8
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
Programs for Calculating Structural Features of Terpolymers YASUTO KODAIRA and H. JAMES HARWOOD The University of Akron, Institute of Polymer Science, Akron, OH 44325
Two computer programs are described for calculating structural aspects (composition, dyad-, triad-, tetrad-, and pentad-distributions, number and weight monomer sequence distributions, monomer centered triad- and pentad-fractions) of terpolymers prepared in either low or high conversion. The programs are applicable for either terminal (1st order Markoffian) or penultimate (2nd order Markoffian) terpolymerization system. Calculation methods employed in preparing the programs are discussed. The chemical and physical properties of terpolymers are influenced by their compositions and by the way the monomer units are arranged along their chains. It is important to be able to calculate the relative amounts of structural features present in terpolymers that arise from differences in monomer unit arrangements. For terpolymers prepared in conversions low enough that the composition of the monomer mixture does not change during the course of their preparation, structural features can be calculated easily from the proportions of monomers present in the polymerization mixture and from kinetic constants (reactivity ratios) appropriate for the terpolymerization system. When the composition of the monomer mixture changes during the reaction, due to some monomers being consumed faster than others, numerical integration is necessary to calculate average values for the relative amounts of structural features present. The computer is practically indispensable for such calculations. Because of the large number of structural features that are present in terpolymers, it is advisable to use a computer for such calculations even when the composition of the monomer mixture does not change during the process. Shown below is a representative portion of a terpolymer chain derived from monomers A, B and C. The structural features of interest are: the relative amounts A-, B- and C-monomer units; the relative amounts of AA-, (BA+AB)-(CA+AC)-, BB-, (BC+CB)- and CC-pairs (dyad distributions); the relative amounts of groups of 0097-6156/82/0197-0137$06.00/0 © 1982 American Chemical Society Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
138
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
three ( t r i a d d i s t r i b u t i o n s ) , four (tetrad d i s t r i b u t i o n s ) , f i v e ( p e n t a d d i s t r i b u t i o n s ) o r more ( n - a d d d i s t r i b u t i o n s ) monomer u n i t s ; t h e p e r c e n t a g e o f monomer u n i t s o f a g i v e n t y p e i n p a r t i c u l a r e n v i r o n m e n t s ( t r i a d , p e n t a d o r n-add f r a c t i o n s ) ; and t h e num b e r and w e i g h t d i s t r i b u t i o n s o f monomer s e q u e n c e s o f v a r i o u s lengths. These v a r i o u s f e a t u r e s a r e a l s o i l l u s t r a t e d below.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
^ A - B - C - A - A - B - B - A - C - B - C - C - A ^ Dyads
AB
CA BC
Triads
AB AA
ABC
AAB BCA
B-Sequences C-Sequences
B
CA
BCC CCA CBC
ABBA
CBCC BBAC
BCCA BACB
AABB
ACBC
AA
A
A ^
BB C
CC BC
ACB BBA
ABCA BCAA CAAB
A - S e q u e n c e s ^A
CB AC
BAC ABB
CAA Tetrads
BA BB
B C
CC
We h a v e p r e v i o u s l y r e v i e w e d ( 1 , 2 ) t h e methods u s e d t o calculate s t r u c t u r a l f e a t u r e s o f copolymers and t e r p o l y m e r s f r o m monomer r e a c t i v i t y r a t i o s , monomer f e e d compositions and c o n v e r s i o n s , and h a v e w r i t t e n a p r o g r a m f o r c a l c u l a t i n g s t r u c t u r a l f e a t u r e s o f c o p o l y m e r s from e i t h e r t e r m i n a l model o r p e n u l t i mate model r e a c t i v i t y r a t i o s ( 3 ) . T h i s p r o g r a m h a s b e e n d i s t r i buted w i d e l y and i s i n g e n e r a l u s e . A l i s t i n g o f an i n s t r u c t i v e program f o r c a l c u l a t i n g s t r u c t u r a l f e a t u r e s o f i n s t a n t a n e o u s t e r p o l y m e r s f r o m monomer f e e d c o m p o s i t i o n s and t e r m i n a l m o d e l r e a c t i v i t y r a t i o s was appended t o one o f o u r e a r l i e r r e v i e w s C I ) . Our r e v i e w s ( 1 , 2 ) c i t e o t h e r e x a m p l e s o f p r o g r a m m i n g t e r p o l y m e r c o m p o s i t i o n and/or s t r u c t u r e c a l c u l a t i o n s , e i t h e r by s t o c h a s t i c o r M o n t e - C a r l o m e t h o d s . I n t h e p r e s e n t p a p e r , we d e s c r i b e two g e n e r a l programs f o r c a l c u l a t i n g s t r u c t u r a l f e a t u r e s o f t e r p o l y m e r s from monomer f e e d c o m p o s i t i o n s , c o n v e r s i o n s , and e i t h e r p e n u l t i m a t e o r t e r m i n a l model r e a c t i v i t y r a t i o s . Program A i s c o m p l e t e l y s e l f c o n t a i n e d and w i l l accommodate a p e n u l t i m a t e e f f e c t w i t h one mono mer. P r o g r a m B c a l l s a m a t r i x m u l t i p l i c a t i o n s u b r o u t i n e (GMPRD f r o m t h e IBM S c i e n t i f i c S u b r o u t i n e P a c k a g e , o r VMULFF f r o m t h e IMSL L i b r a r y ) ( 4 ) , b u t i s c o m p l e t e l y g e n e r a l ; p e n u l t i m a t e e f f e c t s c a n b e a s s o c i a t e d w i t h a l l t h r e e monomers i n t h i s c a s e . The p r o grams p r o v i d e monomer c o n c e n t r a t i o n s , d y a d t h r o u g h p e n t a d d i s t r i b u t i o n s , t r i a d a n d p e n t a d f r a c t i o n s , a s w e l l a s t h e number and w e i g h t d i s t r i b u t i o n o f A-, B- a n d C - s e q u e n c e s o f monomer u n i t s .
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
8.
General
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
Structural Features of
KODAIRA AND HARWOOD
Terpolymers
139
Method
The d e v e l o p m e n t o f t h e s e p r o g r a m s f o l l o w e d t h e g e n e r a l p r o cedure o u t l i n e d p r e v i o u s l y ( 1 ) . T h i s i n v o l v e d t h e f o l l o w i n g s t e p s : 1. P r o p a g a t i o n r e a c t i o n s i n v o l v e d i n t h e p o l y m e r i z a t i o n s y s tem u n d e r s t u d y a r e w r i t t e n , a l o n g w i t h a p p r o p r i a t e r a t e expressions. Appropriate r e a c t i v i t y r a t i o s are defined. 2. C o n d i t i o n a l p r o b a b i l i t i e s f o r monomer o r s e q u e n c e p l a c e m e n t s a r e c a l c u l a t e d f r o m monomer f e e d c o n c e n t r a t i o n s a n d r e a c t i v i t y r a t i o s , u s i n g expressions d e r i v e d from t h e r a t e expressions w r i t t e n i n the f i r s t step. The c o n d i t i o n s e m p l o y e d i n d e f i n i n g these p r o b a b i l i t i e s correspond t o t h e types o f propagating species ( e . g . , ^A«, ^BAO i d e n t i f i e d i n t h e f i r s t s t e p . 3. U n c o n d i t i o n a l p r o b a b i l i t i e s f o r monomer o r s e q u e n c e placements a r e c a l c u l a t e d from t h e c o n d i t i o n a l p r o b a b i l i t i e s . T h i s may b e a c c o m p l i s h e d b y w r i t i n g s t a t i o n a r y r e l a t i o n s h i p s ( n e c e s s a r y n-add r e l a t i o n s h i p s ) i n v o l v i n g c o n d i t i o n a l a n d u n c o n d i t i o n a l p r o b a b i l i t i e s , f o l l o w e d by s o l v i n g such r e l a t i o n s h i p s simultaneously f o r the c o n d i t i o n a l p r o b a b i l i t i e s . While t h i s can be done a l g e b r a i c a l l y , i t i s s i m p l e r t o do t h i s b y c o n d u c t i n g o p e r a t i o n s on a m a t r i x c o n s t r u c t e d from t h e c o n d i t i o n a l p r o b a b i l i ties. The p r o c e d u r e d e s c r i b e d b y P r i c e ( 5 ) c a n p r o v i d e a n a l g e b r a i c s o l u t i o n i f d e s i r e d , b u t i t can be t h e b a s i s o f a program that provides numerical r e s u l t s . The m a t r i x m u l t i p l i c a t i o n method (1), provides numerical r e s u l t s o n l y , b u t i t seems t o b e t h e p r e f e r r e d a p p r o a c h when t h e p o l y m e r i z a t i o n s y s t e m i s c o m p l e x . 4. U n c o n d i t i o n a l p r o b a b i l i t i e s o f s e q u e n c e s s m a l l e r t h a n those e v a l u a t e d i n step t h r e e , i f any, a r e c a l c u l a t e d by a d d i t i o n of u n c o n d i t i o n a l p r o b a b i l i t i e s e v a l u a t e d i n step t h r e e . Uncondi t i o n a l p r o b a b i l i t i e s of sequences l a r g e r than those e v a l u a t e d i n step t h r e e a r e c a l c u l a t e d by m u l t i p l i c a t i o n o f a p p r o p r i a t e c o n d i t i o n a l and u n c o n d i t i o n a l p r o b a b i l i t i e s . Program A T h i s p r o g r a m was w r i t t e n t o c a l c u l a t e s t r u c t u r a l f e a t u r e s of terpolymers prepared v i a t h e f o l l o w i n g p r o p a g a t i o n r e a c t i o n s f r o m r a d i c a l s AA-, BA-, CA-, B- a n d C- a n d f r o m monomers A, B a n d C. R e a c t i v i t y r a t i o s u t i l i z e d b y t h i s p r o g r a m a r e a l s o d e f i n e d i n t h e f o l l o w i n g scheme: k WAA+ A > ^AA. a
a
a
r
AAT> AAB =
, OA.AA-
+
B
k
,b a a -/k a aa-
-h A
A
> OA,Br.._ = k /k AAC aa-a aa-c
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
140
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
+
C
^BA-
+
A
^BA-
+
B
^BA-
4-
C
^\AC;A-
+
A
r
aa-c
ba-a
ba-b
^ba-c
^ba-a^^ba-b
BAC
^ba-a^^ba-c
OA.AACAB
ca-b
v\CA-
BAB
CAC
+
A
k
k
ca-a
/k , ca-b
ca-a
/k ca-c
ba
BA
BC
"be
^B •
+
A
k
bb
B
CA
cb
CB +
C
b
G
^ A ' k
+
/ k
k
cc
/k ca
cc
/k , cb
'VAC*
On t h e b a s i s o f t h e a b o v e , i t i s c l e a r t h a t u n c o n d i t i o n a l p r o b a b i l i t i e s o f AA, BA, CA, B a n d C n e e d t o b e e v a l u a t e d t o p r o v i d e a b a s i s f o r o t h e r c a l c u l a t i o n s . These p r o b a b i l i t i e s w i l l be d e s i g n a t e d P ( A A ) , P ( B A ) , e t c . The c o n d i t i o n a l p r o b a b i l i t i e s n e c e s s a r y f o r t h i s e v a l u a t i o n a r e d e s i g n a t e d P ( J / I ) , where I and J a r e t h e i n i t i a l and f i n a l s p e c i e s i n v o l v e d i n a p r o p a g a t i o n step. These a r e c a l c u l a t e d by c o n s i d e r i n g t h e k i n e t i c e x p r e s s i o n s w r i t t e n above. F o r e x a m p l e , i n c a l c u l a t i n g P ( A A / A A ) , one must compare t h e r a t e o f AfbAA* r a d i c a l s a d d i n g monomer A t o t h e r a t e o f 'V\,AAr a d i c a l s a d d i n g monomers A, B o r C ( A f , B f a n d C f r e p r e s e n t t h e c o n c e n t r a t i o n s o f monomers A, B a n d C i n t h e p o l y m e r i z a t i o n m i x t u r e )
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
8.
k
aa-a
1
/
(
1
Cv^AAOA
aa-b
1 +
=
141
Terpolymers
A
P(AA/AA) -
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
Structural Features of
KODAIRA AND HARWOOD
k
+
f
/ r
AAB f A
aa D
(wAA* ) B + k Ov\,AA-)C I aa—C i f
f
k
f A, r
aa-a B
I + k
i
+
k
aa-c aa-a
V
W
f A* f V
Similarly, P(B/AA) = ( B / f
r A A B
A )ya + B y f
P(C/AA) - 1 - P (AA/AA)
f
r A A B
A
f
+ C /r f
M C
A ) f
P(B/AA)
etc. The t r a n s i t i o n m a t r i x i n v o l v i n g t h e s e p r o b a b i l i t i e s i s a s follows: i (Initial AA BA CA B C^- S t a t e ) / T
AA
P (AA/AA)
P(AA/BA)
BA
0
0
CA
0
0
0
0
0
P(BA/B)
0
0
0
P(CA/C)
P(AA/CA)
B
P(B/AA)
P(B/BA)
P(B/CA)
P(B/B)
P(B/C)
C
P(C/AA)
P(C/BA)
P(C/CA)
P(C/B)
P(C/C)
(Final State) E v a l u a t i o n o f P ( A A ) , P ( B A ) , P ( C A ) , P(B) and P(C) from t h i s m a t r i x b y t h e method o f P r i c e ( 5 ) y i e l d e d t h e f o l l o w i n g r e s u l t s , where X i s t h e n o r m a l i z a t i o n f a c t o r r e q u i r e d t o make t h e sum o f t h e s e q u a n t i t i e s t o t a l 1.0. ( A amounts t o t h e r e c i p r o c a l o f t h e sum of t h e e x p r e s s i o n s t h a t a r e m u l t i p l i e d by X i n t h e e q u a t i o n s g i v e n below) P(AA) = X * [ (1-P (B/B) )*P (CA/C)*P (AA/CA)-P ( B A / B ) * P ( C A / C ) * ( P ( B / B A ) * P (AA/CA) -P (B/CA) *P (AA/BA) )+P (BA/B) *P (B/C) *P (AA/BA) ] P(B) =
X*[(1-P(AA/AA))*(P(B/C)+P(CA/C)*P(B/CA))+P(AA/CA)* P(CA/C)*P(B/AA)]
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
142
P(C) = A*[(P(AA/AA)-l)*(P(B/B)-l+P(BAyB)*P(B7BA))-P(AA7BA)* P(B/AA)*P(BA/B)] P(BA) = A * P(B)*P(BA/B)
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
P(CA)= A*P(C)*P(CA/C) The r e m a i n i n g monomer and d y a d c o n c e n t r a t i o n s c a n be c a l c u l a t e d f r o m t h e above q u a n t i t i e s and a p p r o p r i a t e p r o b a b i l i t i e s . P ( A ) = P(AA)+P(BA)+P(CA) P(AB) = P ( A A ) * P ( B / A A ) + P ( B A ) * P ( B / B A ) + P ( C A ) * P ( B / C A ) P(AC)= P(AA)*P(C/AA)+P(BA)*P(C/BA)+P(CA)*P(C/CA) P(BB)= P(B)*P(B/B) P(BC)= P(B)*P(C/B) P(CB)= P(C)*P(B/C) P(CC)= P(C)*P(C/C) By f o l l o w i n g t h i s g e n e r a l a p p r o a c h , n-add d i s t r i b u t i o n s ( p r o b a b i l i t i e s ) up t o p e n t a d s ( B - c e n t e r e d p e n t a d s o n l y a t t h e present time) are c a l c u l a t e d , v i z . , P(AAB)=
P(AA)*P(AB/AA)
P(BBA)= P(B)*P(B/B)*P(BA/B) P(CBBAC)= P ( C ) * P ( B / C ) * P ( B / B ) * P ( B A / B ) * P ( C / B A ) S i n c e a l a r g e number o f n-add d i s t r i b u t i o n s a r e i n v o l v e d i n the c a l c u l a t i o n s , the program r e p o r t s complete d i s t r i b u t i o n s o n l y f o r d y a d s and t r i a d s . C o l l e c t e d d i s t r i b u t i o n s a r e r e p o r t e d f o r d y a d s , and t e t r a d s . These q u a n t i t i e s a r e o f g r e a t e r i n t e r e s t t h a n t h e i n d i v i d u a l n-add d i s t r i b u t i o n s , s i n c e t h e p r o p e r t i e s of the c e n t r a l p o r t i o n s of u n s y m m e t r i c a l sequences a r e u s u a l l y t h e same a s t h o s e o f t h e r e v e r s e d s e q u e n c e s ( e . g . , t h e c e n t r a l u n i t s i n ABSCB and BCCBA s e q u e n c e s u s u a l l y h a v e i d e n t i c a l chem i c a l and p h y s i c a l p r o p e r t i e s . ) C o l l e c t e d n-add d i s t r i b u t i o n s a r e t h u s c a l c u l a t e d by a d d i n g a p p r o p r i a t e n-add d i s t r i b u t i o n s . E x a m p l e s o f s u c h c a l c u l a t i o n s a r e shown b e l o w , where P (n-add) d e f i n e s a c o l l e c t e d n-add d i s t r i b u t i o n . 1
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
8.
KODAIRA AND HARWOOD
Structural Features of
T
= P(AA)
T
= P(AB)+P(BA)
P (AA) P (AB)
Terpolymers
143
!
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
P ( C A A B ) = P(CAAB)+P(BAAC) T r i a d f r a c t i o n s ( i n d i v i d u a l and c o l l e c t e d ) and B-centered pentad f r a c t i o n s ( c o l l e c t e d ) a r e a l s o p r o v i d e d by t h e program. T h e s e c o r r e s p o n d t o t h e f r a c t i o n s o f monomer u n i t s r e s i d i n g i n p a r t i c u l a r e n v i r o n m e n t s i n t h e polymer. F o r example, fcAB d e s i g n a t e s t h e f r a c t i o n o f A - u n i t s c e n t e r e d i n CAB t r i a d s . Such q u a n t i t i e s a r e c a l c u l a t e d b y d i v i d i n g a p p r o p r i a t e n-add d i s t r i b u t i o n s by monomer p r o b a b i l i t i e s , v i z . , f
CAB
=
p
(
C A B
p
A
>/ ( )
O b v i o u s l y , c o l l e c t e d t r i a d and pentad f r a c t i o n s a r e o f g r e a t e r general i n t e r e s t than i n d i v i d u a l f r a c t i o n s . Number (N.D.) a n d w e i g h t (W.D.) d i s t r i b u t i o n s o f A-, B- a n d C- monomer s e q u e n c e s a r e a l s o c a l c u l a t e d . N.D.(A)
1
= 1 - (P(BA)*P(AA/BA)+P(CA)*P(AA/CA))/(P(BA)*P(CA))
N.D.(A) ^- = ( P ( B A ) * P ( A A / B A ) + P ( C A ) * P ( A A / C A ) ) * ( 1 - P ( A A / A A ) * n>l P ( A A / A A ) ~ / (P (BA)+P (CA) ) n
N.D.(B)
n
n
2
1
= P(B/B) " *(l-P(B/B)) n
1
N.D.(C) = P ( C / C ) " " * ( l - P ( C / C ) ) n W.D. (A)
n
= (n*N.D.(A) ) / ( 1 + ( P ( B A ) * P ( A A / B A ) + P ( C A ) * P ( A A / C A ) ) ] n ((P(BA)+P(CA))*(1-P(AA/AA))) 1 1
1
W.D.(B) = n * P ( B / B ) " * ( 1 - P ( B / B ) ) n n
1
W.D.(C) = n * P ( C / C ) " " * ( l - P ( C / C ) ) n
2
2
C a l c u l a t i o n s a t h i g h c o n v e r s i o n - The q u a n t i t i e s d i s c u s s e d above a r e c a l c u l a t e d a t r e g u l a r c o n v e r s i o n i n c r e m e n t s a n d a r e i n t e g r a t e d u s i n g t h e t r a p e z o i d a l method a s i s d e s c r i b e d i n s e v e r a l o f o u r e a r l i e r p a p e r s (1»3). A v e r a g e v a l u e s o f n-add d i s t r i b u t i o n s , e t c . , a r e then r e p o r t e d f o r c o n v e r s i o n s s p e c i f i e d by the u s e r . A s an o p t i o n t h e program w i l l a l s o p r o v i d e i n f o r m a t i o n a b o u t t h e c o n c e n t r a t i o n s o f u n r e a c t e d monomers a t v a r i o u s c o n v e r sions. T y p i c a l o u t p u t f r o m t h i s p r o g r a m i s shown i n F i g u r e 1. T h i s o u t p u t i s f o r a c a l c u l a t i o n i n v o l v i n g o n l y t e r m i n a l model r e a c t i v i t y r a t i o s , w h i c h i s an o p t i o n o f t h e program.
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
144
COMPUTER. APPLICATIONS IN APPLIED POLYMER SCIENCE
OO — N O O O O J O CO X> (M in in O O *l • • • oc»c
II
a «r :r
i/i < z —•
II T:
il o
X N- O ON o ^ — o o o • • • O o o II
n
II
z < < < J - t i u —
0 N '«J OJ — — .-> n — to j") C> ^ o - " rr rt c (/)••• — • • • — o o o ^ Oo o n -J II .i 'i G t < < < < < < < < a o — < < < cc < c a o o
-
^ N O OJ
•> OJ
*
O
—
^
_0 o f- — in vP T o n o i o c < r o x ) — *; o oj— n j ? o o n — ui oj r\j — c > OJ t\ o o o o o — — — o • • • • • • • •• o ooo
— o c nr »- n ii ii n II ii ^ < o r. r o J 1
0 : a z) 0 a CD < < -rx - 2 0
«r ') x — o *, r i o cj :*J c- oj — —' v. i r o — — — oj t >I.I r . N. ^ OJ ^ Oj o ^ O "j — „0 ^ ( V — T >C O ~! r- c r r r o «r o o o o o rj r- — if • • • • • • 'i • • • • • • • • • ^ o o o o o o u »*. ° o O O O O O O « r n
co o O O 0 CP o — o o
< O CO CO O o O O »- O X • O o — o
O O CO om n n o o o n ao o o o
o
X o
o o o o o o o o o o o o in OJ c\j • • • o o o
K. a> — o O S> O N O oj n >. 0 . 7 0 9 9 3 0 . 96 7 05 c . 8 2 9 5 6 0 . 2 0 5 7 9 0 . 3 3 13 7 0 • 14202 0 . 00 1 05 0 . C243 7 0 . 0 5 9 7 6 0 . 0 1 7 3 8 0. 0 0 0 0 3 0 • 004 1 9 0 . 0 0 5 0 7 0 . o o o o o 0 . 0 0 0 7 2 0 . 0 0 1 4 8 0. 000 0 0 0 . 0 0 01 2 0 . 0 0 0 4 3 0. o o o o o 0 • 0 0 0 0 2 0. o o o o o 0. 000 1 3 0 000 0 . 0 0 0 0 4 0 . o o o o o 0. o o o o o 0. 0000 1 0. o o o o o 0 . o o o o o - 0 .00 —0 . 0 0 0 0 1 301 - 3 . 3 0 3 0 1
AABBAAAHUil: A ABBC = BAbBABABJLU B A B B C =• CABQA= C A R U L U CABHC=
0 0 0 2 3 3 304 1 ^ 1 7 J 0 3 1 r. 2 0 3 ?. t 7
0 112 4 50 3 0. J]>21 0 . 0 J«>3H
0 . 0. 0 . 3 . 3 .
C U L L F C T c.> AABA A = 0 0 AARAo0 A A BA C GADA M= « 0 UABAC= 0 CABAC=
B C C C
A A A B H
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
2
s
5? •a
I
«•>*.
?
2
3
Co
§
o
ss
a
o
146
COMPUTER APPLICATIONS IN APPLIED POLYMER SCIENCE
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
Program B T h i s p r o g r a m f u n c t i o n s i n e s s e n t i a l l y t h e same manner a s P r o g r a m A, e x c e p t i t c a n a c c e p t a s i n p u t 18 r e a c t i v i t y r a t i o s , c o r r e s p o n d i n g t o a s i t u a t i o n where a l l monomers e x h i b i t p e n u l t i mate e f f e c t s . As i s a l s o t h e c a s e i n P r o g r a m A, t e r m i n a l m o d e l r e a c t i v i t y r a t i o s c a n be u s e d , h o w e v e r . The programming i n v o l v e s the c a l c u l a t i o n o f 27 c o n d i t i o n a l p r o b a b i l i t i e s . These p r o b a b i l i t i e s a r e c a l c u l a t e d i n t h e same way t h a t P ( A A / A A ) , P(AAyBA) a n d P(AA/CA) a r e c a l c u l a t e d i n t h e c a s e o f P r o g r a m A. F i g u r e 2 shows t h e 9x9 t r a n s i t i o n m a t r i x t h a t i s c o n s t r u c t e d from these c o n d i t i o n a l p r o b a b i l i t i e s . I t s h o u l d be n o t e d t h a t a l l i n i t i a l and f i n a l s t a t e s a r e d y a d s i n t h i s c a s e . Since i t would be d i f f i c u l t t o u s e P r i c e ' s c o f a c t o r method (5) w i t h s u c h a l a r g e m a t r i x , t h e m a t r i x m u l t i p l i c a t i o n method we h a v e d e s c r i b e d p r e v i o u s l y (1) was u s e d t o e v a l u a t e u n c o n d i t i o n a l dyad p r o b a b i l i t i e s (e.g., P(AB), P(CC), e t c . ) . Thus, r e p e a t e d m u l t i p l i c a t i o n of the t r a n s i t i o n m a t r i x by i t s e l f c a u s e s i t t o c o n v e r g e t o t h e m a t r i x shown i n F i g u r e 3, w h i c h c o n t a i n s u n c o n d i t i o n a l d y a d p r o b a b i l i t i e s as i t s e l e m e n t s . These a r e t h e n added t o o b t a i n monomer p r o b a b i l i ties , viz., P(A)
= P(AA) + P(AB) + P(AC)
P(B)
= P(AB) + P(BB) + P(CB)
P(C)
= P(AC) + P(BC) + P(CC)
T r i a d and h i g h e r n-add p r o b a b i l i t i e s a r e c a l c u l a t e d by m u l t i p l y i n g a p p r o p r i a t e u n c o n d i t i o n a l and c o n d i t i o n a l p r o b a b i l i t i e s . A f e w e x a m p l e s a r e shown b e l o w . P(AAA) = P ( A A ) * P ( A A / A A ) P(AAB) = P ( A A ) * P ( A B / A A ) P(BAA) = P ( B A ) * P ( A A / B A ) P(AABC)= P ( A A ) * P ( A B / A A ) P ( B C / A B ) P(BABC)= P ( B A ) * P ( A B / B A ) * P ( B C / A B ) = P ( B A B ) * P ( B C / A B ) P(BACBC)=P(BA)*P(AC/BA)*P(CB/AC)*P(BC/CB) T r i a d and p e n t a d f r a c t i o n s a r e c a l c u l a t e d i n t h e u s u a l way, f *
= P(AAB)/P(B)
^BACBC
=
P(BACBC)/P(C)
Provder; Computer Applications in Applied Polymer Science ACS Symposium Series; American Chemical Society: Washington, DC, 1982.
viz.,
8.
Structural Features of
KODAIRA AND HARWOOD
Terpolymers
o
Downloaded by NANYANG TECHNOLOGICAL UNIV on October 15, 2017 | http://pubs.acs.org Publication Date: September 24, 1982 | doi: 10.1021/bk-1982-0197.ch008
Q_
PQ
o
o o
I o
\
PQ O
o
S
PQ
PQ Q_
PQ
o