9 Properties and Morphology of Amorphous
Downloaded via UNIV OF MINNESOTA on August 3, 2018 at 04:11:44 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Hydrocarbon Block Copolymers MITCHEL SHEN Department of Chemical Engineering, University of California, Berkeley, C A 94720
The
morphologies of heterogeneous block copolymers are
determined by the block composition and by sample preparation conditions.
The
resulting
microstructures
exert a
profound influence on the properties of these materials. this review we shall first discuss the thermodynamic
In
condi-
tions under which homogeneous block copolymers can be formed. These systems are interesting because their underlying chain dynamics can be treated by the accepted molecular models. copolymer
Next we present some examples of block
morphologies.
Statistical
theories capable
of
satisfactorily explaining the observed morphologies are then briefly discussed. Finally the elastic, viscoelastic, and rheological properties of these materials are described. instances the dominant effect of the microdomain
In all
structure
on these properties is demonstrated.
T A u r i n g the past decade, there has been an upsurge of interest in studying the relation between morphology and properties of block copolymers. T h e interest is generated mainly by the technological importance of these materials, e.g., their ability to form thermoplastic elastomers or i m pact-resistant plastics. Although there are some block copolymers that are homogeneous, most of them show microphase separation.
T h e type of
structure depends on such variables as chemical composition, block configuration, solvent power, etc.
Advances in characterization techniques
such as electron microscopy and low-angle x-ray scattering now render it possible to investigate their detailed morphologies. In this chapter we shall review the morphological and property studies of both homogeneous 0-8412-0457-8/79/33-176-181$06.00/0 © 1979 American Chemical Society
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
182
MULTIPHASE
POLYMERS
a n d heterogeneous b l o c k c o p o l y m e r s as w e l l as t h e t h e r m o d y n a m i c theo ries i n m i c r o p h a s e s e p a r a t i o n i n these materials.
T h e r e v i e w is n o t
i n t e n d e d to b e exhaustive, rather i t w i l l focus o n t h e m o r e c u r r e n t w o r k s i n t h e field. F u r t h e r i n f o r m a t i o n is a v a i l a b l e i n t h e recent research m o n o graphs (1,2,3,4,5)
a n d r e v i e w papers c i t e d (6, 7,8,
9,10).
Homogeneous Block Copolymers T h e t h e r m o d y n a m i c c r i t e r i o n f o r the m i x i n g of t w o or m o r e systems is that t h e f r e e e n e r g y o f m i x i n g m u s t b e negative. tems, t h e e n t r o p y increases
F o r p o l y m e r i c sys
a c c o m p a n y i n g the m i x i n g
of l o n g c h a i n
m o l e c u l e s are v e r y s m a l l . S i n c e t h e e n t h a l p y of m i x i n g is u s u a l l y p o s i t i v e , i t is therefore n o t t o o s u r p r i s i n g that phase separations o f t e n o c c u r i n p o l y m e r i c m i x t u r e s . T h e t h e r m o d y n a m i c basis f o r m i c r o p h a s e s e p a r a t i o n i n b l o c k c o p o l y m e r s has b e e n p r e s e n t e d b y K r a u s e (11,12) a n d M e i e r I n t h e w o r k of K r a u s e , the e n t h a l p y change o n m i c r o p h a s e separa
(13).
t i o n is g i v e n b y t h e H i l d e b r a n d - V a n L a a r - S c a t c h a r d expression AH -
-
-kT(V/V )v v (l z
A
BXAB
(14): (1)
2/z)
w h e r e V is t h e t o t a l v o l u m e of t h e m i x t u r e , V t h e v o l u m e of e a c h l a t t i c e z
site, ζ is t h e c o o r d i n a t i o n n u m b e r , k is B o l t z m a n n constant t> a n d t ) a r e A
B
v o l u m e fractions of A a n d Β b l o c k s r e s p e c t i v e l y , Τ is absolute t e m p e r a ture, a n d XAB is the F l o r y - H u g g i n s i n t e r a c t i o n p a r a m e t e r b e t w e e n A s and Bs. T h e e n t r o p y c h a n g e a c c o m p a n y i n g m i c r o p h a s e separation is
(12)
f o r e a c h c o p o l y m e r m o l e c u l e . I n E q u a t i o n 2, m is t h e n u m b e r of b l o c k s AS/k
— (ν 1ην + Δ
Δ
VBIUVB)
-
2 (m -
1) (AS /k) d
+ In ( m -
1)
(2)
i n t h e b l o c k c o p o l y m e r m o l e c u l e . T h e e n t r o p y c h a n g e a t t r i b u t a b l e to t h e d e m i x i n g f r o m a h o m o g e n e o u s m i x t u r e to a phase-separated
system is
g i v e n b y t h e first t e r m o n t h e r i g h t - h a n d side of E q u a t i o n 2. T h e s e c o n d t e r m accounts f o r t h e e n t r o p y decrease a t t r i b u t a b l e to t h e i m m o b i l i z a t i o n of t h e segments l i n k i n g t h e A a n d Β b l o c k s ( w h e r e AS is d i s o r i e n t a t i o n d
entropy).
I f t h e n u m b e r of b l o c k s i n t h e c o p o l y m e r is large (m
> 3),
t h e n it is necessary t o r e c o g n i z e t h e fact that after t h e first b l o c k - l i n k i n g segment has b e e n p l a c e d o n the interface, the p o s s i b l e n u m b e r of sites a v a i l a b l e to t h e s u b s e q u e n t l i n k s is n o w c o n s t r a i n e d . T h e e n t r o p y change f o r this effect is g i v e n b y t h e t h i r d t e r m . C o m b i n i n g E q u a t i o n s 1 a n d 2, the free e n e r g y change o n m i c r o p h a s e separation c a n b e w r i t t e n . T h e c r i t i c a l i n t e r a c t i o n p a r a m e t e r t h e n c a n b e r e a d i l y o b t a i n e d b y setting the f r e e energy change to z e r o :
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
SHEN
(xab)
«
=
+ where n
183
Amorphous Hydrocarbon Block Copolymers
and n
A
F=^ife^ " C
2(m -
1) (AS /k)
iVAlnVA +
-
d
m(m -
VBlnVB)
1)]
(3)
a r e t h e n u m b e r s of A a n d Β units i n e a c h c o p o l y m e r
B
m o l e c u l e . C a l c u l a t i o n s o n t h e basis of E q u a t i o n 3 s h o w t h a t t h e m i c r o phase separation b e c o m e s m o r e d i f f i c u l t w i t h i n c r e a s i n g m . V a l u e s of c r i t i c a l i n t e r a c t i o n parameters c o m p u t e d f o r a m i x t u r e of h o m o p o l y m e r s are m u c h l o w e r t h a n those f o r t h e b l o c k c o p o l y m e r w i t h i d e n t i c a l c o m p o s i t i o n . T h u s i t is m o r e d i f f i c u l t f o r m i c r o p h a s e s e p a r a t i o n t o take p l a c e w h e n p o l y m e r s are l i n k e d together v i a c o v a l e n t b o n d s as b l o c k c o p o l y mers.
E x p e r i m e n t a l l y i t has b e e n f o u n d that a l t h o u g h p o l y b l e n d s of
p o l y s t y r e n e a n d p o l y ( α - m e t h y l styrene ) t e n d t o b e heterogeneous, c o r r e s p o n d i n g b l o c k c o p o l y m e r s are often h o m o g e n e o u s
the
( 15-21 ).
A l t h o u g h there are v e r y f e w h o m o g e n e o u s b l o c k c o p o l y m e r s a v a i l able they are nevertheless of interest because t h e i r viscoelastic b e h a v i o r c a n b e s t u d i e d w i t h i n t h e existing t h e o r e t i c a l f r a m e w o r k to e l u c i d a t e t h e m o l e c u l a r d y n a m i c s of b l o c k c o p o l y m e r s .
T h e most a c c e p t e d m o d e l i?
the m o l e c u l a r t h e o r y of p o l y m e r v i s c o e l a s t i c i t y p r o p o s e d m a n y years a g o b y R o u s e ( 2 2 ) , B u e c h e ( 2 3 ) , a n d Z i m m (24).
T h e R B Z model divides
the p o l y m e r m o l e c u l e i n t o Ν - f 1 s u b m o l e c u l e s w i t h Ν springs.
( beads ) h e l d together
T h e springs are stretched w h e n t h e p o l y m e r c o i l is
d i s t u r b e d b y a shear g r a d i e n t . T h e s p r i n g constant is g i v e n b y
3kT/b ,
w h e r e b is t h e average e n d - t o - e n d distance of t h e s u b m o l e c u l e .
A s the
2
2
beads m o v e t h r o u g h t h e m e d i u m , a viscous d r a g is exerted o n t h e m w h o s e m a g n i t u d e is g i v e n b y a f r i c t i o n coefficient /. A t e q u i l i b r i u m t h e viscous a n d elastic forces are e q u a l to e a c h other.
A s i m p l i f i e d f o r m of t h e
e q u a t i o n of m o t i o n c a n b e w r i t t e n as f o l l o w s : X
= σΖχ
w h e r e χ a n d χ are c o l u m n vectors of b e a d p o s i t i o n s a n d b e a d velocities, Ζ is t h e nearest n e i g h b o r m a t r i x , a n d σ =
3kT/b f. 2
I n t h e case of b l o c k c o p o l y m e r s ( 2 5 , 26, 27, 28,29), E q u a t i o n 4 m u s t b e m o d i f i e d t o take i n t o a c c o u n t t h e f a c t that n o t a l l of t h e b e a d s are t h e same (as is the case f o r h o m o p o l y m e r s ) .
F o r a triblock copolymer such
as p o l y ( s t y r e n e - b - a - m e t h y l styrene-b-styrene ), t h e e q u a t i o n of m o t i o n is (26):
X = — σ Ό Ζχ 8
_1
w h e r e σ = 3kT/b / , t h e subscripts s refer to t h e P S s u b m o l e c u l e . T h e m a t r i x D " is t h e inverse of 2
8
8
8
1
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
184
MULTIPHASE POLYMERS
Ο '"SA
D
(6)
Ο where δ
Α
=
a n d subscripts A refer to
2
b f /b % A
A
B
P a M S
submolecules.
T h u s t h e elements i n t h e d i a g o n a l o f this m a t r i x take i n t o a c c o u n t t h e differences b e t w e e n t h e
P S
and
P a M S
submolecules.
T h e s o l u t i o n of t h e e q u a t i o n of m o t i o n y i e l d s t h e d i s t r i b u t i o n of v i s c o e l a s t i c r e l a x a t i o n times.
F o r ease of c o m p a r i s o n w i t h e x p e r i m e n t a l
d a t a , m a x i m u m r e l a x a t i o n times f o r a n u m b e r of b l o c k c o p o l y m e r s w i t h different b l o c k configurations w e r e c o m p u t e d (26). T a b l e I.
T h e s e are g i v e n i n
F i g u r e 1 shows t h e s t r e s s - r e l a x a t i o n isotherms d e t e r m i n e d f o r
t w o d i b l o c k c o p o l y m e r s of styrene a n d α - m e t h y l s t y r e n e of t w o different m o l e c u l a r w e i g h t s (21).
T h e s e a r e s h i f t e d i n t o s m o o t h v i s c o e l a s t i c master
curves ( F i g u r e 2 ) . T h e i r shift factors ( F i g u r e 3 ) are seen to f o l l o w t h e W L F e q u a t i o n closely, i n d i c a t i n g the essential h o m o g e n e i t y of t h e b l o c k c o p o l y m e r samples.
Similar experiments
were
n u m b e r of t r i b l o c k c o p o l y m e r s of styrene
also c a r r i e d o u t f o r a
a n d a-methylstyrene
(19).
M a x i m u m r e l a x a t i o n times w e r e d e t e r m i n e d f r o m the master curves b y T a b l e I.
Block C o n f i g u r a t i o n s a n d M a x i m u m Times of Block Copolymers (26)
Polymer
Retardation Log
Block Configuration
α Τm ax
10% A
50% A
I. D i b l o c k c o p o l y m e r
AB
-0.42
0.65
II. T r i b l o c k copolymers
(a) A ^ B y A ^ (b) B ^ A y B j ;
0.64 -0.62
1.22 0.65
III.
A l t e r n a t i n g (segmented) block copolymers
I V . M u l t i b l o c k copolymers ° Computed for d = 185. A
X
V
(a) ΑχΈ$χΑχΒ (b) A ^ B y A j B y χ
. . . . .
(a) B AyB (b) B ^ A y B ^ A y B j ; X
Z
0.26
0.97 0.97
-0.60 0.34
0.65 1.01
—
Macromoiecules
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
SHEN
185
Amorphous Hydrocarbon Block Copolymers
10
1
1
I
BPI
1
BPI
\ \
Ν
\
~
^\II2.5°C\
\ X CM
e CD C >*
N
>y
\ll7
\
\|2I
Lu CP
7 N^O\l44 \
\ 1-41.5
\\N\l46.5 \
ΝΛ150 154
\
I 145
1158 ι
1
ι
2
3 Log t
2 (sec)
1
3
Figure 1. Stress-relaxation isotherms for two samples of poly(styrene-b-a-methylstyrene), BPI = M = 0.8 Χ 10 ; BPII = M = 1.5 X J O . Solid curves: tensile data; broken curve: flexural data (21). w
5
w
5
P r o c e d u r e X of T o b o l s k y a n d M u r a k a m i (SO). T a b l e I I shows that t h e agreement is satisfactory b e t w e e n t h e c a l c u l a t e d a n d e x p e r i m e n t a l values (JO). Morphology
of Heterophase Block
Copolymers
F i v e f u n d a m e n t a l d o m a i n structures are p o s s i b l e f o r b l o c k c o p o l y mers c o n s i s t i n g of t w o types of b l o c k s . G e n e r a l l y l a m e l l a r structures w i l l f o r m at c o m p o s i t i o n s w i t h a p p r o x i m a t e l y e q u a l p r o p o r t i o n s of the t w o c o m p o n e n t s . A s t h e p r o p o r t i o n of o n e c o m p o n e n t increases at t h e expense of t h e other, c y l i n d r i c a l m o r p h o l o g i e s w i l l result. T h e m a t r i x p h a s e w i l l
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
186
MULTIPHASE POLYMERS
Table II.
M a x i m u m Viscoelastic Relaxation Times f o r B l o c k Copolymers of Styrene a n d a-Methylstyrene
log
(τ /τ °) ηι
ηχ
Sample
Wt % aMS
Exptfl
CaVd
SAS
5 17 34 42 65 73 50
0.50 0.59 0.01 0.89 1.76 2.26 1.75
0.50 0.55 1.10 1.50 1.90 2.30 1.75
ASA AS
-2
-!
0
I
2
3
4
Ref. 19 19 19 19 19 19 21
5
6
Log t (sec) Figure 2. Viscoehstic master curves of poly(styrene-b-a-methylstyrene). Solid curve: sample BPI; broken curve: sample BPII (21).
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
sH E N
Amorphous Hydrocarbon Block Copolymers
0
8
16
24 T - T
r
32 e
f
40
187
48
56
CC)
Figure 3. Viscoehstic shift factor data for samples BPI (triangles) and BPII (circles) of poly(styrene-h-a-methylstyrene). The solid curve was calculated from the WLF equation (21). b e c o m p o s e d of t h e c o m p o n e n t i n greater a b u n d a n c e .
A s the proportion
of o n e c o m p o n e n t continues to increase, e v e n t u a l l y the m o r p h o l o g y of s p e r i c a l d o m a i n s of m i n o r c o m p o n e n t e m b e d d e d i n t h e m a t r i x of t h e other
component
appears.
T h e s e structures
have
been
observed for
d i b l o c k c o p o l y m e r s of isoprene a n d styrene cast f r o m toluene (31).
Their
e l e c t r o n m i c r o g r a p h s are s h o w n i n F i g u r e 4. T h e d a r k regions b e l o n g to the p o l y i s o p r e n e ( P I P ) phase w h i c h w a s selectively s t a i n e d b y O s 0 . 4
T h e d o m a i n structure of t h e 20/80 styrene/isoprene
block
copolymer
( F i g u r e 4 a ) shows t i n y spheres of p o l y s t y r e n e ( P S ) b l o c k s d i s p e r s e d i n a m a t r i x of p o l y i s o p r e n e .
E l e c t r o n m i c r o g r a p h s of 40/60 a n d 50/50
c o m p o s i t i o n s ( F i g u r e 4 b a n d 4c ) a p p e a r as a l t e r n a t i n g stripes w h i c h are a c t u a l l y profiles of t h e three d i m e n s i o n a l l a m e l l a r structures. 60/40 b l o c k c o p o l y m e r , c y l i n d r i c a l d o m a i n s of t h e isoprene
F o r the
component
i n P S m a t r i x c a n b e o b s e r v e d ( F i g u r e 4 d ) . T h e d a r k dots represent
ends
of the c y l i n d r i c a l rods. T h e progressive changes i n m o r p h o l o g y w i t h c h a n g i n g c o m p o s i t i o n s also c a n b e a c h i e v e d b y a d d i n g h o m o p o l y m e r s to t h e b l o c k c o p o l y m e r ( 32, 33,34, 35 ).
T h e a d d e d h o m o p o l y m e r is s o l u b i l i z e d i n t o t h e corre-
s p o n d i n g d o m a i n s i n the b l o c k c o p o l y m e r i f t h e m o l e c u l a r w e i g h t of t h e a d d e d h o m o p o l y m e r is e q u a l to or less t h a n that of t h e c o r r e s p o n d i n g
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
188
MULTIPHASE POLYMERS
Figure 4. Electron micrographs of diblock copolymers of styrene and isoprene cast from toluene and microtomed normal to the surface as indicated (31).
b l o c k i n t h e c o p o l y m e r . F i g u r e 5 a shows t h e e l e c t r o n p h o t o m i c r o g r a p h of a triblock copolymer of styrene-butadiene-styrene m i x e d solvent o f T H F / m e t h y l e t h y l ketone.
( S B S ) cast f r o m a
Incorporation
of a l o w
m o l e c u l a r w e i g h t p o l y s t y r e n e ( P S ) i n t h e b l o c k c o p o l y m e r e n l a r g e d the P S d o m a i n s ( l i g h t r e g i o n s ) , as seen i n F i g u r e 5 b . H o w e v e r , i f t h e a d d e d P S has a m o l e c u l a r w e i g h t that is greater t h a n that i n S B S , t h e n separate d o m a i n s o f p u r e P S appears ( F i g u r e 5 c ) . U n d e r a p p r o p r i a t e c o n d i t i o n s i t is p o s s i b l e t o observe
long-range
o r d e r i n b l o c k c o p o l y m e r s , e.g., i f samples are p r e p a r e d b y m e l t e x t r u s i o n , t h e r m a l a n n e a l i n g , o r s l o w rate o f c a s t i n g (36-42). styrene-butadiene
A n example f o r a
b l o c k c o p o l y m e r c o n t a i n i n g 6 8 % styrene is s h o w n i n
F i g u r e 6. T h e s e structures
a r e o f t e n r e f e r r e d t o as " m a c r o l a t t i c e . "
s o m e instances i m p e r f e c t i o n s
i n the long-range
" g r a i n b o u n d a r i e s " n o r m a l l y f o u n d i n m e t a l l i c systems. m i c r o s c o p i c observations
These
a r e s u p p o r t e d b y s m a l l a n g l e x-ray
( S A X S ) a n d o p t i c a l l i g h t s c a t t e r i n g studies
In
o r d e r m a y a p p e a r as electron scattering
(39,40,41,42).
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
SHE Ν
Theories
189
Amorphous Hydrocarbon Block Copolymers of Microdomain
Formation
T h e b a s i c d r i v i n g force for m i c r o d o m a i n f o r m a t i o n i n b l o c k c o p o l y mers is the r e d u c t i o n i n the p o s i t i v e surface free energy of the
system
r e s u l t i n g f r o m the increase o f the d o m a i n size. T h i s d o m a i n size increase gives rise to a decrease i n t h e v o l u m e f r a c t i o n o f i n t e r f a c i a l r e g i o n i n w h i c h j u n c t i o n points o f the c o p o l y m e r s m u s t b e d i s t r i b u t e d . I n a d d i t i o n , c o n f i g u r a t i o n s o f the b l o c k chains m u s t also c h a n g e i n o r d e r t o e v e n - u p the density d e f i c i e n c y i n the i n t e r i o r o f the d o m a i n s . A
number
o f statistical t h e r m o d y n a m i c theories
for the domain
f o r m a t i o n i n b l o c k a n d graft c o p o l y m e r s have b e e n f o r m u l a t e d o n t h e basis o f this i d e a . T h e p i o n e e r i n g w o r k i n this area was d o n e b y M e i e r (43).
I n his o r i g i n a l w o r k , h o w e v e r , h e a s s u m e d that the b o u n d a r y be
t w e e n the t w o phases is sharp.
L e a r y a n d W i l l i a m s (43,44) w e r e t h e
first to r e c o g n i z e that the interphase must b e diffuse a n d has finite t h i c k ness.
K a w a i a n d c o - w o r k e r s (31 ) t r e a t e d the p r o b l e m f r o m the p o i n t o f
v i e w of m i c e l l e f o r m a t i o n . A s the solvent evaporates f r o m a b l o c k c o p o l y m e r s o l u t i o n , a c r i t i c a l m i c e l l e c o n c e n t r a t i o n is r e a c h e d .
A t this p o i n t ,
the d o m a i n s are f o r m e d a n d are a s s u m e d to u n d e r g o n o f u r t h e r w i t h c o n t i n u e d solvent e v a p o r a t i o n .
change
M i n i m u m free energies for a n A B -
t y p e b l o c k c o p o l y m e r w e r e c o m p u t e d this w a y . H e l f a n d ( 45,46 ) u s e d a m e a n field a p p r o a c h t o treat t h e p r o b l e m of m i c r o d o m a i n f o r m a t i o n ( F i g u r e 7 ) . F o r a d i b l o c k c o p o l y m e r w i t h a h i g h d e g r e e of p o l y m e r i z a t i o n , the f o l l o w i n g free-energy expression c a n b e w r i t t e n (46) :
· · ·· ·· ·· ·· ·· ······· ·V·A· *· · ·ν···/ ν -
Figure 6.
Electron micrograph of diblock copolymer of styrene and butadiene cast from xylene (courtesy of M . Hoffman)
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
Amorphous Hydrocarbon Block Copolymers
SHEN
Β DOMAIN \ INTERPHASE
A DOMAIN
link i n a m i x e d homogeneous
193
state to that i n the m i c r o d o m a i n s . T h e
w i d t h of t h e i n t e r f a c i a l r e g i o n is g i v e n b y a, a n d is g e n e r a l l y of the o r d e r r
of nanometers.
A n o t h e r c o n s e q u e n c e of t h e c o n f i n e m e n t of t h e l i n k t o
the interphase is t h e density d e f i c i e n c y i n t h e i n t e r i o r of t h e d o m a i n . T h e system tends to statistically r e d u c e t h e c o n f o r m a t i o n s w h i c h l e a d t o the i n h o m o g e n e o u s
d e n s i t y a n d f a v o r t h e rarer c o n f o r m a t i o n s i n t h e
center of the d o m a i n . T h e loss of c o n f o r m a t i o n a l e n t r o p y w i l l increase w i t h i n c r e a s i n g size of t h e d o m a i n , w h i c h is r e p r e s e n t e d b y t h e t h i r d t e r m of E q u a t i o n 7. T h e s y m b o l b i n this t e r m is the statistical l e n g t h of a m o n o m e r u n i t . T h e last t e r m i n t h e e q u a t i o n is i n d e p e n d e n t of d o m a i n sizes a n d fixes t h e s t a n d a r d state of t h e s y s t e m as that of a h o m o g e n e o u s m i x e d state.
H e r e a is a m e a s u r e of t h e r e p u l s i o n b e t w e e n A a n d Β
b l o c k s . B y m i n i m i z i n g E q u a t i o n 7, d c a n b e c a l c u l a t e d . T a b l e I I I s h o w s that t h e c o m p u t e d values of ds are i n satisfactory a g r e e m e n t w i t h a v a i l able e x p e r i m e n t a l d a t a f o r a n u m b e r of b l o c k c o p o l y m e r s of styrene a n d butadiene. I n t h e i r statistical m o d e l f o r m i c r o p h a s e s e p a r a t i o n of b l o c k c o p o l y mers, L e a r y a n d W i l l i a m s (43) temperature T . B
p r o p o s e d the c o n c e p t of a s e p a r a t i o n
It is d e f i n e d as the t e m p e r a t u r e at w h i c h a
first-order
t r a n s i t i o n occurs w h e n t h e d o m a i n s t r u c t u r e is at e q u i l i b r i u m w i t h
a
h o m o g e n e o u s m e l t , i.e., AG
=
AH
- Τ AS =
0
(8)
or
Γ.=
(AH/AS)
demix
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(9)
194
MULTIPHASE POLYMERS
T a b l e III. M i c r o d o m a i n Repeat Distances Copolymers of Styrene a n d Butadiene Mol Wt (kg/mol)
Polymer Lamellar morphology S-B
B-S-B
S-B-S
32-48 35.5-54.5
(nm)
51 55 63 49
44.5 49
71-46
74 46
19.4-72-19.4
40
24-72-24
44
37.5-72-37.5
48
73-72-73
66
38 41 48 64 24 38 25
27-30
17-68-17
30
14-30-14
26
7.2-33
8.6
8-40
10.7
11-47
S-B-S
dexp
(nm)
48.9-32.4
14.1-27.9-14.1
Spherical morphology S-B
i n Block (46)
8.4 9.3 11.1 11.6 11.4 12.4 14.3 13.8
10.8
12-147
11.2
12-163
10.9
13-59
12.8
15-^32
11.2
15-83
12.2
13-75-13
13.5
10-71-10 7-35-7 14-63-14 21-98-21 120-660-120
10 9.3 11.6 17.0 21
13.1 10.7 8.5 13.5 18.1 58
Polymer Engineering and Science
V a l u e s o f t h e s e p a r a t i o n t e m p e r a t u r e f o r a series o f p o l y ( s t y r e n e - b - b u t a diene-b-styrene ) were determined b y light transmission, calorimetry, a n d electron
microscope
observations
A comparison between
(44).
these
e x p e r i m e n t a l a n d c a l c u l a t e d v a l u e s o f T is g i v e n i n T a b l e I V . F u r t h e r s
e v i d e n c e f o r t h e existence o f s u c h " s t r u c t u r e d - u n s t r u c t u r e d " transitions t h r o u g h r h e o l o g i c a l measurements w i l l b e g i v e n i n a later section. Elasticity
of
Heterophase
Block
Copolymers
T h e s t r e s s - s t r a i n b e h a v i o r o f heterogeneous
block copolymers de-
p e n d s o n t h e i r c h e m i c a l c o m p o s i t i o n . T h o s e c o n s i s t i n g o f a soft r u b b e r y c o m p o n e n t a n d a h a r d glassy c o m p o n e n t m a y e i t h e r b e r u b b e r l i k e o r
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
195
Amorphous Hydrocarbon Block Copolymers
SHEN
plasticlike.
I n t r i b l o c k c o p o l y m e r s w h e r e t h e f o r m e r is t h e m a j o r c o m
p o n e n t , t h e s t r e s s - s t r a i n curves w o u l d e x h i b i t h i g h e l a s t i c i t y u p to n e a r l y 1000%
before fracture.
T h e r u b b e r l i k e e l a s t i c i t y arises f r o m t h e f a c t
that t h e p l a s t i c d o m a i n s " a n c h o r " the r u b b e r y n e t w o r k c h a i n s as p s e u d o c r o s s l i n k s . I n a d d i t i o n , these d o m a i n s also h a v e t h e r e i n f o r c i n g effect o f fillers
(47). / —
L e o n a r d (48) d e r i v e d a n e q u a t i o n of state f o r s u c h systems: (NBT/v ^L ) R
0
(1.0
+
2.5 μ
ρ
14.1
+
^ ) p
(λ -
2
1/λ )
(10)
2
w h e r e / is the elastic force, R is t h e i d e a l gas constant, Τ is t h e a b s o l u t e temperature, L
0
is t h e u n s t r e t c h e d l e n g t h , v a n d t> a r e v o l u m e fractions r
p
of t h e r u b b e r y a n d p l a s t i c c o m p o n e n t s , r e s p e c t i v e l y , Ν is t h e n u m b e r o f r u b b e r chains a n c h o r e d b e t w e e n 2N d o m a i n s , a n d λ is t h e e l o n g a t i o n ratio. T h e t h e o r y w a s d e r i v e d f r o m e n t r o p y c o n s i d e r a t i o n s of t h e hetero geneous system a l t h o u g h the r e s u l t i n g e q u a t i o n is i d e n t i c a l to t h e classi c a l s t a t i s t i c a l t h e o r y of r u b b e r e l a s t i c i t y f o r filled systems. Block copolymers i n w h i c h
the plastic component
is s u f f i c i e n t l y
a b u n d a n t to f o r m c o n t i n u o u s regions c a n b e r e g a r d e d as m i c r o c o m p o s i t e materials.
T h e d i s p e r s e d d o m a i n s i n these m a t e r i a l s
rather than macroscopic i n dimensions.
are m i c r o s c o p i c
A n u m b e r of e x i s t i n g theories
f o r t h e e l a s t i c i t y of composites has b e e n s u c c e s s f u l l y a p p l i e d t o c a l c u l a t e the elastic m o d u l i of these m a t e r i a l s .
T a k a y a n a g i (49) a n d K a w a i (50)
a n d t h e i r c o - w o r k e r s w e r e a m o n g t h e first t o treat the elastic m o d u l i as composites.
T h e y chose a n e q u i v a l e n t m o d e l to represent
composites,
u s i n g t h e d e g r e e o f m i x i n g ( λ ) of t h e d i s p e r s o i d s a n d t h e c o m p o s i t i o n ( φ ) of t h e d i s p e r s o i d s a n d m a t r i x as i n d e p e n d e n t v a r i a b l e s . P e r f e c t m a t e r i a l c o n t a c t b e t w e e n t h e phases is a s s u m e d . W h e n t h e e q u i v a l e n t m o d e l is s t r e t c h e d , t h e elastic f o r c e c a n b e b o r n e b y t h e m a t r i x a l o n e o r b y b o t h the m a t r i x a n d t h e d i s p e r s e d phases.
T h e m o d u l u s of t h e e q u i v a l e n t
m o d e l c a n b e c a l c u l a t e d b y either the Series M o d e l o r t h e P a r a l l e l M o d e l . F o r t h e Series M o d e l , t h e m o d u l u s of the c o m p o s i t e i s :
a n d for the Parallel M o d e l :
(12)
w h e r e s u b s c r i p t s d a n d m refer to d i s p e r s e d a n d m a t r i x phases respec t i v e l y , u are t h e v o l u m e fractions of t h e t w o phases, a n d λφ = s
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
v. d
The
196
MULTIPHASE POLYMERS
Table IV.
Separation Temperatures in Triblock
Molecular Polymer
M, -
M
B
Weight — - Μ,
Volume Fraction Styrene (φ )
X 10'
3
M
n
8
K r a t o n 1101
12.5-75-12.5
100
0.245
K r a t o n 1102
5.4-32.3-5.4 9.4-56.2-9.4 7-36-6 16-78-16
43 75 49 112
0.245 0.245 0.25 0.275
58
0.463
TR-41-1647 TR-41-1648 TR-41-1649
14-30-14
u n p r i m e d λ a n d φ refer t o t h e Series M o d e l a n d t h e p r i m e d ones t o t h e P a r a l l e l M o d e l . T h e t w o m o d e l s are i n fact e q u i v a l e n t , i f λ ' =
1 — v
d
—
φ (51, 5 2 ) . E q u a t i o n s 11 a n d 12 h a v e b e e n u s e d b y a n u m b e r of authors (51,52,53) t o c o m p a r e w i t h e x p e r i m e n t a l l y d e t e r m i n e d elastic of heterophase
block copolymers.
moduli
H o w e v e r , the S e r i e s - P a r a l l e l
Model
is o n l y v a l i d f o r soft dispersoids i n h a r d m a t r i x i n c o n c e n t r a t i o n ranges w h e r e g e o m e t r y of the d i s p e r s e d phase is n o t i m p o r t a n t . F o r t h e inverse case of h a r d d i s p e r s o i d s i n soft m a t r i x , t h e m o d u l i d a t a c a n n o t b e ade quately predicted b y the model.
Halpin
(54)
a n d Nielsen
(55,56)
p r o p o s e d a m o r e g e n e r a l e q u a t i o n that covers the c o m p l e t e c o m p o s i t i o n range.
B u t as t h e c o m p o s i t i o n of t h e b l o c k c o p o l y m e r changes, a phase
i n v e r s i o n c a n o c c u r at a certain p o i n t . F o r s u c h a s i t u a t i o n , t h e use of some e m p i r i c a l m i x i n g rules is necessary.
R e c e n t l y , F a u c h e r (57)
o u t that b y u s i n g t h e " p o l y a g g r e g a t e " m o d e l of K e r n e r (58) necessary to postulate the existence of t h e m a t r i x phase. m o d e l i m p l i e s t h e e q u i v a l e n c e of t h e t w o phases.
pointed i t is n o t
I n fact, t h e
Since n e i t h e r one c a n
b e r e g a r d e d as the m a t r i x f o r the other, t h e d i f f i c u l t y of t r e a t i n g the phase i n v e r s i o n is c i r c u m v e n t e d . T h e r e s u l t i n g equations are l e n g t h y , b u t the p r e d i c t i o n s a p p e a r to agree w e l l w i t h literature d a t a . F o r p l a s t i c - l i k e heterophase
b l o c k c o p o l y m e r s , the stress-strain b e
h a v i o r is s t r o n g l y d e p e n d e n t o n m o r p h o l o g y . K a w a i a n d c o - w o r k e r s
(59)
f o u n d that f o r a 50/50 d i b l o c k c o p o l y m e r of styrene/isoprene cast f r o m a m i x e d solvent system of toluene a n d m e t h y l e t h y l ketone, t h e stressstrain c u r v e shows regions of y i e l d i n g a n d d r a w i n g . T r a n s m i s s i o n elec t r o n m i c r o g r a p h s s h o w that there is extensive e l o n g a t i o n of the p l a s t i c d o m a i n s i n t h e r e g i o n of d r a w i n g . T h e s e authors h y p o t h e s i z e d t h a t s u c h
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
Amorphous Hydrocarbon Block Copolymers
SHEN
197
Copolymers of Styrene and Butadiene (44) T
s
(K) Method
Model
Observed
590
583-593 > 343 373-423 > 340 < 310 > 600 > 347 < 530 > 500 573-598
265 430 298 735 515
light transmission calorimetry light transmission calorimetry calorimetry light transmission calorimetry electron m i c r o s c o p e calorimetry light transmission Journal of Polymer Science, Polymer Physics Edition
m o r p h o l o g i c a l changes c a n b e a t t r i b u t a b l e t o heat t r a n s f o r m e d f r o m t h e s t r a i n energy, t h e r e b y c a u s i n g t h e flow t o take p l a c e u p o n s t r e t c h i n g . U n d e r appropriate conditions of sample preparation, the phenomena of " s t r a i n - i n d u c e d p l a s t i c - r u b b e r t r a n s i t i o n " c a n b e o b s e r v e d . F o r b l o c k c o p o l y m e r s e x h i b i t i n g y i e l d i n g a n d d r a w i n g regions i n t h e first s t r e s s s t r a i n c y c l e , t h e r e is u s u a l l y c o n s i d e r a b l e s t r a i n - s o f t e n i n g i n t h e s e c o n d a n d s u b s e q u e n t d e f o r m a t i o n (60, 61, 62, 63). T h e d r a w i n g process o c c u r s w h e n t h e n a r r o w i n g o f t h e cross-sectional a r e a o f t h e s a m p l e s u d d e n l y appears at o n e p o i n t i n t h e s a m p l e a n d s u b s e q u e n t l y propagates the entire s a m p l e is t r a n s f o r m e d .
until
S u c h p h e n o m e n a a r e s i m i l a r t o that
i n c o n v e n t i o n a l plastics e x c e p t that i n this instance t h e n e c k e d r e g i o n s a r e not plastic b u t rubbery.
A f t e r t h e n e c k i n g process
has p r o p a g a t e d
t h r o u g h o u t , t h e s a m p l e w h i c h w a s i n i t i a l l y a p l a s t i c has n o w b e c o m e a r u b b e r . T h e e l e c t r o n m i c r o g r a p h s s h o w that there is extensive d i s r u p t i o n of t h e c o n t i n u o u s p o l y s t y r e n e d o m a i n s i n t h e s t r e t c h e d s a m p l e .
If the
s a m p l e is a n n e a l e d at e l e v a t e d t e m p e r a t u r e , t h e n t h e s a m p l e returns t o t h e p l a s t i c state (63). T h e s e m o r p h o l o g i c a l changes also c a n b e o b s e r v e d b y small-angle x-ray scattering sample
( S A X S ) i n F i g u r e 8. T h e u n s t r e t c h e d
of a p o l y ( styrene-b-butadiene-b-styrene )
blended
with 20%
p o l y s t y r e n e shows a r a t h e r s h a r p p e a k b u t b e c o m e s b r o a d e n e d u p o n stretching.
T h e scattering c u r v e f o r t h e a n n e a l e d s a m p l e , h o w e v e r , is
m o r e s i m i l a r t o that o f t h e u n s t r e t c h e d
sample,
indicating a partial
r e s t o r a t i o n o f t h e o r i g i n a l m o r p h o l o g y (64). T h e m e c h a n i c a l p r o p e r t i e s of a m a c r o l a t t i c e o f S B S has b e e n i n v e s t i g a t e d ( 6 5 ) . T h e s a m p l e consists of a h e x a g o n a l a r r a y o f p o l y s t y r e n e c y l i n d e r s e m b e d d e d i n t h e p o l y b u t a d i e n e m a t r i x . T h e stress-strain c u r v e s
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
198
MULTIPHASE POLYMERS
10
ο α> Φ
Ν
Φ C
3 Ο Ο
«Γ
5
g χ
~0
0.20 Scattering
0.40 Angle
Figure 8. Small-angle x-ray scattering (SAXS) data for poly(styrene-b-butadiene-b-styrene) blended with 20% polystyrene and cast from THF/methyl ethyl ketone (after Ref. 64) of t h e m a c r o l a t t i c e s h o w a d e c i s i v e a n i s o t r o p y . T h e m o d u l i d a t a w e r e f o u n d to b e i n excellent agreement w i t h t h e T a k a y a n a g i - K a w a i m o d e l i f t h e l o n g i t u d i n a l s a m p l e is r e p r e s e n t e d b y p a r a l l e l c o u p l i n g a n d t h e transverse s a m p l e b y series c o u p l i n g . Yiscoelasticity
of Heterophase
Block
Copolymers
I n a n e a r l i e r section, w e h a v e s h o w n that t h e viscoelastic b e h a v i o r of h o m o g e n e o u s b l o c k c o p o l y m e r s c a n b e t r e a t e d b y t h e m o d i f i e d R o u s e B u e c h e - Z i m m m o d e l . I n addition, the T i m e - T e m p e r a t u r e Superposition P r i n c i p l e has also b e e n f o u n d to b e v a l i d f o r these systems.
However, if
t h e b l o c k c o p o l y m e r shows m i c r o p h a s e s e p a r a t i o n , these c o n c l u s i o n s n o l o n g e r a p p l y . T h e basic tenet of t h e T i m e - T e m p e r a t u r e S u p e r p o s i t i o n P r i n c i p l e is v a l i d o n l y i f a l l o f t h e r e l a x a t i o n m e c h a n i s m s are affected b y t e m p e r a t u r e i n t h e same m a n n e r .
M a t e r i a l s o b e y i n g this P r i n c i p l e are
s a i d t o b e t h e r m o r h e o l o g i c a l l y s i m p l e . I n other w o r d s , r e l a x a t i o n times at o n e t e m p e r a t u r e are r e l a t e d to t h e c o r r e s p o n d i n g r e l a x a t i o n times at a reference
temperature
b y a constant
ratio
(the shift factor).
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
For
9.
SHEN
199
Amorphous Hydrocarbon Block Copolymers
heterogeneous systems, the constituent p o l y m e r s exist i n separate phases a n d m u s t u n d e r g o r e l a x a t i o n processes i n d i v i d u a l l y .
Such
heterogeneous
b l o c k c o p o l y m e r s therefore d o n o t satisfy t h e s a i d s t i p u l a t i o n a n d s h o u l d b e c o n s i d e r e d t h e r m o r h e o l o g i c a l l y c o m p l e x (66,67,68, 69). T h e i r m a s t e r c u r v e s a r e i n f a c t different i n s h a p e at d i f f e r e n t t e m p e r a t u r e s b e c a u s e t h e r e l a x a t i o n times o f t h e t w o different phases a r e affected b y t e m p e r a t u r e d i f f e r e n t l y . H o w e v e r , t h e e x p e r i m e n t a l l y accessible r a n g e ( w h i c h F e s k o a n d T s c h o e g l (66) c a l l " t h e e x p e r i m e n t a l w i n d o w " ) is s m a l l . W i t h i n t h i s w i n d o w the n e i g h b o r i n g isotherms appear to b e superposable b y simple h o r i z o n t a l s h i f t i n g a l o n g t h e l o g a r i t h m i c t i m e axis, b u t t h e result o f s u c h s h i f t i n g w o u l d g i v e rise t o a n erroneous master c u r v e . A u s e f u l w a y t o represent t h e v i s c o e l a s t i c i t y o f heterogeneous system is t h e c o n t o u r p l o t , a n e x a m p l e f o r w h i c h is s h o w n i n F i g u r e 9. S u c h a p l o t shows s i m u l -
-80
-60 -40 -20
0
TEMPERATURE
20
40
60
80
- *C
Transactions of the Society of Rheology
Figure 9. Contour plot (70) of dynamic loss compliance as a function of frequency and temperature for poly(styrene-b-butadiene-styrene).
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
MULTIPHASE POLYMERS
200
taneously h o w a g i v e n viscoelastic p a r a m e t e r , i n this case t h e d y n a m i c loss c o m p l i a n c e , d e p e n d s o n b o t h t h e f r e q u e n c y
(or time)
a n d tem
perature ( 7 0 ) . T h e effect o f m o r p h o l o g y o n t h e v i s c o e l a s t i c i t y of b l o c k c o p o l y m e r s has b e e n i n v e s t i g a t e d (71, 72).
T h e most i m p o r t a n t factor appears to b e
the c o n n e c t i v i t y of d o m a i n s .
If t h e s a m p l e w a s cast f r o m a solvent,
w h i c h results i n extensive i n t e r c o n n e c t i o n s a m o n g t h e h a r d d o m a i n s ( for instance t h e glassy P S d o m a i n s i n S B S ) , t h e n the m o d u l u s i n t h e r e g i o n ( above the T
g
of P S ) w i l l b e relatively high.
O n t h e other h a n d , i f t h e
h a r d d o m a i n s are d i s p e r s e d i n a soft m a t r i x ( t h e r u b b e r y P B d o m a i n s ) ,
then the m o d u l i (71).
shear
i n t h e same r e g i o n w i l l b e l o w e r f o r t h e same
In a d d i t i o n , t h e r a t i o of storage m o d u l i ( E ' / G ' )
sample
i n tensile a n d
m o d e s w a s f o u n d t o b e n e a r l y three f o r t h e P B - c o n t i n u o u s S B S ,
w h i c h is as e x p e c t e d f o r elastomers.
H o w e v e r , t h e ratio f o r t h e same
s a m p l e w h i c h w a s cast f r o m solvents that r e n d e r t h e m P S c o n t i n u o u s is n o w greater b y a n o r d e r o f m a g n i t u d e (72).
T h e anomalously high value
is a t t r i b u t e d t o t h e a n i s o t r o p i c P S - d o m a i n c o n n e c t i v i t y i n t h e f o r m o f l o n g fibrils o r l a m e l l a e . Rheology
of
Heterogeneous
Block
Copolymer
Melts
B e c a u s e t h e existence o f d o m a i n structure i n heterogeneous
block
c o p o l y m e r s persists e v e n i n t h e m o l t e n state, t h i e r r h e o l o g i c a l b e h a v i o r is
rather
unique when compared with
ι
I
1
I
1er
2
icr
1
1
polymer melts.
1
I
I
I
ι
ίο
ίο
Shear Rate
Figure 10.
homogeneous
Γ
I 2
ιο
1 3
(sec ) - 1
Shear viscosity as a function steady-state shear rate for poly(styrene-b-butadiene-b-styrene) at 150°C (after Ref. 47)
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
9.
201
Amorphous Hydrocarbon Block Copolymers
SHEN
H o l d e n et a l . (47) first n o t e d t h e p e c u l i a r characteristics i n t h e steady shear b e h a v i o r o f t h e S B S b l o c k c o p o l y m e r m e l t s . F o r a c e r t a i n c o m p o s i t i o n of styrene a n d b u t a d i e n e , n o l i m i t i n g N e w t o n i a n v i s c o s i t y w a s f o u n d at l o w shear rates.
F o r some of t h e others, there exist t w o d i s t i n c t v i s
cosity v s . shear rate r e l a t i o n s h i p s ( F i g u r e 10). A r n o l d a n d M e i e r c a r r i e d o u t t h e experiments
(73)
i n o s c i l l a t o r y shear a n d f o u n d t h e same
7S-43B-7S
ω
(RAD/^EC) 0.148
CO
ο Q. t ω Ο CO
5
10
14.87
-ο 2 < Ζ
46.9
ο
Ι * — :
10
10*
100
110
120 130 140 150 T E M P E R A T U R E , Γ(°0)
160
170
Journal of Polymer Science, Polymer Physics Edition
Figure 11. Dynamic shear viscosity as a function of temperature for poly(styrene-b-butadiene-b-styrene) at various angular frequencies (77)
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
202
MULTIPHASE POLYMERS
anomaly.
I n a d d i t i o n , these authors f o u n d that t h e viscosities
w e r e m u c h h i g h e r t h a n that o f e i t h e r h o m o p o l y m e r
obtained
o f the same m o l e c
u l a r w e i g h t as the b l o c k c o p o l y m e r . T h e absence of a N e w t o n i a n v i s c o s i t y w a s e x p l a i n e d i n terms of a fluid d o m a i n s t r u c t u r e i n t h e m e l t that w a s p r o g r e s s i v e l y d i s r u p t e d , c a u s i n g t h e v i s c o s i t y to decrease m a r k e d l y w i t h i n c r e a s i n g shear rate.
T h e h i g h v i s c o s i t y is a t t r i b u t e d t o t h e a d d i t i o n a l
w o r k n e e d e d t o o v e r c o m e t h e t h e r m o d y n a m i c resistance t o t h e m i x i n g process f o r the different b l o c k species to flow past e a c h other. K r a u s et a l . (74, 75) s t u d i e d t h e steady
flow
a n d oscillatory
flow
behavior of linear triblocks of S - B - S a n d B - S - B a n d r a d i a l block copoly mers o f the t y p e ( B - S - ) , ( S - B - ) , a n d ( S - B - ) . 3
3
4
F o r block copolymers
of t h e s a m e m o l e c u l a r w e i g h t a n d c o m p o s i t i o n , those w i t h e n d b l o c k s o f P S a l w a y s h a v e h i g h e r viscosities. H o w e v e r , w h e n c o m p a r e d w i t h corre sponding linear block
c o p o l y m e r s , t h e viscosities
of the r a d i a l block
c o p o l y m e r s are g e n e r a l l y l o w e r . M o r e r e c e n t l y , i t has b e e n d e m o n s t r a t e d that m a n y o f t h e u n u s u a l r h e o l o g i c a l b e h a v i o r o f b l o c k c o p o l y m e r s w i l l d i s a p p e a r w h e n the meas u r e m e n t s w e r e c a r r i e d o u t at temperatures
higher than the separation
t e m p e r a t u r e p r o p o s e d b y L e a r y a n d W i l l i a m s (43).
F i g u r e 11 s h o w s that
for b u l k S B S block copolymers w i t h a composition of 7 - 4 3 - 7
(xlO ), 3
the t r a n s i t i o n occurs a r o u n d 1 4 5 ° C ( e s p e c i a l l y clear at l o w f r e q u e n c i e s ) ( 76, 77 ). T h e s e d a t a a r e consistent w i t h those o f P i c o a n d W i l l i a m s o n plasticized block copolymers
(78).
Acknowledgment T h i s w o r k w a s s u p p o r t e d b y the Office o f N a v a l R e s e a r c h .
W e wish
to t h a n k M . H o f f m a n , R . E . C o h e n , E . H e l f a n d , a n d C . I. C h u n g f o r t h e use o f t h e i r
Literature
figures.
Cited
1. Allport, D . C., Janes, W . H., Eds., "Block Copolymers," Wiley, New York, 1973. 2. Burke, J. J., Weiss, V . , Eds., "Block and Graft Copolymers," Syracuse Uni versity, Syracuse, 1973. 3. Sperling, L . H., Ed., "Recent Advances in Polymer Blends, Grafts and Blocks," Plenum, New York, 1973. 4. Platzer, Ν. Α., E d . , "Copolymers, Polyblends and Composites," ADV. C H E M . SER. (1975) 142. 5. Noshay, Α., McGrath, J. E . , "Block Copolymers: Overview and Critical Survey," Academic, New York, 1976. 6. Estes, G . M . , Cooper, S. L., Tobolsky, Α. V., J. Macromol. Sci. (1970) C4, 313. 7. Krause, S., J. Macromol. Sci. (1972) C7, 251. 8. Bever, M . , Shen, M . , Mater. Sci. Eng. (1974) 15, 145. 9. Aggarwal, S. L., Polymer (1976) 17, 938.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
203
9.
SHEΝ
10. 11. 12. 13. 14.
Shen, M., Kawai, H., Am. Inst. Chem. Eng. J. (1978) 24, 1. Krause, S., J. Polym. Sci., Polym. Phys. Ed. (1969) 7, 249. Krause, S., Macromolecules (1970) 3, 84. Meier, J., J. Polym. Sci., Polym. Symp. (1969) C26, 81. Hildebrand, J. H., Prausnitz, J. M . , Scott, R. L . , "Regular and Related Solutions," van Nostrand, New York, 1970. Baer, M . , J. Polym. Sci., Part A (1964) 2, 417. Dunn, D. J., Krause, S., J. Polym. Sci., Polym. Lett. Ed. (1974) 12, 591. Robeson, L . M., Matzner, M., Fetters, L . J., McGrath, J. E., "Recent A d vances in Polymer Blends, Grafts and Blocks," L . H. Sperling, Ed., p. 281, Plenum, New York, 1973. Shen, M., Hansen, D . R., J. Polym. Sci., Polym. Symp. (1974) 46, 55. Hansen, D . R., Shen, M., Macromolecules ( 1975) 8, 903. Krause, S., Dunn, D . J., Seyed-Mozzaffari, A., Biswas, A. M., Macromole cules (1977) 10, 786. Soong, D., Shen, M., Macromolecules (1977) 10, 357. Rouse, P. E., J. Chem. Phys. (1953) 21, 1272. Bueche, F., J. Chem. Phys. (1954) 22, 603. Zimm, B., J. Chem. Phys. (1956) 24, 269. DeWames, R. E., Hall, W . F., Shen, M., J. Chem. Phys. (1967) 46, 2782. Hansen, D . R., Shen, M., Macromolecules (1975) 8, 343. Stockmayer, W . H., Kennedy, J. W., Macromolecules (1975) 8, 351. Hall, W . F., Kennedy, J. W., Macromolecules (1975) 8, 349. Wang, F. W., Macromolecules (1975) 8, 364. Tobolsky, Α. V . , Murakami, K., J. Polym. Sci. (1959) 40, 443. Kawai, H . , Soen, T., Inoue, Τ., Ono, T., Uchida, T., Mem. Fac. Eng. Kyoto Univ. (1971) 33, 383. Molau, G . E., Wittbrodt, W . M., Macromolecules (1968) 1, 260. Hashimoto, T., Nagatoshi, K., Todo, A., Hasegawa, H . , Kawai, H . , Macro molecules (1974) 7, 364. Toy, L., Niinomi, M., Shen, M., J. Macromol. Sci., Phys. (1975) 11, 281. Niinomi, M., Akovali, G . , Shen, M., J. Macromol. Sci., Phys. (1977) 13, 133. Fischer, E., J. Macromol. Sci., Chem. (1968) A2, 1285. Kampf, G . , Hoffman, M., Kromer, H . , J. Macromol. Sci., Phys. (1972) B6, 167. Dlugosz, J., Keller, A., Pedemonte, E., Kolloid Ζ. Z. Polym. (1970) 242, 1125. McIntyre, D., Campos-Lopez, E., Macromolecules (1970) 3, 322. Price, C., Polymer (1972) 13, 20. Pedemonte, E., Turturro, A., Bianchi, U . , Devetta, P., Polymer (1973) 14, 145. Folkes, M . J., Keller, A., Haward, R. N . , Eds., "Physics of Glassy Poly mers," Wiley, New York, 1973. Leary, D . F., Williams, M . C., J. Polym. Sci., Polym. Phys. Ed. (1973) 11, 345. Leary, D . F., Williams, M . C., J. Polymer Sci., Polym. Phys. Ed. (1974) 12, 265. Helfand, E., Acc. Chem. Res. (1975) 8, 295. Helfand, E., Wasserman, Z., Polym. Eng. Sci. (1977) 17, 582. Holden, G . , Bishop, Ε . T., Legge, N . R., J. Polym. Sci., Polym. Symp. (1969) C26, 37. Leonard, W . J., Jr., J. Polym. Sci., Polym. Symp. (1976) C54, 237. Takayanagi, M., Uemura, S., Minami, S., J. Polym. Sci., Polym. Symp. (1964) C5, 113. Fujino, H . , Ogawa, I., Kawai, H., J. Appl. Polym. Sci. (1964) 8, 2147. Dickie, R. A., J. Appl. Polym. Sci. (1973) 17, 45.
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51.
Amorphous Hydrocarbon Block Copolymers
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
MULTIPHASE POLYMERS
204 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.
Kaplan, D . , Tschoegl, N . W., Polym. Eng.Sci.,(1974) 14, 43. Kraus, G . , Rollman, K. W., Gruver, J. T . , Macromolcules (1970) 3, 92. Haplin, J. C., J. Compos. Mater. (1969) 3, 732. Nielsen, L . E . , J. Appl. Phys. (1970) 41, 4626. Nielsen, L . E., Rheol. Acta (1974) 13, 86. Faucher, J. Α., J. Polym. Sci., Polym. Phys. Ed. (1974) 12, 2153. Kerner, Ε . H., Proc. Phys.Soc.,London (1956) 69B, 808. Inoue, T . , Ishihara, H., Kawai, H., Ito, Y., Kato, K., "Mechanical Behavior of Materials," Vol. 3, p. 149, Society of Materials Science—Japan, Tokyo, 1972. Kraus, G . , Childers, C . W . , Rubber Chem. Technol. (1967) 40, 1183. Smith, T . L., Dickie, R. Α., J. Polym. Sci., Polym. Symp. (1969) C26, 163. Aggarwal, S. L., Livigni, R. Α., Marker, L . F., Dudek, T . , "Block and Graft Copolymers," J. J. Burke, V . Weiss, Eds., p. 157, Syracuse University, Syracuse, 1973. Akovali, G . , Diamant, J., Shen, M . , J. Macromol. Sci., Phys. (1977) B13, 117. Hong, S. D . , Shen, M . , Russell, T., Stein, R. S., "Polymer Alloys," D . Keemper, K. C. Frisch, Eds., Plenum, New York, 1977. Folkes, M . J., Keller, Α., Polymer (1971) 12, 222. Fesko, D . G., Tschoegl, N . W., J. Polym. Sci., Polym. Symp. (1971) C35, 51. Kaniskin, V. Α., Kaya, Α., Ling, Α., Shen, M . , J. Appl. Polym. Sci., (1973) 17, 2695. Shen, M . , Kaniskin, V . Α., Biliyar, K., Boyd, R. H., J. Polym. Sci., Polym. Phys. Ed. (1973) 11, 2261. Kaya, Α., Choi, G., Shen, M . , "Deformation and Fracture of High Poly mers," H . H . Kausch, J. A. Hassell, R. E . Jaffe, Eds., p. 27, Plenum, New York, 1974. Cohen, R. E., Tschoegl, N . W . , Trans. Soc. Rheol. (1976) 20, 153. Shen, M . , Cirlin, E . H., Kaelble, D . H., "Colloidal and Morphological Be havior of Block and Graft Copolymers," G . E . Molau, E d . , p. 307, Plenum, New York, 1971. Kraus, G . , Rollman, K. W . , Gardner, J. O., J. Polym. Sci., Polym. Phys. Ed. (1972) 10, 2061. Arnold, K. R., Meier, D . J., J. Appl. Polym.Sci.,(1970) 14, 427. Kraus, G . , Gruver, J. T., J. Appl. Polym. Sci., (1967) 11, 2121. Kraus, G . , Nayler, F . E . , Rollman, K. W . , J. Polym. Sci., Polym. Phys. Ed. (1971) 9, 1839. Chung, C. I., Gale, J. C., J. Polym. Sci., Polym. Phys. Ed. (1976) 14, 1149. Chung, C . I., Lin, I. L . , J. Polymer Sci., Polym. Phys. Ed. (1978) 16, 545. Pico, E . , Williams M . C., J. Polym. Sci., Polym. Phys. Ed. (1977) 15, 573.
RECEIVED April 14, 1978.
Cooper and Estes; Multiphase Polymers Advances in Chemistry; American Chemical Society: Washington, DC, 1979.