Process of Zeolite Formation in the System Na2O-Al2O3-SiO2-H2O

Jul 22, 2009 - ... is (0.05-0.8)Li2O · (0.2-0.95)Na2O · Al2O3 · (2-6)SiO2 · (0-9)H2O. This material adsorbs ... Advances in Chemistry , Volume 101...
0 downloads 0 Views 650KB Size
7 Process of Zeolite Formation in the System N a O - A l O - S i O - H O Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

2

2

3

2

2

F R I E D R I C H Ε. S C H W O C H O W and G E R H A R D W. H E I N Z E Farbenfabriken Bayer A G , Leverkusen, West Germany

This paper is aimed at clarification of the change of concen­ tration with time in the liquid phase before crystallization starts. To find optimum conditions for the commercial pro­ duction of pure zeolites of the types A and faujasite, the reaction of fine-particle amorphous silica with sodium aluminate solution was studied at 20°, 40°, and 75°C. The liquid phase separated by filtration nucleates the zeolite types A, sodalite, phillipsite, and faujasite, depending on stirring time before liquid-solid separation. Quite similar conditions are observed in precipitated sodium aluminosilicate gels and mother liquor.

Tnterest i n understanding the reaction mechanism of the formation of synthetic zeolites grows with their technical importance. The experi­ ence gathered for the hydrothermal synthesis of defined zeolites remains restricted to a specific case, until an understanding of the mechanism can be presented. The type of the crystallizing zeolite is predetermined not only by the concentrations of the reaction partners, but also by addi­ tional factors—Si0 source, precipitation step, digestion of the gels. A c ­ cording to Zhdanov (5), it first is necessary, in order to understand the synthesis, to replace the customary over-all ratios of the reactants by separate concentration data for the 2 phases in the heterogeneous system. Experiments i n the system precipitated sodium aluminosilicate gelsmother liquor make it probable that the lattice type of the crystallizing zeolite is predetermined mainly by the composition of the liquid phase. The importance of the liquid phase is emphasized also by Kerr ( 2 ) using zeolite A crystallization as an example. Our investigations refer to the time-dependent concentration change i n the 2 phases before crystalliza2

102 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

7.

SCHWOCHOW

Process of

A N DH E I N Z E

103

Formation

t i o n starts a n d t o zeolite f o r m a t i o n i n the m o t h e r l i q u o r s separated f r o m the respective s o l i d phases. Experimental F o r o u r experiments, w e selected t h e 2 f o l l o w i n g S i 0

2

sources: a m o r ­

p h o u s p r e c i p i t a t e d s i l i c a (specific surface a r e a : 200 m / g r a m a c c o r d i n g 2

to B E T ) a n d t e c h n i c a l w a t e r glass s o l u t i o n , o f d e n s i t y 1.33 g r a m s / m l , c o n t a i n i n g 1.7 moles o f N a 0 / 1 a n d 5.78 moles o f S i 0 / 1 . 2

Sodium alu-

2

m i n a t e , 1.36 g r a m s / m l , w a s u s e d as a s o l u t i o n c o n t a i n i n g 3.4 moles o f N a 0 / 1 a n d 2.0 moles o f A l 0 / 1 .

Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

2

2

3

T h e s e p a r a t i o n of s o l i d - l i q u i d phases

w a s effected via filter p a p e r ( S c h l e i c h e r & S c h u l l N o . 5 8 9 ) . W i t h i n the separated l i q u i d phases, S i 0 a c c o r d i n g to c o n v e n t i o n a l c h e m i c a l m e t h o d s . flame

photometry.

Crystalline

2

and A 1 0 2

3

were analyzed

N a 0 was determined b y 2

reaction products

were

identified b y

D e b y e - S c h e r r e r d i a g r a m s ; t h e c o m p o s i t i o n o f t h e m i x t u r e s w a s deter­ m i n e d b y c o m p a r i s o n w i t h d i a g r a m s o f test samples.

Table I.

System Amorphous Silica—Sodium Aluminate

Conditions Prior to Separation of Liquid Phases Temp., °C

Stirring Time, Hours

20

24

Zeolite Crystallizing from Separated Liquid Phases

Composition* of Separated Liquid Phases, _ Mole Ratios, Na 0 Al 0: Si0 2

3.67:

2

1

Main Produce

2

48

4.08:

1

No

: 0.04 Zeolite A

a = 12.29 A 0

20

Impurities

7

No

: 0.06 Zeolite A

a = 12.29iA Q

20

72

6.01:

1

No

: 0.09 Zeolite A

a = 12.30χΑ 0

2

40

3.67:

1

: 0.06 Zeolite A

a = 12.30iA

2% S o d a l i t e

0

4

40

8.92:

1

: 0.22 Zeolite A

a = 12.29 A a

40

8

67.82:

1

:55.58 F a u j a s i t e

40

16

50.00:

1

:74.17

75

2

57.59:

1

:79.13 F a u j a s i t e

a = 25.02iA 0

a = 24.77 A Q

10%

Sodalite

6

9

10% P h i l l i p site 3% Zeolite A

8% P h i l l i p site

The composition of the liquid phase depends on temperature and stirring time, as well as the corresponding zeolite type crystallizing from the separated liquid phases. a = unit cell constant. a

6

Q

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

104

MOLECULAR SIEVE ZEOLITES

Concentration

1

Change in the Liquid Phase

F o r o u r investigations o n s o d i u m - a l u m i n i u m - s i l i c a t e — w a t e r m i x t u r e s , w e h a v e selected c o n c e n t r a t i o n ratios i n w h i c h c r y s t a l l i z a t i o n of faujasite is b a s i c a l l y possible.

F i r s t , t h e r e a c t i o n of a m o r p h o u s p r e c i p i t a t e d s i l i c a

w i t h s o d i u m a l u m i n a t e s o l u t i o n w a s i n v e s t i g a t e d , t h e m o l e ratios b e i n g Si0 /Al 0 2

2

= 5, N a 0 / S i 0 = 0.6, a n d H 0 / N a 0 = 40 ( b a s e d o n t h e

3

2

total batch).

2

2

2

I n this system, faujasite is o b t a i n e d i n h i g h p u r i t y after a

f e w hours at 1 0 0 ° C .

I f the r e a c t i o n b a t c h is s t i r r e d at 2 0 ° , 4 0 ° , a n d 7 5 ° C

a n d s u b s e q u e n t l y t h e s o l i d p h a s e is separated f r o m t h e l i q u i d phase b y Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

filtration,

one o b t a i n s — d e p e n d i n g o n t e m p e r a t u r e a n d s t i r r i n g t i m e b e -

fore t h e s e p a r a t i o n of p h a s e s — e i t h e r s o d i u m a l u m i n a t e solutions or sod i u m silicate solutions as t h e l i q u i d phase ( T a b l e I , F i g u r e 1 ) .

These

c o n c e n t r a t i o n points are passed i n t h e l i q u i d phase d u r i n g t h e c o n t i n u o u s course of t h e s y n t h e s i s — f o r e x a m p l e , d u r i n g p r e d i g e s t i o n a n d h e a t i n g . W h i l e the S i 0 / A l 0 2

2

3

becomes p o o r i n A 1 0 2

r a t i o i n t h e s o l i d phase decreases, t h e l i q u i d phase 3

content u n t i l t h e r e is p r a c t i c a l l y n o t h i n g left b u t

sodium hydroxide solution.

T h e s o l u t i o n t h e n changes

over f r o m t h e

a l u m i n a t e side to t h e silicate side, w h i c h means t h a t i n c r e a s i n g q u a n t i t i e s of S i 0

2

are being dissolved i n the sodium hydroxide solution.

Zeolite Crystallization

from the Separated Mother

Liquors

F r o m t h e l i q u i d phases present i n t h e a m o r p h o u s S i 0 - s o d i u m a l u 2

m i n a t e system, i t is possible to o b t a i n c r y s t a l l i n e zeolites w i t h o u t t h e Nafi

C s composition of the total batch (mole ratios) Si0 /Al 0 r 5 Na 0/Si0 =0.6 H 0/Nap =40 2

2

2

3

2

2

Si0

2

Figure 1.

Concentration change in the liquid and solid phases dunng the course of zeolite synthesis

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

7.

SCHWOCHOW

AND

HEINZE

Process of

Formation

105

Na 0

Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

2

Si0

2

2°3

Al

Figure 2.

Change of concentration with time and temperature in the 2 phases, using different Si0 sources 2

s i m u l t a n e o u s presence of the a p p r o p r i a t e s o l i d phases.

I f the respective

l i q u i d phases separated f r o m the b a t c h are h e a t e d to 8 5 ° C (24 h o u r s ) , the different zeolite types A , sodalite, faujasite, a n d p h i l l i p s i t e w i l l c r y s t a l l i z e , d e p e n d i n g o n t e m p e r a t u r e a n d s t i r r i n g t i m e p r i o r to the s o l i d l i q u i d separation. T h e s e experiments s h o w c o n c l u s i v e l y that zeolite A a n d sodalite, w h i c h are p o o r e r i n s i l i c a , are o b t a i n e d f r o m the l i q u i d phase i f the solutions r e m a i n o n the a l u m i n a t e side of the c o n c e n t r a t i o n diagram.

It is o n l y after the changeover

of the l i q u i d phase f r o m the

a l u m i n a t e side to the silicate side that faujasite or p h i l l i p s i t e , b o t h r i c h e r i n s i l i c a , are o b t a i n e d .

The S i 0

2

content of the faujasite rises w i t h the

S i 0 / N a 0 r a t i o i n the l i q u i d phase. 2

2

Concentrations Our

in the Liquid Phase for Different Si0

2

findings

Sources

p e r t a i n i n g to the change of c o m p o s i t i o n i n the l i q u i d

p h a s e w i t h t i m e , as discussed i n the first section, are c o n f i r m e d i n essence w i t h i n r e a c t i o n m i x t u r e s w h i c h cause the f o r m a t i o n of faujasites p o o r i n silica—smaller S i 0 / A l 0 2

2

3

a n d larger N a 0 / S i 0 2

2

m o l e ratios i n the t o t a l

batch. F i g u r e 2 shows the change of c o n c e n t r a t i o n w i t h t i m e a n d t e m p e r ature i n the l i q u i d phase for a b a t c h w i t h the m o l e ratios S i 0 / A l 0 2

3.5, N a 0 / S i 0 2

2

=

1.35, a n d H 0 / N a 0 = 2

2

40.

2

3

=

P r i o r to c r y s t a l l i z a t i o n ,

t h e r e a c t i o n m i x t u r e s c o n t a i n i n g a m o r p h o u s s i l i c a or w a t e r glass a p p r o a c h the same final concentrations of S i 0

2

i n the l i q u i d phase. B o t h , h o w e v e r ,

m a y differ w i t h respect to the p o l y m e r i z a t i o n state of the d i s s o l v e d s i l i -

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

106

MOLECULAR SIEVE ZEOLITES

1

cate. T h e figures i n T a b l e I I s h o w that o n l y a p a r t of the a v a i l a b l e w a t e r glass is p r e c i p i t a t e d i n g e l p r e c i p i t a t i o n . A s s u c h , the l i q u i d phase contains at least a p a r t of the p o l y m e r i c silicates f r o m the w a t e r glass u n c h a n g e d . O n the other h a n d , the f o r m a t i o n of d i s s o l v e d silicate f r o m

amorphous

s i l i c a a n d s o d i u m h y d r o x i d e results i n essentially m o n o m e r i c

species.

Crystallization

of Faujasite or Phillipsite from Mother

of the Same Analytical

Liquors

Composition

W i t h i n the phase d i a g r a m ( F i g u r e 2 ) , o u r

findings

show a region

Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

w i t h i n w h i c h faujasite as w e l l as p h i l l i p s i t e m a y c r y s t a l l i z e . W h i c h of the 2 a c t u a l l y p r e d o m i n a t e s i n the c r y s t a l l i z a t i o n m i x t u r e is i n f l u e n c e d b y t h e c h o i c e of the S i 0

2

source.

F o r example, amorphous S i 0

solved i n sodium hydroxide solution ( 1 0 %

dis-

2

N a O H ) and commercially

a v a i l a b l e w a t e r glass s o l u t i o n are p r e c i p i t a t e d w i t h s o d i u m a l u m i n a t e s o l u t i o n at 2 5 ° C u n d e r e q u a l c o n d i t i o n s ( m o l e ratios S i 0 / A l 0 2

Na 0/Si0 2

2

=

2, a n d H 0 / N a 0 = 2

2

2

3

=

5,

40 i n the t o t a l b a t c h ) . A f t e r h e a t i n g

to 1 0 0 ° C ( w i t h i n 30 m i n u t e s ) , the 2 l i q u i d phases c o n t a i n the same c o n centrations of N a 0 , A 1 0 , S i 0 , a n d H 0 ( T a b l e I I I ) . A f t e r s e p a r a t i o n 2

Table II.

2

3

2

2

Change of Silica Concentration with Time in the Liquid Phases Using Different S i 0 Sources 2

Si0 Concentration (g/l) . . ^ . in Separated Liquid Phases stirring Time Prior to Liquid-Solid System: Amorphous System: Water GlassSeparation, Temp., 40° C Si0 -Sodium Aluminate Sodium Aluminate 2

n i

2


20). 2

2

3

(2) In addition, the dissolved silica must be present in a monomeric state predominantly, because otherwise phillipsite crystallizes as the main product. The favorable influence of a predigestion step on the faujasite syn­ thesis is known. If dissolvable silica is used, the effect of predigestion is clearly recognizable from the experiments reported in Table II, build­ ing up a sufficiently high S i 0 concentration in the liquid phase. In the case of rapid precipitation of gels from water glass solutions, the effect of the predigestion step cannot be the one just described. Predigestion causes the silicate micels to equilibrate within the gel in such a manner that afterward monomeric silica is split off during dissolving. Hence, it is possible to avoid the time-consuming step either by using reactive silicates for gel precipitation, such as Na Si0 · 5 H 0 ( 1 ), or by con­ verting a priori unsuitable silicate solutions, such as technical water glass, via depolymerization to solutions with reactive silica (3), carrying out the gel precipitation thereafter. 2

2

3

2

Literature Cited (1) (2) (3) (4) (5)

Andrews, Ε. B., Kerr, J., Whittam, T. V., Ger. Patent 1,269,111 (1964). Kerr, G. T., J. Phys. Chem. 1966, 70, 1047. Schwochow, F. E., Heinze, G. W., unpublished work. Wieker, W., Z. Anorg. Allgem. Chem. 1969, 366, 139. Zhdanov, S. P., "Molecular Sieves," p. 62, Society of the Chemical Indus­ try, London, 1968.

RECEIVED January 29, 1970.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

108

MOLECULAR SIEVE ZEOLITES

1

Discussion Hans Villiger ( M a r t i n s w e r k G m b H , B e r g h e i m , G e r m a n y ) : Y o u m e n ­ t i o n p h i l l i p s i t e as a f r e q u e n t l y - o c c u r r i n g i m p u r i t y . Is this r e a l l y so, or do y o u use a different n o m e n c l a t u r e ?

To

m y knowledge,

Barrer-Pl

or

L i n d e Β is o b s e r v e d d u r i n g the synthesis of L i n d e X . P h i l l i p s i t e tends to g r o w i n p o t a s s i u m - b e a r i n g systems r a t h e r t h a n the p u r e s o d i u m system. Friedrich Schwochow:

O u r d e s i g n a t i o n " p h i l l i p s i t e " means a c r y s ­

Downloaded by GEORGE MASON UNIV on December 24, 2014 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch007

t a l l i n e z e o l i t e w i t h the structure of t h e m i n e r a l p h i l l i p s i t e , w h i c h i n o u r r e a c t i o n system necessarily occurs i n the s o d i u m f o r m .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.