h e i r e n t h u s i a s m i n c a r r y i n g o u t t h e b i o c h e m i c a l and s y n t h e t i c works. F i n a n c i a l s u p p o r t o f t h i s p r o j e c t by Japanese M i n i s t r y o f E d u c a t i o n , S c i e n c e and C u l t u r e i s acknowledged w i t h thanks.

Literature Cited

1. 2.

Morrison, J.D., Ed. Asymmetric Synthesis Vols. Academic Press: Orlando, 1983-1985. Jones, J.B.; Sih, C.J.; Perlman, D., Eds. Application Biochemical Systems in Organic Chemistry Part 1; Wiley: New York, 1976.

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

1-5; of John

358 3. 4. 5. 6. 7.

Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024

8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

Mori, K. In Studies in Natural Products Chemistry Vol. 1; Rahman, A.-u., Ed.; Elsevier: Amsterdam, 1988. Okazaki, T.; Noguchi, T. Igarashi, K.; Sakagami. Y.; Seto, H.; Mori, K.; Naito, H.; Masumura, T.; Sugahara, M. Agric. Biol. Chem. 1983, 47, 2949. Mori,K.; Okazaki, T.; Noguchi, T.; Naito, H. Agric.Biol.Chem. 1983, 47, 2131. Mori, K.; Sugai, T.; Maeda, Y.; Okazaki, T.; Noguchi, T.; Naito, H. Tetrahedron 1985, 41, 5307. Baker, B.J.; Okuda, R.K.; Yu, P.T.K.; Scheuer, P.J. J.Am. Chem. Soc. 1985, 107, 2976. Mori, K.; Takeuchi, T. Tetrahedron 1988, 44, 333. Kleiner, E.M.; Pliner, S.A.; Soifer, V.S.; Onoprienko, V.V.; Blasheva, T.A.; Rozynov, B.V.; Khokhlov, A.S. Bioorg. Khim. 1976, 2, 1142. Mori, K.; Yamane, K. Tetrahedron 1982, 38, 2919. Mori, K. Tetrahedron 1983, 39, 3107. Deol, B.S.; Ridley, D.D.; Simpson, G.W. Aust. J. Chem. 1976, 29, 2459. Mori, K. Tetrahedron 1981, 37, 1341. Hungerbuhler, E; Seebach, D.; Wasmuth, D.S.; Helv. Chim. Acta 1981, 64, 1467. Sugai, T. Fujita, M.; Mori, K. Nippon Kagaku Kaishi 1983, 1315. Seebach, D.; Zuger, M.F. Helv. Chim. Acta 1982, 65, 495. Mori, K.; Watanabe, H. Tetrahedron 1984, 40, 299. Mori, K.; Puapoomchareon, P. Liebigs Ann. Chem 1987, 271. Hasegawa, J.; Hamaguchi,S.;Ogura, M.; Watanabe, K. J. Ferment. Technol. 1981, 59, 257. Mori, K.; Watanabe, H. Tetrahedron 1985, 41, 3423. Mori, K.; Mori, H.; Sugai, T. Tetrahedron 1985, 41, 919. Chuman, T.; Kohno, M.; Kato, K; Noguchi, M. Tetrahedron Lett. 1979, 2361. Kitahara, T.; Mori, K. Tetrahedron Lett. 1985, 26, 451. Tanaka, S.; Wada, K.; Marumo, S.: Hattori, H. Tetrahedron Lett 1984, 25, 5907. Mori, K.; Tamura, H. Liebigs Ann. Chem. 1988, 97. Kitahara, T.; Kurata, H.; Mori, K. Tetrahedron 1988, 43, 4339. Mori, K.; Mori, H. Tetrahedron 1985, 41, 5487. Mori, K.; Watanabe, H. Tetrahedron 1986, 42, 273. Barnes, C.S.; Loder, J.W. Aust. J. Chem. 1962, 15, 322. Kubo, I.; Lee, Y.-W.; Pettei, M.; Pilkiewicz, F.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1976, 1013. Mori, K.; Mori, H. Tetrahedron 1987, 43, 4097. Mori, K.; Fujiwhara, M. Tetrahedron 1988, 44, 343. Masamune,T.;Anetani, M; Fukuzawa, A.; Takasugi, M.; Matsue, H.; Kobayashi, K.; Ueno, S.; Katsui, N. Bull. Chem. Soc. Jpn. 1987, 60, 981. Masamune,T.;Fukuzawa, A.; Furusaki, A.; Ikura, M.; Matsue, H.; Kaneko, T.; Abiko, A.; Sakamoto, N.; Tanimoto, N.; Murai, A. Bull. Chem. Soc. Jpn. 1987, 60. 1001.

RECEIVED

September 19, 1988

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.