Chapter 24
Preparation of Chiral Building Blocks by Biochemical Methods
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
Kenji Mori Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan Microbial or enzymatic preparations of the chiral building blocks useful in organic synthesis are reviewed. Conversions of these chiral building blocks to important bioactive natural products are also illustrated. In s p i t e o f t h e r e m a r k a b l e p r o g r e s s i n t h e f i e l d o f c h e m i c a l asymmetric synthesis m i c r o b i a l o r enzymatic processes a r e s t i l l a t t r a c t i v e t o p r e p a r a t i v e c h e m i s t s who w a n t t o s y n t h e s i z e e n a n t i o m e r i c a l l y pure b i o a c t i v e n a t u r a l p r o d u c t s i n amounts s u f f i c i e n t f o r extensive b i o l o g i c a l evaluation. S i n c e t h e p u b l i c a t i o n i n 1976 o f a s t a n d a r d r e f e r e n c e b o o k b y Jones, S i h and P e r l m a n (2), an i n c r e a s i n g number o f o r g a n i c c h e m i s t s has become i n v o l v e d i n s t u d i e s on t h e a p p l i c a t i o n o f b i o c h e m i c a l systems i n o r g a n i c c h e m i s t r y . T h e i r approach i s o f t e n d i f f e r e n t f r o m t h a t by b i o c h e m i s t s , because o r g a n i c c h e m i s t s a r e much more aware o f the g e n e r a l u t i l i t y o f a c h i r a l b u i l d i n g b l o c k o b t a i n a b l e by a p a r t i c u l a r biochemical reaction. Our team a t t h e U n i v e r s i t y o f Tokyo h a s pursued, o v e r a decade, b i o c h e m i c a l methods l e a d i n g t o v e r s a t i l e c h i r a l b u i l d i n g b l o c k s f o r o r g a n i c s y n t h e s i s (3). T h i s paper summarizes o u r r e c e n t work on t h e subject. 0t-Amino A c i d s as C h i r a l B u i l d i n g B l o c k s E n a n t i o m e r i c a l l y p u r e α-amino a c i d s c a n r e a d i l y be p r e - p a r e d by r e s o l v i n g ( i ) - N - a c e t y l (or c h l o r o a c e t y l ) - a - a m i n o a c i d w i t h amino acylase of Aspergillus origin. T h i s m i c r o b i a l enzyme i s unexpensive, s t a b l e , and o f b r o a d s u b s t r a t e s p e c i f i c i t y a l l o w i n g t h e r e s o l u t i o n o f α-amino a c i d s w i t h a b r a n c h e d - o r a l o n g - c h a i n a l k y l group. α-Amino A c i d I t s e l f a s a B u i l d i n g B l o c k - S y n t h e s i s o f G i z z e r o s i n e . A d i s e a s e named " b l a c k v o m i t " i s a b i g p r o b l e m i n p o u l t r y i n d u s t r y . The d i s e a s e i s a c c o m p a n i e d b y g i z z a r d e r o s i o n o r u l c e r a t i o n i n c h i c k s , a n d known t o be c a u s e d b y b r o w n f i s h m e a l i n t h e d i e t . I n 1983 O k a z a k i e t a l . i s o l a t e d 2 mg o f a t o x i c compound f r o m 10 k g o f h e a t e d m a c k e r e l meal. The t o x i n c a u s e d s e v e r e g i z z a r d e r o s i o n i n c h i c k s w i t h i n a week when f e d t o t h e m a t t h e l e v e l o f c a . 50 y g / d a y
c
0097-6156/89/0389-0348$06.00/0 1989 American Chemical Society
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
24.
MORI
Preparation of Chiral Building Blocks
349
(4) . T h i s t o x i n was named g i z z e r o s i n e and a s s i g n e d s t r u c t u r e 1 w i t h unknown a b s o l u t e c o n f i g u r a t i o n ( 4 ) . Our s y n t h e s i s o f (±)-l by t h e r e d u c t i v e c o u p l i n g o f h i s t a m i n e d i h y d r o c h l o r i d e (2) and an a l d e h y d e 3 c o n f i r m e d t h e proposed s t r u c t u r e (5). To c l a r i f y t h e a b o s l u t e c o n f i g u r a t i o n o f g i z z e r o s i n e , i t s e n a n t i o m e r s w e r e s y n t h e s i z e d a s shown i n F i g u r e 1. R e s o l u t i o n o f ( ± ) - 4 a w i t h a m i n o a c y l a s e s m o o t h l y y i e l d e d ( S ) - 4 b and ( R ) - 4 a . Only (5) - l was found t o be t o x i c when f e d t o c h i c k s (6). α-Hydroxy A c i d and Epoxide as B u i l d i n g B l o c k s . D e a m i n a t i o n o f an ga m i n o a c i d w i t h n i t r o u s a c i d i s known t o g i v e t h e c o r r e s p o n d i n g g hydroxy a c i d w i t h r e t e n t i o n o f c o n f i g u r a t i o n . An g-hydroxy a c i d can be c o n v e r t e d t o an e p o x i d e . B o t h g - h y d r o x y a c i d s and e p o x i d e s a r e v e r s a t i l e c h i r a l b u i l d i n g b l o c k s i n n a t u r a l p r o d u c t s s y n t h e s e s (30· A l c o h o l as a C h i r a l B u i l d i n g B l o c k V a r i o u s l i p a s e s and e s t e r a s e s a r e u s e d f o r t h e p r e p a r a t i o n o f o p t i c a l l y a c t i v e a l c o h o l s , w h i c h can s e r v e as c h i r a l b u i l d i n g b l o c k s . ( l S , 4 R ) - 4 - t - B u t y l d i m e t h y l s i l y l o x y - 3 - c h l o r o - 2 - c y c l o p e n t e n - l - o l as a B u i l d i n g B l o c k f o r P u n a g l a n d i n 4. P u n a g l a n d i n 4 (PUG 4, F i g u r e 2) i s one o f the c h l o r i n a t e d m a r i n e p r o s t a n o i d s i s o l a t e d f r o m the H a w a i i a n o c t o c o r a l T e l e s t o r u s e i by S c h e u e r e t a l . ( 2 ) · In our s y n t h e s i s of PUG 4, t h e key c h i r a l b u i l d i n g b l o c k 9 was p r e p a r e d by t r e a t i n g a s t e r e o i s o m e r i c m i x t u r e of 8 w i t h p i g p a n c r e a t i c l i p a s e (PPL)(8). F o r t u i t o u s l y , t h e d e s i r e d s t e r e o i s o m e r 9 o f 100% e.e. was t h e o n l y p r o d u c t (25% y i e l d ) o f P P L - c a t a l y z e d h y d r o l y s i s . O x i d a t i o n o f 9 gave 10, w h i c h was s u b s e q u e n t l y c o n v e r t e d t o PUG 4(8). ( R ) - 2 - Ace t o x y me t h y 1-3 -pheny 1 - 1 - p r o p a n o l a s a B u i l d i n g B l o c k f o r Af a c t o r . A - f a c t o r ( 1 4 , F i g u r e 3) i s t h e i n d u c e r o f t h e b i o s y n t h e s i s o f s t r e p t o m y c i n i n i n a c t i v e mutants o f S t r e p t o m y c e s g r i s e u s (9). I t also induces the formation of spores in asporophological m o d i f i c a t i o n s o f £u g r i s e u s (9). Our f i r s t c h i r a l s y n t h e s i s o f 14 employed ( S ) - p a r a c o n i c a c i d (13) as t h e key i n t e r m e d i a t e , w h i c h was o b t a i n e d by the c o n v e n t i o n a l o p t i c a l r e s o l u t i o n (10,11). We r e c e n t l y d e v e l o p e d a r o u t e i n w h i c h (S)-13 was p r e p a r e d by an e n z y m a t i c p r o c e s s ( M o r i , K.; C h i b a , N., The U n i v e r s i t y o f T o k y o , u n p u b l i s h e d d a t a ) . T r e a t m e n t o f d i a c e t a t e 11 w i t h PPL gave (R)-12 o f 86% e.e. C o n v e r s i o n o f ( R ) - 1 2 t o ( S ) - 1 3 was f o l l o w e d by i t s p u r i f i c a t i o n a s an a m i n e s a l t t o g i v e p u r e ( S ) - 1 3 , w h i c h was converted i n s e v e r a l steps to A-factor (14). β-Hydroxy E s t e r s as C h i r a l B u i l d i n g B l o c k s Due t o t h e i r b i f u n c t i o n a l n a t u r e , β - h y d r o x y e s t e r s a r e v e r s a t i l e b u i l d i n g b l o c k s i n o r g a n i c s y n t h e s i s as d e t a i l e d below. P r e p a r a t o n o f t h e E n a n t i o m e r s o f E t h y l 3-Hydroxybutanoate. Reduction o f e t h y l a c e t o a c e t a t e w i t h y e a s t y i e l d s e t h y l (S)-3-hydroxybutanoate (15) a s shown i n F i g u r e 4 ( 1 2 - 1 4 ) . P u r i f i c a t i o n o f c r u d e 15 a s i t s c r y s t a l l i n e 3 , 5 - d i n i t r o b e n z o a t e g i v e s (S)-15 o f 100% e.e. (14,15). E t h y l ( R ) - 3 - h y d r o x y b u t a n o a t e (15) o f 100% e.e. i s p r e p a r e d by e t h a n o l y s i s o f p o l y - 3 - h y d r o x y b u t a n o a t e (PHB)(16,17). Seebach e t a l . used PHB g e n e r a t e d by A l c a l i q e n e s eutrophus (16), w h i l e we employed Zoogloea ramigera(15,17). E t h y l 3-Hydroxybutanoate as a B u i l d i n g B l o c k f o r S u l c a t o l and P i t y o l . ( S ) - S u l c a t o l (16, F i g u r e 5) i s t h e a g g r e g a t i o n pheromone of G n a t h o t r i c h u s r e t u s u s . T h i s was s y n t h e s i z e d i n 73% o v e r a l l y i e l d f r o m ( S ) - 1 5 a s shown i n F i g u r e 5 (13,18). S u l c a t o l (16) was c o n v e r t e d t o p i t y o l (17) by t r e a t m e n t w i t h t h a l l i u m ( I I I ) t r i a c e t a t e . P i t y o l (17) is a male-specific a t t r a c t a n t of the bark b e e t l e P i t y o p h t h o r u s p i t y o q r a p h u s ( 18).
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
350
BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY
H
H
H 0 C ^ X
NHAc
C
2
NHC0CH Cl
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
H
H
2
f)
C0 Bn •
C0,Bn
2
H
NHC0 Bn 2
2
(S)-£ COo
+ 2
L
>
NHC0 Bn
H'
(S)-£
H
2
e)
b,c,d)
O H C ^ O ^
NHCOCH Cl
(R)-4a
(S)-Afe
(±)-4q
(S)-4b
° 2
H NH
2
NHC0 Bn 2
H
(S)-2
(SH-2HCI
F i g u r e 1. S y n t h e s i s o f g i z z e r o s i n e . Reagents: a) A s p e r g i l l u s amino acylase, 37 °C, 48 h; b) CbzCl/toluene, NaOH aq-An (92%); c) CS2CO3/DMF; d) BnBr/DMF (45%); e) BH THF ( 8 3 % ) ; f ) (COCl) /DMSO-CH Cl2, E t N (quant.); g) NaBH CN, MS 3A /MeOH (69%); h) H /Pd-C/EtOH; i ) d i l HC1, Recrystallization from MeOH (33%). 3
o
2
2
3
3
2
OSi
4-
V OAc
4+
CI
OAc
b)
>
V ÔH
9
8
os'i-f ! I
"A 10
Figure 2. Synthesis of (1 S,4R)-4-t-butyldimethylsilyloxy-3chloro-2-cyclopenten-1-ol. Reagents: a) PPL (25%); b) PDC/DMF (91%).
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
24. MORI
351
Preparation of Chiral Building Blocks
C I 0 Et 2
a)
PhCH Br
OAc
b.c)
d)
PhCH —^
PhCH -^
2
2
2
OAc
C0 Et 2
/v^C0 H 2
0
P h C H
A
c
f.g.h.i)
2"K H*'
>
OH
c.d) > 50-70V.
> \À/C0 Me 2
93V. e.e.
\ λ / 0 V
2
Μ ·
V
(R)-18
OH
OH f.c.d)
~40V.' Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
(S).J8 Figure 5. Synthesis of ( S ) - s u l c a t o l and (2R,5S)-pityol. Reagents: a) DHP, TsOH (quant.); b) LAH/ether (89%); c) TSCI/C5H5N (quant.); d) Me2C=CHMgBr Cul/THF (quant.); e) AcOH-THF-H 0, Δ (82%); f ) Tl(OAc) /HBF -An-H20 (99%; 12% after MPLC purification). f
2
OH A/ 2 (SH5 C 0
3
OH
OTHP E t
4
d.e)
a.b.c), OTs
f)
Λ Λ Λ (S)-16 Sulcatol
^0' " f OH (2R,5S)-17 Pityol Figure 6. Preparation of the enantiomers of methyl 3 hydroxypentanoate. Reagents: a) Candida rugosa; b) MeOHH2SO4 (80%); c) 3 5-(02N)9CeH3C02H DMAP, DCC/CH Cl2; r e c r y s t a l l i z a t i o n ; d) KOH/THF-MeOH-H20; e) Saccharomyces cerevisiae (70%); f) I^CX^/MeOH. f
f
2
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
354
BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY
OH ^A^C02Me
a,b,c,d,e )
f) v
0CH2Ph
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
(R)-18 e
( 93 / e.e.) e
QSif
0
m)
I) 20 (1007.e.e.) OH 1
0
OH
1
(1
: 2.8)
OH
0
OH
Γ
(4S,6S,7S)-19
(4R,6S,7S)-19
Figure 7. Synthesis of (4S,6S,7S)-serricornin. Reagents: a) LDA, Mel; b) DHP, PPTS (61% from 18); c) LAH (99%); d) NaH, P h C H C l (94%); e) TsOH, MeOH (quant.); f ) , 3,5(02N)2C6H C02H, PI13P, Et02CN=NC02Et, r e c r y s t a l l i z a t i o n (40%); g) KOH (95%); h) t-BuMe2SiCl, imidazole (quant.); i ) H /Pd-C (97%), j ) T s C l 7 c H N ; k) Nal (99.6%, 2 steps); 1) Et200, LDA (80%); m) AcOH-THF-H 0 (43%). 2
3
2
5
5
2
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
24. MORI
355
Preparation of Chiral Building Blocks
Ο
Ο
OSi-|-
(+)-23 Sporogen-AO 1
Figure 8. Synthesis o f (+)-sporogen-AO 1. Reagents: a) baker's yeast (74%); b) DHP, PPTS (quant.); c) LAH/ether (98%); d) TsCl/C5H5N (95%); e) PPTS/MeOH; f ) aq HC104~ether (85%); g) t-BuOK/t-BuOH (78.5%); h) Ph P, Et0 CN=NC02Et, PhC02H/THF; LiOH/MeOH (80%); i ) t-BuMe SiCl, imidazole-DMF (quant.); j ) Li/NH -t-BuOH, M e l (83%); k) M e S i I (Me Si)2NH; CH2=CHCOMe B F OEt2/i-PrOH-MeN0 (68%); 1) p y r r o l i d i n e / C H (78.6%); m) LDA, MeCHO (92%); n) (COCl)2, DMSO E t N (78.5%); o) DDQ/ether (83%); p) t-BuOOH-Triton Β (70%); q) Me SiCH MgCl; H2SO4-THF; HF-MeCN (88%). 3
2
2
3
3
3
f
6
f
3
2
6
3
3
2
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
r
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
356
BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY
Figure 9. Synthesis of the enantiomers of p o l y g o d i a l . Reagents: a) baker's yeast (63-79%); b) t-BuMe SiCl (81%); c) LDA/THF-HMPA, Mel (89%); d) NaC=CH/liq NH (99%); e) CuSO^xylene, Δ (51%); f ) H /Pd-CaC03, q u i n o l i n e i n npentane (quant.); g) Me0 CC=CC0 Me, 110°C, 30 h (97%); h) aq HF-MeCN (27% of 27 and 27% of 28 after MPLC); i ) DBU/THF, Δ; H /Pd-C (80% from 27); j ) TfC1-DMAP/CH C1 (86%); k) H /Pd (89%); 1) LAH/ether (82%); m) (C0C1) , DMSO Et3N/CH Cl (63%); n) DBU/THF 2
3
2
2
2
2
2
2
2
2
f
Figure 10. Synthesis of juvenile hormones I and II.
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
2
2
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
24. MORI
357
Preparation of Chiral Building Blocks
B a e y e r - V i l l i g e r o x i d a t i o n r e a c t i o n t o cleave the cyclohexane r i n g (31). ( 2S, 3S ) - 2 - E t h y 1 - 3 - h y d r o x y - 2 - m e t h y l c y c l o h e x a n o n e a s a B u i l d i n g B l o c k f o r J u v e n i l e Hormones I a n d I I . R e d u c t i o n o f a p r o c h i r a l 1,3d i k e t o n e 30 w i t h P i c h i a t e r r i c o l a KI 0117 f u r n i s h e s (2S,3S)-31 o f 99% e.e. (32). As shown i n F i g u r e 10, 31 was e m p l o y e d a s t h e s t a r t i n g m a t e r i a l f o r the s y n t h e s i s o f e n a n t i o m e r i c a l l y pure (+)-juvenile h o r m o n e s I a n d I I (32). P u r i f i c a t i o n o f 3 1 was a c h i e v e d by r e c r y s t a l l i z a t i o n o f 3 2 , whose B a e y e r - V i l l i g e r o x i d a t i o n g a v e a c r y s t a l l i n e l a c t o n e 33. M e t h a n o l y s i s o f t h e l a c t o n e 33 was f o l l w e d by p r o t e c t i o n o f the g l y c o l system t o g i v e 34. T h i s was c o n v e r t e d t o j u v e n i l e hormones I (35) and I I (36). ( I S , 4 R , 5 S ) - 5 - H y d r o x y - l - m e t h y l b i c y c l o [ 2 . 2 . 1 ]heptan-3-one as a B u i l d i n g B l o c k f o r G l y c i n o e c l e p i n A. R e d u c t i o n o f l - m e t h y l b i c y c l o [ 2.2.1 ] heptane-3,5-dione (37) w i t h baker's y e a s t g i v e s (lS,4R,5S)-5-hydroxyl - m e t h y l b i c y c l o [ 2 . 2 . 1 ] h e p t a n - 3 - o n e (38) o f 8 0 - 8 7 % e.e. a s shown i n F i g u r e 11 ( M o r i , K.; W a t a n a b e , H., T h e U n i v e r s i t y o f T o k y o , unpublished data). By e m p l o y i n g two β-hydroxy ketones 25 and 38 a s t h e b u i l d i n g b l o c k s , g l y c i n o e c l e p i n A (40) was s y n t h e s i z e d v i a 3 9 ( M o r i , K.j Watanabe, H., t h e U n i v e r s i t y o f T o k y o , u n p u b l i s h e d d a t a ) . G l y c i n o e c l e p i n A i s a degraded t r i t e r p e n o i d w i t h s i g n i f i c a n t h a t c h s t i m u l a t i n g a c t i v i t y f o r t h e soybean c y s t nematode (33, 34).
CÛ2H Glycinoeclepin A 40
Figure 11.
Synthesis of glycinoeclepin A.
Acknowledgments I thank my co-workers whose names appear i n t h e r e f e r e n c e s f o r t h e i r e n t h u s i a s m i n c a r r y i n g o u t t h e b i o c h e m i c a l and s y n t h e t i c works. F i n a n c i a l s u p p o r t o f t h i s p r o j e c t by Japanese M i n i s t r y o f E d u c a t i o n , S c i e n c e and C u l t u r e i s acknowledged w i t h thanks.
Literature Cited
1. 2.
Morrison, J.D., Ed. Asymmetric Synthesis Vols. Academic Press: Orlando, 1983-1985. Jones, J.B.; Sih, C.J.; Perlman, D., Eds. Application Biochemical Systems in Organic Chemistry Part 1; Wiley: New York, 1976.
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
1-5; of John
358 3. 4. 5. 6. 7.
Downloaded by FUDAN UNIV on April 26, 2017 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch024
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.
BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY
Mori, K. In Studies in Natural Products Chemistry Vol. 1; Rahman, A.-u., Ed.; Elsevier: Amsterdam, 1988. Okazaki, T.; Noguchi, T. Igarashi, K.; Sakagami. Y.; Seto, H.; Mori, K.; Naito, H.; Masumura, T.; Sugahara, M. Agric. Biol. Chem. 1983, 47, 2949. Mori,K.; Okazaki, T.; Noguchi, T.; Naito, H. Agric.Biol.Chem. 1983, 47, 2131. Mori, K.; Sugai, T.; Maeda, Y.; Okazaki, T.; Noguchi, T.; Naito, H. Tetrahedron 1985, 41, 5307. Baker, B.J.; Okuda, R.K.; Yu, P.T.K.; Scheuer, P.J. J.Am. Chem. Soc. 1985, 107, 2976. Mori, K.; Takeuchi, T. Tetrahedron 1988, 44, 333. Kleiner, E.M.; Pliner, S.A.; Soifer, V.S.; Onoprienko, V.V.; Blasheva, T.A.; Rozynov, B.V.; Khokhlov, A.S. Bioorg. Khim. 1976, 2, 1142. Mori, K.; Yamane, K. Tetrahedron 1982, 38, 2919. Mori, K. Tetrahedron 1983, 39, 3107. Deol, B.S.; Ridley, D.D.; Simpson, G.W. Aust. J. Chem. 1976, 29, 2459. Mori, K. Tetrahedron 1981, 37, 1341. Hungerbuhler, E; Seebach, D.; Wasmuth, D.S.; Helv. Chim. Acta 1981, 64, 1467. Sugai, T. Fujita, M.; Mori, K. Nippon Kagaku Kaishi 1983, 1315. Seebach, D.; Zuger, M.F. Helv. Chim. Acta 1982, 65, 495. Mori, K.; Watanabe, H. Tetrahedron 1984, 40, 299. Mori, K.; Puapoomchareon, P. Liebigs Ann. Chem 1987, 271. Hasegawa, J.; Hamaguchi,S.;Ogura, M.; Watanabe, K. J. Ferment. Technol. 1981, 59, 257. Mori, K.; Watanabe, H. Tetrahedron 1985, 41, 3423. Mori, K.; Mori, H.; Sugai, T. Tetrahedron 1985, 41, 919. Chuman, T.; Kohno, M.; Kato, K; Noguchi, M. Tetrahedron Lett. 1979, 2361. Kitahara, T.; Mori, K. Tetrahedron Lett. 1985, 26, 451. Tanaka, S.; Wada, K.; Marumo, S.: Hattori, H. Tetrahedron Lett 1984, 25, 5907. Mori, K.; Tamura, H. Liebigs Ann. Chem. 1988, 97. Kitahara, T.; Kurata, H.; Mori, K. Tetrahedron 1988, 43, 4339. Mori, K.; Mori, H. Tetrahedron 1985, 41, 5487. Mori, K.; Watanabe, H. Tetrahedron 1986, 42, 273. Barnes, C.S.; Loder, J.W. Aust. J. Chem. 1962, 15, 322. Kubo, I.; Lee, Y.-W.; Pettei, M.; Pilkiewicz, F.; Nakanishi, K. J. Chem. Soc., Chem. Commun. 1976, 1013. Mori, K.; Mori, H. Tetrahedron 1987, 43, 4097. Mori, K.; Fujiwhara, M. Tetrahedron 1988, 44, 343. Masamune,T.;Anetani, M; Fukuzawa, A.; Takasugi, M.; Matsue, H.; Kobayashi, K.; Ueno, S.; Katsui, N. Bull. Chem. Soc. Jpn. 1987, 60, 981. Masamune,T.;Fukuzawa, A.; Furusaki, A.; Ikura, M.; Matsue, H.; Kaneko, T.; Abiko, A.; Sakamoto, N.; Tanimoto, N.; Murai, A. Bull. Chem. Soc. Jpn. 1987, 60. 1001.
RECEIVED
September 19, 1988
Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.