Preparation of J-Aggregate Liposome Dispersions and Their Chromic

cyanine dye H-aggregates on nanostructured [6,6]-phenyl C61-butyric acid methyl ester substrates. Jakob Heier , Rolf Steiger , Roland Hany , Frank...
0 downloads 0 Views 275KB Size
5718

Langmuir 2004, 20, 5718-5723

Preparation of J-Aggregate Liposome Dispersions and Their Chromic Transformation Noritaka Kato,† Jennifer Prime, Kiyofumi Katagiri, and Frank Caruso* Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia Received February 18, 2004. In Final Form: April 19, 2004 We report the preparation of aqueous liposome dispersions of J-aggregates formed by the amphiphilic merocyanine dye (MD). A series of liposome-forming lipids were dispersed together with MD J-aggregates at different molar ratios of MD to lipid. The MD J-aggregate dispersions prepared with 1,2-dimyristoylsn-glycero-3-phosphocholine (DMPC) at the MD to DMPC ratio of 0.16 exhibit good dispersibility; that is, they can be readily redispersed without any flocculation even after their precipitation. By use of different counterions for the MD molecules, two types of J-aggregate dispersions, one that exhibits an absorption band (J-band) at 635 nm (type I) and the other at 600 nm (type II), were obtained. As an example of the use of MD J-aggregates liposome dispersions, the thermochromic transformation of MD J-aggregates was demonstrated. When the dispersions are heated, J-aggregates of type I transformed into type II at a certain temperature (Tdisp). The parameters that control the speed of the transformation and the value of Tdisp were determined.

Introduction J-aggregates1 are assemblies of organic dye molecules with an ordered structure. They show a red-shifted visible absorption band (J-band) with respect to the isolated dye molecules (monomeric state) and delocalize their photoexcited state in the assembly. These optical properties result in a high efficiency of energy transfer,2-6 sensitization,7,8 and superquenching9 and a high performance of nonlinear optical devices10,11 and photovoltaic cells.8,12 Due to their vast applications in the field of optical technologies, commencing with spectral sensitizers of silver halides for conventional photography, studies on the formation of * Corresponding author. E-mail: [email protected]. † Permanent address, Department of Physics, Waseda University, Tokyo 169-8555, Japan. E-mail: [email protected]. (1) (a) Jelly, E. E. Nature 1936, 138, 1009. (b) Scheibe, G. Angew. Chem. 1936, 49, 563. (c) Kuhn, H.; Mo¨bius, D. In Physical Methods of Chemistry, 2nd ed.; Rossiter, B. W.; Baetzold, R. C., Eds.; John Wiley & Sons: New York, 1993; Chapter 6. (d) J-Aggregates; Kobayashi, T., Ed.; World Scientific: Singapore, 1996. (2) Prokhorenko, V. L.; Steensgaard, D. B.; Holzwarth, A. R. Biophys. J. 2000, 79, 2105. (3) (a) Kometani, N.; Nakajima, H.; Asami, K.; Yonezawa, Y.; Kajimoto, O. J. Phys. Chem. B 2000, 104, 9630. (b) Nakajima, H.; Kometani, N.; Asami, K.; Yonezawa, Y. J. Photochem. Photobiol., A 2001, 143, 161. (4) Fukutake, N.; Takasaka, S.; Kobayashi, T. Chem. Phys. Lett. 2002, 361, 42. (5) (a) Dai, Z.; Da¨hne, L.; Donath, E.; Mo¨hwald, H. J. Phys. Chem. B 2002, 106, 11501. (b) Dai, Z.; Da¨hne, L.; Donath, E.; Mo¨hwald, H. Langmuir 2002, 18, 4553. (6) Gil, A Ä .; Arı´stegui, I.; Sua´rez, A.; Sa´ndez, I.; Mo¨bius, D. Langmuir 2002, 18, 8527. (7) Rubtsov, I. V.; Ebina, K.; Satou, F.; Oh, J. W.; Kumazaki, S.; Suzumoto, T.; Tani, T.; Yoshihara, K. J. Phys. Chem. A 2002, 106, 2795. (8) Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363. (9) (a) Lu, L.; Jones, R. M.; McBranch, D.; Whitten, D. Langmuir 2002, 18, 7706. (b) Lu, L.; Helgeson, R.; Jones, R. M.; McBranch, D.; Whitten, D. J. Am. Chem. Soc. 2002, 124, 483. (10) (a) Furuki, M.; Tian, M.; Sato, Y.; Pu, L. S.; Tatsuura, S.; Wada, O. Appl. Phys. Lett. 2000, 77, 472. (b) Vannikov, A. V.; Grishina, A. D.; Shapiro, B. I.; Pereshivko, L. Y.; Krivenko, T. V.; Savelyev, V. V.; Berendyaev, V. I.; Rychwalski, R. W. Chem. Phys. 2003, 287, 261. (11) Zhou, H. S.; Watanabe, T.; Mito, A.; Honma, I.; Asai, K.; Ishigure, K.; Furuki, M. Mater. Sci. Eng., B 2002, 95, 180. (12) Meng, F. S.; Chen, K. C.; Tian, H.; Zuppiroli, L.; Nuesch, F. Appl. Phys. Lett. 2003, 82, 3788.

J-aggregates and their photophysical and chemical properties have been conducted for various systems, e.g., dispersed solutions,13,14 polymer15 and sol-gel matrixes,11,16 layer-by-layer assemblies,3,17 hollow capsules,5,18 monolayers at the air-water interface,6,19 coatings on metal nanoparticles,20 vapor deposition films,21 and crystalline states.22 However, few attempts have been made to form Jaggregates in liposomes.23,24 Liposomes,25 so-called arti(13) (a) Zweck, J.; Penzkofer, A. Chem. Phys. 2001, 269, 399. (b) Yao, H.; Kagoshima, Y.; Kitamura, S.; Isohashi, T.; Ozawa, Y.; Kimura, K. Langmuir 2003, 19, 8882. (c) Pawlik, A.; Ouart, A.; Kirstein, S.; Abraham, H. W.; Daehne, S. Eur. J. Org. Chem. 2003, 3065. (14) a) Gandini, S. C. M.; Yushmanov, V. E.; Borissevitch, I. E.; Tabak, M. Langmuir 1999, 15, 6233. (b) von Berlepsch, H.; Bo¨ttcher, C.; Ouart, A.; Regenbrecht, M.; Akari, S.; Keiderling, U.; Schnablegger, H.; Da¨hne, S.; Kirstein, S. Langmuir 2000, 16, 5908. (c) Tatikolov, A. S.; Costa, S. M. B. Chem. Phys. Lett. 2001, 346, 233. (d) Kato, N.; Mikami, Y.; Serata, T.; Uesu, Y. Trans. Mater. Res. Soc. Jpn 2002, 27 341. (15) (a) Vacha, M.; Takei, S.; Hashizume, K.; Sakakibara, Y.; Tani, T. Chem. Phys. Lett. 2000, 331, 387. (b) Vacha, M.; Furuki, M.; Pu, L. S.; Hashizume, K.; Tani, T. J. Phys. Chem. B 2001, 105, 12226. (16) De Rossi, U.; Daehne, S.; Reisfeld, R. Chem. Phys. Lett. 1996, 251, 259. (17) (a) Ariga, K.; Lvov, Y.; Kunitake, T. J. Am. Chem. Soc. 1997, 119, 2224. (b) Place, I.; Penner, T. L.; McBranch, D. W.; Whitten, D. G. J. Phys. Chem. A 2003, 107, 3169. (18) Peyratout, C. S.; Mo¨hwald, H.; Da¨hne, L. Adv. Mater. 2003, 15, 1722. (19) (a) Gil, A Ä .; Mo¨bius, D.; Sa´ndez, I.; Sua´rez, A. Langmuir 2003, 19, 6430. (b) Tian, C.; Zoriniants, G.; Gronheid, R.; Van der Auweraer, M.; De Schryver, F. C. Langmuir 2003, 19, 9831. (20) (a) Kometani, N.; Tsubonishi, M.; Fujita, T.; Asami, K.; Yonezawa, Y. Langmuir 2001, 17, 578. (b) Hranisavljevic, J.; Dimitrijevic, N. M.; Wurtz, G. A.; Wiederrecht, G. P. J. Am. Chem. Soc. 2002, 124, 4536. (c) Yagˇliogˇlu, G.; Dorsinville, R.; O ¨ zc¸ elik, S. J. Appl. Phys. 2003, 94, 3143. (21) Matsumoto, S.; Kobayashi, T.; Aoyama, T.; Wada, T. Chem. Commun. 2003, 1910. (22) von Berlepsch, H.; Mo¨ller, S.; Da¨hne, L. J. Phys. Chem. B 2001, 105, 5689. (23) (a) Kunitake, T.; Nakanishi, N. J. Am. Chem. Soc. 1982, 104, 4261. (b) Kimizuka, N.; Kawasaki, T.; Kunitake, T. Chem. Lett. 1994, 33. (c) Sato, T.; Yonezawa, Y.; Hada, H. J. Phys. Chem. 1989, 93, 14. (d) Sato, T.; Kurahashi, M.; Yonezawa, Y. Langmuir 1993, 9, 3395. (e) Hachisako, H.; Murata, Y.; Ihara, H. J. Chem. Soc., Perkin Trans. 1999, 2569. (f) Garcı´a-Jime´nez, F.; Khramov, M. I.; Sa´nchez-Obrego´n, R.; Collera, O. Chem. Phys. Lett. 2000, 331, 42. (24) (a) Shimomura, M.; Ando, R.; Kunitake, T. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 1134. (b) Komatsu, T.; Moritake, W.; Nakagawa, A.; Tsuchida, E. Chem. Eur. J. 2002, 8, 5469.

10.1021/la049569u CCC: $27.50 © 2004 American Chemical Society Published on Web 06/10/2004

Preparation of J-Aggregate Liposome Dispersions Chart 1

Langmuir, Vol. 20, No. 14, 2004 5719

octadecyl alkyl chain promotes J-aggregate formation;26 (ii) the J-band wavelength sensitively depends on the counterion species for the caboxymethyl group;26b,27a,c,d and (iii) the MD J-aggregates can show a transformation induced by ion-exchange and change their J-band wavelength28 or dissociate into the monomeric state.27b,c The amphiphilic molecular structure of MD encourages its incorporation into liposomes, and alteration of the permeability of ions induced by the C-LC phase transition could be exploited to control the ion-exchange transformation of MD J-aggregates in liposomes. Furthermore, the J-aggregate dispersions could be useful for labeling biomolecules29 and as photoharvesting antennas for artificial photosynthesis.5 These possibilities motivated us to investigate the formation of J-aggregate liposome dispersions using MD molecules. Here, we describe the procedure for the preparation of the MD J-aggregate dispersions using various lipids, and we discuss the thermal response of their J-band wavelength. Experimental Section

ficial cell membranes, are vesicles formed by lipid bilayers and are stably dispersed in aqueous media. They often exhibit a crystalline-liquid crystalline (C-LC) phase transition at a well-defined temperature. Typically, the LC phase shows 1 or 2 orders of magnitude higher molecular diffusion than that of the C phase,25a and this leads to a higher permeability of ions across the membrane in the LC phase. In previous reports, it has been shown that water-soluble dyes typically form J-aggregates by electrostaically attaching at the charged hydrophilic interface of preformed liposomes,23 and chromophorecontaining lipids form J-aggregates by assembling into liposomes.24 In contrast, the present work reports on the preparation of J-aggregate liposome dispersions by codispersing lipids, which form liposomes, and J-aggregate forming water-insoluble amphiphilic dye molecules, which do not form liposomes by themselves. It is well-known that amphiphilic merocyanine dye (3caboxymethyl-5-[2-(3-octadecyl-benzothiazolin-2-ylidene)ethylidene]rhodanine, MD) molecules (see Chart 1) form J-aggregates in a monolayer at the air-water interface.26-28 They also form J-aggregates in aqueous media, but precipitate, flocculating into macroscopic masses, after which they cannot be dispersed into fine dispersions by sonication. For application in various optical technologies, the J-aggregates need to be uniformly dispersed in a matrix. This paper reports the formation of dispersions of MD J-aggregates with liposome-forming lipids. The MD molecule has three important characteristics: (i) the (25) (a) Handbook of Lipid Research; Hanahan, D. J., Ed.; Plenum Press: New York, 1988; Vol. 4, Chapter 12, p 476. (b) Kunitake, T. In Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vo¨gtle, F., Lehn, J. M., Eds.; Pergamon Press: New York, 1996; Vol. 9, p 351. (26) (a) Iriyama, K.; Yoshiura, M.; Ozaki, Y.; Ishii, T.; Yasui, S. Thin Solid Films 1985, 132, 229. (b) Kawaguchi, T.; Iwata, K. Thin Solid Films 1989, 180, 235. (27) (a) Yoneyama, M.; Nagano, T.; Murayama, T. Chem. Lett. 1989, 397. (b) Imazeki, S.; Takeda, M.; Tomioka, Y.; Kakuta, A.; Mukoh, A.; Narahara, T. Thin Solid Films 1985, 134, 27. (c) Kawaguchi, T.; Iwata, K. Thin Solid Films 1990, 191, 173. (d) Kawaguchi, T.; Iwata, K. Thin Solid Films 1988, 165, 323. (28) (a) Kato, N.; Saito, K.; Serata, K.; Aida, H.; Uesu, Y. J. Chem. Phys. 2001, 115, 1473. (b) Kato, N.; Saito, K.; Uesu, Y. Colloids Surf., A 2002, 198, 173. (c) Kato, N.; Yamamoto, M.; Itoh, K.; Uesu, Y. J. Phys. Chem. B 2003, 107, 11917.

Materials. MD molecules were purchased from Hayashibara Biochemical Laboratory, Inc. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE), dihexadecyl phosphate (DHP), and dimethyldioctadecylammonium bromide (DDAB) were from Sigma-Aldrich, and 1,2dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was from Acros Organics. The molecular structures are summarized in Chart 1. All chemicals were used as received. Pure water was prepared in a Milli-Q system, and its resistivity was greater than 18 MΩ cm. Aqueous solutions of MgCl2, CaCl2, CoCl2, CuCl2, SrCl2, CdCl2, and BaCl2 (all 1 mM) (Sigma-Aldrich) containing 0.1 mM of NaHCO3 (Sigma-Aldrich) were used as media for the dispersions. The pH value of these solutions was between 6 and 7. Methods. Solutions of lipids and MD molecules (