Chapter 14
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
Processes for Demetalization of Fluid Cracking Catalysts 1
2
2
F. J. Elvin , J.-E. Otterstedt , and J. Sterte 1
ChemCat Corporation, P.O. Box 29866, New Orleans, LA 70189 Department of Engineering Chemistry 1, Chalmers University of Technology, Fack, S-412 96, Göteborg, Sweden 2
Three processes, Demet III, Demet X and New Demet, for demetalization of metal poisoned octacat fluid cracking catalysts were investigated. These processes removed a significant part of the V (30-40%) from the catalyst. The New Demet and Demet III were very effective in removing Ni (88% and 80%, respectively) while practically no Ni could be removed by Demet X. The Demet procedures also proved effective in removing other contaminants like Fe and Cu. All Demet methods resulted in increased cracking activities as determined by the micro activity test. The conversions increased from 65% for the untreated catalyst to 76-78% for samples treated according to the different Demet procedures. The increase in activity was accompanied by a corresponding increase in gasoline yield of 5.0-6.5%. T h e c o n t r o l o f t h e a c t i v i t y a n d s e l e c t i v i t y o f c r a c k i n g c a t a l y s t is t h e k e y t o optimum yields and profitability. Currently, refineries employ two different methods o f c o n t r o l : the addition of fresh catalyst and the addition of good quality equilibrium catalyst. Onsite F C C U catalyst demetalization, called D e m e t , is a t h i r d a l t e r n a t i v e w h i c h w a s o r i g i n a l l y d e v e l o p e d by A R C O a n d t h e n i m p r o v e d b y C h e m C a t C o r p o r a t i o n w o r k e r s (1). T h e D e m e t p r o c e d u r e s are used to r e m o v e a c t i v e m e t a l c o n t a m i n a n t s f r o m t h e surface o f e q u i l i b r i u m c a t a l y s t s , thus i m p r o v i n g c a t a l y s t a c t i v i t y a n d s e l e c t i v i t y . D e m e t procedures are applicable to a l l types o f amorphous and z e o l i t i c catalysts. U n d e r F C C U o p e r a t i n g c o n d i t i o n s , a l m o s t 100% o f the m e t a l c o n t a m i n a n t s in t h e feed (such as n i c k e l , v a n a d i u m , i r o n a n d copper porphyrins) a r e d e c o m p o s e d a n d d e p o s i t e d o n t h e c a t a l y s t (2). T h e m o s t h a r m f u l o f t h e s e contaminants are vanadium and nickel. T h e deleterious effect of the deposited vanadium on catalyst performance and the manner i n which vanadium is deposited on the c r a c k i n g catalyst differ from those of nickel. T h e effect of vanadium on the catalyst performance is primarily a decrease in catalyst a c t i v i t y w h i l e the major e f f e c t o f n i c k e l is a s e l e c t i v i t y change r e f l e c t e d i n i n c r e a s e d c o k e a n d gas y i e l d s (3). R e c e n t l a b o r a t o r y studies (3-6) show t h a t nickel distributes homogeneously over the catalyst surface while vanadium preferentially deposits on and reacts destructively w i t h the z e o l i t e . A m e c h a n i s m for v a n a d i u m poisoning i n v o l v i n g v o l a t i l e v a n a d i c a c i d as t h e
0097-6156/88/0375-0229$06.00/0 ° 1988 American Chemical Society
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
230
p o i s o n p r e c u r s o r w a s p r o p o s e d b y W o r m s b e c h e r e t a l . (7). A c c o r d i n g t o t h i s m e c h a n i s m , v a n a d i c a c i d is f o r m e d u n d e r F C C r e g e n e r a t o r c o n d i t i o n s b y t h e reaction:
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
V 2 O 5
(s)
+
3
H
2
0
2
H 3 V O 4
(v)
Since vanadic a c i d is a strong a c i d analogous to phosphoric a c i d i t c a n destroy the z e o l i t e by h y d r o l y s i s of t h e z e o l i t e S 1 O 2 / A I 2 O 3 f r a m e w o r k . R e c e n t l y O c c e l l i (8) h a s s h o w n t h a t v a n a d i u m d e p o s i t e d o n c a t a l y s t p a r t i c l e s i s a b l e t o m i g r a t e t o p a r t i c l e s o f a m e t a l scavenger (sepiolite), w h i c h i n i t i a l l y does n o t contain vanadium, where it can form stable vanadates. Stability together w i t h r a m a n s p e c t r a of ( h y d r o t h e r m a l l y aged) V - l o a d e d F C C w e r e used to show t h a t a n a c i d l i k e H 4 V 2 O 7 w a s m o r e l i k e l y t o b e t h e v o l a t i l e s p e c i e f o r m e d (8). In m o s t l a b o r a t o r y d e a c t i v a t i o n s t u d i e s t h e c a t a l y s t is i m p r e g n a t e d w i t h v a n a d i u m c o m p o u n d s a n d then t r e a t e d for many hours (5-10 hrs.) a t high t e m p e r a t u r e s (1300°-1500°F) w i t h high s t e a m p a r t i a l pressures. A s t h e h y d r o l y s i s o f V 2 O 5 i n c r e a s e s r a p i d l y w i t h i n c r e a s i n g t e m p e r a t u r e as w e l l a s w i t h i n c r e a s i n g w a t e r p a r t i a l p r e s s u r e (9), t h e s e c o n d i t i o n s p r o m o t e t h e formation of an acid which permanently destroys the catalyst. However, the v a n a d i u m c h e m i s t r y is d i f f e r e n t i n a c o m m e r c i a l F C C U i n w h i c h the r e g e n e r a t o r t e m p e r a t u r e u s u a l l y is i n t h e r a n g e 1250-1400°F, t h e s t e a m p a r t i a l p r e s s u r e i n t h e r a n g e 0.1 - 0 . 4 a t m a n d i n w h i c h t h e t o t a l r e s i d e n c e t i m e for the c a t a l y s t is widely d i s t r i b u t e d as c a t a l y s t is continuously added to and withdrawn from the unit. A t these conditions, part of the vanadium induced d e a c t i v a t i o n is t e m p o r a r y a n d c a n be r e v e r s e d by t h e D e m e t p r o c e d u r e s (ΙΟ Ι 1). T h i s paper gives a n e x a m p l e of t h e response of one e q u i l i b r i u m c a t a l y s t t o the three basic D e m e t procedures and to modified versions of these p r o c e d u r e s . T h e c a t a l y s t s a r e e v a l u a t e d by e l e m e n t a l analysis a n d by t h e i r c r a c k i n g p e r f o r m a n c e , as d e t e r m i n e d by the m i c r o a c t i v i t y test ( M A T ) . Experimental Catalyst. T h e c a t a l y s t used i n this study is a n e q u i l i b r i u m O c t a c a t fluid cracking catalyst from a US refinery. The metal analysis of this catalyst and i t s M A T c r a c k i n g p e r f o r m a n c e a r e g i v e n i n T a b l e I a n d T a b l e II, r e s p e c t i v e l y . G a s phase t r e a t m e n t . T h e g a s p h a s e t r e a t m e n t i n t h e D e m e t III p r o c e d u r e w a s s i m i l a r t o t h a t d e s c r i b e d b y B u r k e t a l . (12). T h e c a t a l y s t w a s f i r s t sulfided a t 720°C for 4 hrs. i n a f l u i d i z e d bed r e a c t o r . A f t e r c o o l i n g to 340°C under a flow of nitrogen, the c a t a l y s t was o x i d i z e d w i t h air at this t e m p e r a t u r e f o r 30 m i n . In t h e N e w D e m e t p r o c e d u r e , t h e c a t a l y s t w a s f i r s t c a l c i n e d i n a i r a t 730°C for 4 hrs. i n a f l u i d i z e d bed r e a c t o r . T h e c a t a l y s t was then sulfided at 730°C f o r 2 h r s . A f t e r c o o l i n g d o w n t h e c a t a l y s t t o 320°C under a flow of nitrogen, it was chlorinated at this temperature for 1 hr. T h e gas phase t r e a t m e n t i n the D e m e t X procedure s i m p l y consisted of c a l c i n i n g the c a t a l y s t i n a i r i n a f l u i d i z e d bed r e a c t o r at 720°C for 4 hrs. Washing procedures. T h e aqueous phase t r e a t m e n t s used for t h e different s a m p l e s d i s c u s s e d i n t h i s p a p e r a r e s c h e m a t i c a l l y s h o w n i n f i g u r e s 1-3. T h e D e m e t III w a s h c o n s i s t e d o f t w o r e d u c t i v e w a s h e s f o l l o w e d b y t w o o x i d a t i v e w a s h e s . In t h e r e d u c t i v e w a s h , a p p r o x i m a t e l y 40 g . o f t r e a t e d c a t a l y s t w a s dispersed i n 250 m l of d e i o n i z e d w a t e r . T h e t e m p e r a t u r e was a d j u s t e d t o 7 0 ° C a n d S O 2 w a s b u b b l e d t h r o u g h t h e d i s p e r s i o n f o r 5 m i n . In t h e o x i d a t i v e wash, t h e c a t a l y s t was f i r s t dispersed i n 250 m l of d e i o n i z e d w a t e r
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
14. ELVIN ET AL.
Demetalization of Fluid Cracking Catalysts
231
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
a n d t h e t e m p e r a t u r e w a s a d j u s t e d t o 7 0 ° C . T o t h i s d i s p e r s i o n , 20 a n d 5 m l o f H 2 O 2 (35%) w a s a d d e d i n t h e f i r s t a n d s e c o n d o x i d a t i v e w a s h , r e s p e c t i v e l y . The c a t a l y s t was t r e a t e d w i t h these solutions for 3 m i n . T h e R E - e x c h a n g e was c a r r i e d out by t r e a t i n g the c a t a l y s t at 90°C for 1 hr. w i t h a r a r e e a r t h c h l o r i d e s o l u t i o n h a v i n g a c o n c e n t r a t i o n o f 110 g R E 2 O 3 / I . T h e N H ^ - e x c h a n g e was p e r f o r m e d by t r e a t i n g the c a t a l y s t a t 9 0 ° C for 1 h r . w i t h a s o l u t i o n c o n t a i n i n g 130 g/1 ( N H ^ S O ^ . A f t e r e a c h w a s h or i o n e x c h a n g e , the c a t a l y s t was s e p a r a t e d f r o m the s o l u t i o n by f i l t r a t i o n . Elemental analysis. E l e m e n t a l analysis was performed w i t h a t o m i c absorption spectroscopy (AAS). Solid samples were first solubilized according t o t h e p r o c e d u r e d e s c r i b e d b y M a r c h a n d M e y e r s (13). Catalytic cracking. The c r a c k i n g studies were c a r r i e d out using a fixed bed reactor constructed according to A S T M method D 3907-80 " M i c r o A c t i v i t y T e s t f o r F l u i d C r a c k i n g C a t a l y s t s " ( M A T ) . In t h i s m e t h o d a k n o w n a m o u n t o f o i l is fed to a bed of c r a c k i n g c a t a l y s t . T h e gas and l i q u i d p r o d u c t s a r e c o l l e c t e d and a n a l y z e d by gas c h r o m a t o g r a p h y . T h e b o i l i n g p o i n t r a n g e of t h e l i q u i d p r o d u c t s is d e t e r m i n e d by s i m u l a t e d d i s t i l l a t i o n . T h e a c t i v i t y of t h e c a t a l y s t i n c a t a l y t i c c r a c k i n g is d e f i n e d as t h e w e i g h t - % of t h e f e e d t h a t is c o n v e r t e d i n t o c o k e , gas and gasoline. T h e gasoline f r a c t i o n is t h e p o r t i o n of the p r o d u c t b o i l i n g b e t w e e n 36° and 216°C. T h e light c y c l e o i l ( L C O ) is not i n c l u d e d i n t h e c o n v e r s i o n b u t is c a l c u l a t e d f r o m t h e s i m u l a t e d d i s t i l l a t i o n as t h e f r a c t i o n b o i l i n g b e t w e e n 216° and 3 4 4 ° C . T h e c r a c k i n g tests w e r e p e r f o r m e d using a hydroprocessed m i x t u r e of N o r t h S e a and A r a b i a n light H V G O , and a reactor temperature of 500°C. A m a t e r i a l r e c o v e r y b a l a n c e was c a l c u l a t e d for e a c h r u n . A l l tests w i t h a r e c o v e r y of less than 9 7 % w e r e d i s c a r d e d . F o r e a c h sample, d u p l i c a t e runs w e r e made in order to ensure reproducible results. Results and Discussion Metals removal. T h e r e s u l t s of t h e m e t a l s r e m o v a l for s o m e r e l e v a n t s a m p l e s a r e s h o w n i n T a b l e I. A s s e e n , a l l D e m e t p r o c e d u r e s r e m o v e d a significant part of the v a n a d i u m (30-40%) f r o m the c a t a l y s t surface. F o r the r e m o v a l o f N i , b o t h t h e N e w D e m e t a n d D e m e t III p r o c e d u r e w a s v e r y e f f e c t i v e . T h e N e w D e m e t p r o c e s s r e m o v e d 8 8 % of t h e n i c k e l w h i l e t h e c o r r e s p o n d i n g v a l u e f o r D e m e t III w a s 8 0 % . H o w e v e r , n i c k e l c o u l d n o t b e r e m o v e d by t h e D e m e t X p r o c e d u r e . W h i l e t h e gas phase t r e a t m e n t i n t h e
T A B L E I.
Catalyst
R e s u l t s of m e t a l s analysis of d e m e t a l i z e d
V
designation
(ppm)
samples
Ni
Fe
Sb
Cu
Na
(ppm)
(ppm)
(ppm)
(ppm)
(ppm!
45.8
3954
Oct-0
3667
1477
4966
823
A2a
2199
170
1840
179
19.8
3039
Bla
2348
287
3050
296
29.6
3436
C2c
2330
1337
5380
395
37.8
3118
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
232
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
D e m e t X procedure s i m p l y consists of an o x i d a t i o n at e l e v a t e d t e m p e r a t u r e , b o t h t h e N e w D e m e t a n d t h e D e m e t III p r o c e s s h a s a s u l f i d i n g s t e p w h i c h t r a n s f o r m s t h e m e t a l o x i d e s t o i n s o l u b l e s u l f i d e s . In D e m e t III t h e s u l f i d i n g s t e p i s f o l l o w e d by a p a r t i a l o x i d a t i o n s t e p . T h i s o x i d a t i o n i s c a r e f u l l y c o n t r o l l e d to p r o d u c e m e t a l s u l f a t e s and sulfides w h i c h c a n be d i r e c t l y r e m o v e d by w a s h i n g or be t r a n s f e r r e d i n t o s o l u b l e c o m p o u n d s by t h e r e d u c t i v e a n d o x i d a t i v e w a s h e s u s e d i n t h i s p r o c e d u r e . In t h e N e w D e m e t p r o c e s s t h e s u l f i d i n g s t e p is f o l l o w e d by c h l o r i n a t i o n w h i c h results i n a t r a n s f o r m a t i o n of the sulfides into washable chlorides. Since vanadium chlorides are volatile, m o s t o f t h e v a n a d i u m r e m o v a l u s i n g t h i s p r o c e d u r e o c c u r s i n t h e g a s p h a s e . In t h e D e m e t X p r o c e d u r e , t h e v a n a d i u m o x i d e s f o r m e d a r e w a t e r s o l u b l e or c a n b e t r a n s f o r m e d i n t o w a t e r s o l u b l e f o r m s b y a q u e o u s t r e a t m e n t s . In c o n t r a s t the n i c k e l oxides are insoluble in water. T h e t e n d e n c y for the d i f f e r e n t p r o c e d u r e s to r e m o v e i r o n and copper was s i m i l a r to t h a t for n i c k e l r e m o v a l i n t h e sense t h a t these m e t a l s w e r e r e m o v e d b y t h e N e w D e m e t a n d t h e D e m e t III p r o c e s s e s b u t n o t b y D e m e t X . T h e t o t a l r e m o v a l o f t h e s e m e t a l s w a s l o w e r t h a n t h a t o f n i c k e l . In t h e c a s e o f i r o n , t h i s c o u l d b e e x p l a i n e d b y t h e f a c t t h a t s o m e o f t h e i r o n is i n c o r p o r a t e d i n t o t h e c l a y m a t r i x a n d t h e r e f o r e p r o b a b l y m o r e d i f f i c u l t t o r e m o v e by t h e s e t r e a t m e n t s . T h e u n t r e a t e d c a t a l y s t c o n t a i n e d about 800 p p m a n t i m o n y w h i c h has been added i n the c o m m e r c i a l c r a c k i n g o p e r a t i o n to p a s s i v a t e N i . T h e D e m e t processes tested r e m o v e d a s i g n i f i c a n t part of a n t i m o n y f r o m the c a t a l y s t . T h e e f f i c i e n c y of the d i f f e r e n t p r o c e d u r e s for a n t i m o n y r e m o v a l is s i m i l a r to t h a t for v a n a d i u m r e m o v a l . T h i s m a y s e e m s o m e w h a t s t r a n g e as t h e a n t i m o n y associates w i t h the n i c k e l . T h e a n t i m o n y oxides f o r m e d upon c a l c i n a t i o n in the D e m e t X procedure are, however, slightly soluble in water. T h e D e m e t procedures also r e m o v e a l a r g e f r a c t i o n of the s o d i u m f r o m t h e c a t a l y s t s . T h i s m a y n o t b e c l e a r l y s e e n i n t h e c a s e d i s c u s s e d h e r e as t h e s t a r t i n g c a t a l y s t has a v e r y l o w s o d i u m c o n t e n t . F o r other e q u i l i b r i u m c a t a l y s t s , i n v e s t i g a t e d by us, the s o d i u m r e m o v a l has been i n the 2 0 - 5 0 % r a n g e . It s h o u l d a l s o b e n o t e d t h a t t h e v a l u e s g i v e n i n T a b l e I r e p r e s e n t t h e s o d i u m c o n t e n t p r i o r to i o n e x c h a n g e . U p o n e x c h a n g e w i t h a m m o n i u m or r a r e e a r t h , t h e s o d i u m c o n t e n t is f u r t h e r r e d u c e d . In a d d i t i o n t o m e t a l s , t h e D e m e t procedures remove minor fractions of a l u m i n u m and rare e a r t h metals from the c a t a l y s t . The A l dissolution in the N e w D e m e t process corresponds to a decrease i n a l u m i n a c o n t e n t of 0.01-0.1 w t % , depending on the w a s h i n g p r o c e d u r e , w h i l e t h e c o r r e s p o n d i n g r a n g e f o r t h e D e m e t III p r o c e s s i s 0 . 0 5 - 0 . 3 w t % . M o s t of the A l is dissolved i n the low p H washes, i.e. the f i r s t w a t e r w a s h i n t h e N e w D e m e t p r o c e s s a n d t h e S 0 2 ~ w a s h e s i n t h e D e m e t III. Cracking performance. M i c r o a c t i v i t y test results for the d i f f e r e n t p r e p a r a t i o n s a r e g i v e n i n T a b l e II. V a r i a n t s o f a l l t h r e e b a s i c D e m e t p r o c e d u r e s (see F i g . 1-3) c a n b e u s e d t o i m p r o v e t h e p e r f o r m a n c e o f t h i s equilibrium catalyst. The most successful N e w D e m e t preparation, A 4 , showed a M A T c o n v e r s i o n of 7 7 . 1 % c o m p a r e d to 6 5 . 2 % for the u n t r e a t e d e q u i l i b r i u m c a t a l y s t . T h i s i n c r e a s e i n c o n v e r s i o n was a c c o m p a n i e d by an i n c r e a s e i n gasoline y i e l d f r o m 46.8 t o 5 2 . 3 % a n d a d e c r e a s e i n c o k e y i e l d f r o m 4.5 t o 4 . 3 % . T h e s e r e s u l t s w e r e a c h i e v e d by s u b j e c t i n g t h e c a t a l y s t to a series of t r e a t m e n t s a f t e r the b a s i c gas phase r e a c t i o n s , i n v o l v i n g o x i d a t i v e and r e d u c t i v e washes, a n d i o n e x c h a n g e w i t h N H ^ a n d R E (see F i g . 1). E a c h o f t h e s e t r e a t m e n t s resulted i n a successive i m p r o v e m e n t of c a t a l y s t p e r f o r m a n c e . In t h e D e m e t III s e r i e s , s a m p l e B 3 g a v e t h e b e s t r e s u l t s , s h o w i n g a M A T c o n v e r s i o n o f 7 6 . 2 % . T h e g a s o l i n e y i e l d o f t h i s s a m p l e w a s 5 3 . 2 % , up f r o m 4 7 . 0 % i n t h e u n t r e a t e d s a m p l e . In t h e D e m e t III s e r i e s a l l s a m p l e s e x c e p t B i b +
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
14. ELVIN ET AL.
Demetalization of Fluid Cracking Catalysts
T a b l e II.
M A T - c r a c k i n g results for d e m e t a l i z e d samples
catalyst designation
conv (wt%)
octacat 0
65.2
Ala
233
LCO (wt%)
coke (wt%)
gas (wt%)
46.8
4.5
13.9
16.5
70.0
48.7
4.3
17.0
14.6
Alb
71.5
49.8
5.0
16.8
14.9
Ale
67.6
47.2
4.0
16.4
15.2
Aid
66.3
46.4
4.2
15.7
16.3
A2a
72.2
50.7
3.5
18.0
13.7
A2b
70.4
47.5
5.2
17.7
14.0
A2c
69.7
49.0
4.1
16.7
14.2
A3a
71.9
50.1
3.8
18.0
14.8
A3b
75.2
50.3
4.4
20.5
12.5
A3c
70.6
47.6
4.7
18.2
14.5
gasoline (wt%)
A4
77.1
52.3
4.3
20.6
12.0
Bla
66.5
45.0
5.2
16.3
17.1
Bib
53.8
37.8
3.9
12.2
16.9
B2a
73.0
51.2
4.4
17.4
14.0
B2b
70.5
48.0
5.0
17.4
14.6
B3
76.2
53.2
4.2
18.8
13.4
Cl
60.3
41.4
4.8
14.0
17.4
C2a
69.1
46.2
5.1
17.8
15.3
C2b
69.1
47.2
4.3
17.7
15.9
C2c
70.8
49.2
4.1
16.9
14.0
C3a
70.6
46.7
5.2
18.7
14.6
C3b
71.4
48.6
5.3
17.5
14.3
C3c
72.9
51.3
4.1
17.5
12.7
C4
76.0
51.7
4.7
19.8
11.5
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
234
NEW DEMET
F i g u r e 1.
S c h e m a t i c representation of modifications used in the gaseous
(top level) and in the aqueous phase treatments in the New
Demet
preparations.
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
14. ELVIN ET AL.
Demetalization of Fluid Cracking Catalysts
235
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
DEMET HI
F i g u r e 2.
S c h e m a t i c r e p r e s e n t a t i o n o f m o d i f i c a t i o n s used i n t h e gaseous
( t o p l e v e l ) a n d a q u e o u s p h a s e t r e a t m e n t s i n t h e D e m e t III p r e p a r a t i o n s .
DEMET X H20-wash
REexch.
F i g u r e 3.
S c h e m a t i c r e p r e s e n t a t i o n of m o d i f i c a t i o n s used i n t h e aqueous
phase t r e a t m e n t s i n t h e D e m e t X preparations.
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
FLUID CATALYTIC CRACKING: R O L E IN M O D E R N REFINING
236
showed an i m p r o v e d c r a c k i n g performance r e l a t i v e to the untreated equilibrium c a t a l y s t . The t r e a t m e n t of sample B i b differs from the t r e a t m e n t s of t h e other s a m p l e s i n t h a t H 2 was used t o g e t h e r w i t h H 2 S i n t h e s u l f i d a t i o n step.The addition of H 2 obviously had a negative effect on catalyst performance. In t h e D e m e t X s e r i e s , t h e m o s t s u c c e s s f u l r e s u l t s w e r e o b t a i n e d f o r preparation C 4 . T h e M A T conversion for this sample was 76.0% and the gasoline yield 51.7%.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 2, 2015 | http://pubs.acs.org Publication Date: September 12, 1988 | doi: 10.1021/bk-1988-0375.ch014
Conclusion F r o m t h e d a t a g i v e n i n T a b l e I a n d T a b l e II, i t i s c l e a r t h a t , f o r t h i s p a r t i c u l a r e q u i l i b r i u m c a t a l y s t , a l l the D e m e t processes i n v e s t i g a t e d w e r e e f f e c t i v e in r e m o v i n g m e t a l poisons from the c a t a l y s t surface and restoring a significant part of its original c r a c k i n g a c t i v i t y . The catalyst responded i n a similar manner to a l l three processes, showing an increase in conversion of more than 10 M A T n u m b e r s a c c o m p a n i e d b y a n i n c r e a s e i n g a s o l i n e y i e l d o f 5 - 6 . 5 M A T numbers. D u e to the s i m i l a r nature of the processes, it was possible to design a f l e x i b l e D e m e t unit w h i c h c a n be used, w i t h m i n o r m o d i f i c a t i o n s , for a l l the processes. The design of this unit and its incorporation into the flowsheet of t h e r e f i n e r y w a s d i s c u s s e d i n a p r e v i o u s p a p e r (1). T h i s p a p e r a l s o d i s c u s s e d t h e c o m m e r c i a l benefits of using D e m e t processing under d i f f e r e n t o p e r a t i o n c o n d i t i o n s (1).
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
Elvin, F. J., Otterstedt, J-E., and Sterte, J., Paper no. AM-86-41, NPRA Annual Meeting, Los Angeles, California, March 1986. Skinnerm, D. Α., I.& E. C., 1959, 44(5), 1159. Järås, S., Appl. Cat., 1982, 2, 207. Nishimura, Y., Masuda, T., Sato, G., and Egashira, S., Preprints, ACS Div. Petr. Chem., 1983, 28, 707. Occelli, M. L., Psaras, D., and Suib, S. L., J. Catal., 1985, 96, 363. Woolery, G. L., Chin, Α. Α., Kirker, G. W., and Huss, Α., Preprints, ACS Div. Petr. Chem., 1987, 32, 663. Wormsbecher, R. F., Peters, A. W., and Maselli, J. M., J. Catal., 1986, 100, 130. Occelli, M. L., Preprints, ACS Div. Petr. Chem., 1987, 32, 658. Yannopoulos, L. N., J. Phys. Chem., 1968, 72, 3293. Elvin, F., Paper no. AM-87-44, NPRA Annual Meeting, San Antonio, Texas, March 1987. Elvin, F., Oil & GasJ.,1987, 85(9), 42. Burk, E. H., Erickson, H., and Anderson, A. D., U.S. Patent, 3,122,510, 1978. Marsh, W. W., and Myers, G., Anal. Chim. Acta, 1968, 43, 511.
RECEIVED March 30,1988
In Fluid Catalytic Cracking; Occelli, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.