32 Properties of Compatible Blends of Poly(vinylidene fluoride) and Poly(methyl methacrylate) Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
D. R. PAUL and J. O. ALTAMIRANO Department of Chemical Engineering, University of Texas, Austin, Texas 78712 Evidence of the miscibility of poly(vinylidenefluoride)and poly(methyl methacryate) is confirmed by the extensive studies of the dynamic behavior of their blends that are reported here. The blends, as well as the pure polymers, have multiple transitions. There is a single transition which shifts with blend composition as would be expected in compatible systems; however, for PVF this is not the transition generally identified as T . The T of the blend, the T of the PVF , and the relative amount of crystallinity as a function of blend composition were examined by DTA. Density data indicate a lack of volume additivity caused primarily by the varying crystallinity of PVF -rich blends. 2
g
m
g
2
2
B
e c a u s e of t h e r m o d y n a m i c s , t r u l y m i s c i b l e p o l y m e r p a i r s a r e r a r e ( 1 ) . E v i d e n c e s t r o n g l y suggests t h a t p o l y ( v i n y l i d e n e f l u o r i d e ) , P V F , a n d p o l y ( m e t h y l m e t h a c r y l a t e ) , P M M A , a r e m i s c i b l e w h e n m e l t b l e n d e d ( 2 , 3, 4, 5 ) . B l e n d s c o n t a i n i n g c e r t a i n p r o p o r t i o n s of t h e s e t w o p o l y m e r s a r e a v a i l a b l e c o m m e r c i a l l y ( 6 ) . C o n s e q u e n t l y , m o r e extensive studies of blends m a d e f r o m t h i s p o l y m e r p a i r w e r e i n t e r e s t i n g t o u s . P r e v i o u s efforts t o e s t a b l i s h t h e c o m p a t i b i l i t y o f t h i s p a i r w e r e b a s e d o n o b s e r v i n g t h e glass t r a n s i t i o n b e h a v i o r of b l e n d s , m a i n l y b y t h e r m a l a n a l y s i s a n d d i l a t o m e t r y ( 2 ) . T h i s r e p o r t d e a l s w i t h a d d i t i o n a l t h e r m a l a n a l y s i s i n c l u d i n g e x a m i n a t i o n of P V F c r y s t a l l i z a t i o n f r o m c e r t a i n b l e n d s . E m p h a s i s is o n t h e t r a n s i t i o n a l b e h a v i o r i n d i c a t e d b y d y n a m i c mechanical properties w h i c h has not been reported previously. Specific v o l u m e measurements are discussed briefly. 2
2
T h e P V F , K y n a r 301, was obtained from Pennwalt, a n d the P M M A , Plexiglas V ( 811)-100, was from R o h m a n d Haas. Blends were made b y melt m i x i n g i n a B r a b e n d e r P l a s t i c o r d e r 1 0 m i n at 2 0 0 ° C . S h e e t s w e r e c o m p r e s s i o n m o l d e d , a n d s a m p l e s w e r e a n n e a l e d at 1 1 5 ° C f o r 2 0 m i n t o d e v e l o p m a x i m u m crystallinity. O t h e r w i s e , c r y s t a l l i z a t i o n of s o m e b l e n d s w o u l d o c c u r l a t e r d u r i n g testing. 2
Thermal
Analysis
of
Blends
D i f f e r e n t i a l t h e r m a l a n a l y s i s ( D T A ) of b l e n d s a n d p u r e c o m p o n e n t s w a s d o n e c y c l i c a l l y b y s u c c e s s i v e h e a t i n g a n d c o o l i n g at 1 0 ° C / m i n b e t w e e n — 1 0 0 ° 371
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
372
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
and 200°C. F i r s t heat analyses often differed somewhat f r o m subsequent h e a t s w h i c h g a v e i d e n t i c a l d a t a f o r as m a n y as six r e p e t i t i o n s . O n l y t h e l a t e r h e a t a n a l y s e s a r e d i s c u s s e d b e c a u s e t h e y a r e r e p r o d u c i b l e . A s N o l a n d et ai. ( 2 ) observed, certain blends r i c h i n P V F have a melting endotherm characteristic of P V F w h e r e a s b l e n d s r i c h i n P M M A a r e t o t a l l y a m o r p h o u s . 2
2
F i g u r e 1 shows the m e l t i n g e n d o t h e r m area w i t h arbitrary units n o r m a l i z e d f o r s a m p l e m a s s . B l e n d s c o n t a i n i n g 5 0 % o r less P V F h a v e n o m e l t i n g e n d o t h e r m ; b e y o n d this p o i n t , h o w e v e r , c r y s t a l l i n i t y increases r a p i d l y w i t h P V F content. T h e dashed line connects the zero value f o r amorphous p u r e P M M A w i t h the observed area f o r p u r e P V F . T h i s is the peak area expected i f P M M A d i d not interfere w i t h P V F crystallization b u t merely diluted the s a m p l e m a s s . O b v i o u s l y , b l e n d i n g does i n t e r f e r e w i t h c r y s t a l l i z a t i o n . F i r s t h e a t areas f o r a n n e a l e d s a m p l e s w e r e l a r g e r t h a n these o b t a i n e d w i t h c y c l i c a l heating. Blends containing 5 0 % P V F s h o w e d slight crystallinity after the first h e a t b u t n o n e a f t e r s u b s e q u e n t h e a t s w h e r e a s b l e n d s c o n t a i n i n g 4 0 % or less P V F n e v e r s h o w e d e v i d e n c e of c r y s t a l l i n i t y . 2
2
2
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
2
2
2
T h e temperature location of the m e l t i n g peak, T , v a r i e d slightly w i t h b l e n d c o m p o s i t i o n (see u p p e r p o r t i o n of F i g u r e 2 ) . T h e m a x i m u m d e p r e s s i o n in T w a s about 1 0 ° C . T h e r m o d y n a m i c calculations based o n conventional m i x t u r e theories w h i c h account f o r the r e d u c t i o n i n c h e m i c a l p o t e n t i a l that o c c u r s o n m i x i n g (7) i n d i c a t e t h a t a m i s c i b l e d i l u e n t w i t h t h e m o l e c u l a r w e i g h t of P M M A c a n n o t p r o d u c e a d e p r e s s i o n t h i s l a r g e . It is l i k e l y t h a t t h e m a j o r e f f e c t is m o r p h o l o g i c a l , e.g. s m a l l e r o r less p e r f e c t c r y s t a l l i n e r e g i o n s d e v e l o p w l
m
301
1
1
1
Weight % P V F Figure 1.
τ
2
Relative crystallinity of PVFa-PMMA as determined by DTA
blends
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
32.
Compatible
AND ALTAMIRANO
PAUL
π
1
1
1
1
Polymer
1
Blends
1
ι
373
1 —1170
Ο ο
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
A160
Ο ο ,cr>
60
20
40
60
80
Weight % P V F Figure 2. from blends. blends
100
2
DTA observed transitions for PVF -PMMA
blends
2
Similar reductions
in T
m
have
been
observed i n incompatible
(8).
A l l the blends s h o w e d a single T
0
b y D T A , w i t h i n t h e l i m i t s of d e t e c t i o n
w h i c h w a s quite strong for the w h o l l y amorphous samples.
T h e lower portion
of F i g u r e 2 s h o w s t h e l o c a t i o n of t h i s t r a n s i t i o n as a f u n c t i o n o f b l e n d c o m position.
A s crystallinity increases w i t h increasing P V F
of t h i s t r a n s i t i o n d i m i n i s h e s r a p i d l y . DTA
of a Τ
g
2
content, the intensity
Beyond 6 0 % P V F , 2
for blends were comparable
a l l indications b y
i n m a g n i t u d e to instrument
noise,
a n d c o n s e q u e n t l y n o values are r e c o r d e d i n this range i n F i g u r e 2. D T A also f a i l e d t o r e v e a l a n u n a m b i g u o u s glass t r a n s i t i o n f o r p u r e P V F of 1 0 ° C / m i n .
T h e d e p e n d e n c e of T
g
2
at c o o l i n g rates
on blend composition shown i n Figure 2
is c o n s i s t e n t w i t h t h e e x p e r i m e n t a l d a t a of N o l a n d et al. ( 2 ) , a n d t h i s c o n f i r m s t h e i r c o n c l u s i o n of m i s c i b i l i t y f o r t h i s p o l y m e r p a i r , at least t o P V F
contents
2
where crystallinity develops.
F o r blends w i t h crystallinity, one might picture
a two-phase
the crystalline regions
structure where
a m o r p h o u s r e g i o n s a r e a c o m p a t i b l e m i x t u r e of P V F
are p u r e P V F 2
and P M M A .
a n d the
2
This mix
t u r e c o m p o s i t i o n d i f f e r s f r o m t h a t of t h e t o t a l b l e n d a n d is r i c h e r i n P M M A
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
374
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
b e c a u s e of loss of P V F b y c r y s t a l l i z a t i o n . P a r t i t i o n i n g of P V F b e t w e e n t h e s e phases m a y o c c u r o n a k i n e t i c rather t h a n a t h e r m o d y n a m i c basis. Some e v i d e n c e f o r c o m p a t i b i l i t y i n t h e a m o r p h o u s r e g i o n s is p r e s e n t e d b e l o w (see section o n d y n a m i c m e c h a n i c a l p r o p e r t i e s ) . 2
2
N o l a n d et al. (2) e n c o u n t e r e d s i m i l a r d i f f i c u l t y i n m e a s u r i n g b y t h e r m a l analysis or d i l a t o m e t r y the T of blends v e r y r i c h i n P V F . H o w e v e r , t h e y state t h a t t h e i r T d a t a , w h i c h c o v e r a c o m p o s i t i o n r a n g e s i m i l a r t o t h a t i n F i g u r e 2, are consistent w i t h extrapolation to —40° to — 4 6 ° C f o r p u r e P V F . T h e y w e r e a b l e t o m e a s u r e T d i r e c t l y (— 4 6 ° C ) u s i n g t h e r m a l a n a l y s i s f o r rapidly quenched P V F samples. I n subsequent discussions, it is i m p o r t a n t to r e m e m b e r t h a t f o r t h i s p o l y m e r c o n s i d e r a b l e u n c e r t a i n t y m a y b e a s s o c i a t e d w i t h t h i s o b s e r v a t i o n o r i t s i n t e r p r e t a t i o n b e c a u s e of t h e d i f f i c u l t i e s p o s e d b y h i g h c r y s t a l l i n i t y (2). T h e r e is c o n s i d e r a b l e e v i d e n c e (9-16) t o s u p p o r t a Τ v a l u e f o r P V F i n t h i s r a n g e ; h o w e v e r , as N o l a n d et al. (2) n o t e d , t h e r e is s o m e c o n t r o v e r s y a b o u t t h i s s i n c e h i g h e r v a l u e s , 1 3 ° a n d 2 7 ° C , h a v e b e e n s u g g e s t e d (17, 18). W e m e n t i o n this here because the subsequent d y n a m i c m e c h a n i c a l p r o p e r t y data are n o t d i r e c t l y consistent w i t h this s i m p l i s t i c e x t r a p o l a t i o n o r a c c e p t a n c e o f t h e — 4 0 ° C r e g i o n as t h e T f o r P V F . M o r e r e c e n t l y N a k a g a w a a n d I s h i d a (19) r e p o r t e d a s m a l l s p e c i f i c h e a t j u m p by D S C for P V F that occurs between - 5 0 ° a n d - 3 0 ° C . More thorough e x a m i n a t i o n of o u r P V F p o l y m e r b y D S C (20) r e v e a l e d a s l i g h t b a s e - l i n e drift over the —40° to 0 ° C range. T h i s change w a s v e r y small a n d indis tinct i n some t h e r m a l traces. O u r T data presented i n F i g u r e 2 are n o t at a l l c o n c l u s i v e r e g a r d i n g e x t r a p o l a t i o n s to p u r e P V F . I f t h e s l i g h t c u r v a t u r e is r e a l , t h e n a n i n t e r c e p t of + 2 0 ° C o r h i g h e r w o u l d b e p o s s i b l e . H o w e v e r , i f 2
g
g
2
g
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
2
g
2
2
g
2
2
g
2
h-V 20
40
60
Weight % P V F Figure 3.
100
80
2
Specific volume of annealed PVFz-PMMA
blends
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
r
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
32.
P A U L AND ALTAMIRANO
Compatible
Polymer
375
Blends
t h i s c u r v a t u r e i s i g n o r e d a n d t h e e x t r a p o l a t i o n i s b a s e d o n t h e first f e w P M M A r i c h points, it w i l l meet the P V F Specific
Volume
The
of
2
axis at - 2 0 ° t o
Blends
s p e c i f i c v o l u m e of a n n e a l e d
technique.
-25°C.
blends was measured b y a
pycnometer
T h e d a t a a r e p l o t t e d vs. b l e n d c o m p o s i t i o n i n F i g u r e 3 .
Estimates
of t h e s p e c i f i c v o l u m e f o r t o t a l l y c r y s t a l l i n e , V , a n d t o t a l l y a m o r p h o u s , V , c
PVF
2
reported b y N a k a g a w a a n d Ishida
the right.
The V
a
a
( 2 1 ) are i n d i c a t e d b y the arrows o n
v a l u e differs c o n s i d e r a b l y f r o m the estimate ( 0 . 6 7 6 c m / g )
of D o l e a n d L a n d o
3
( 2 2 ) , b u t i t is c o n s i d e r e d m o r e a c c u r a t e .
agrees w e l l w i t h that r e p o r t e d b y D o l e a n d L a n d o . mined
value
amorphous sample.
of V for pure
a n d crystalline
PVF
values
2
lies
indicates
halfway
50%
a
for pure P V F .
PMMA.
T h e data for
2
the a m o r p h o u s , P M M A - r i c h blends lie closer to the b r o k e n line whereas 2
a d d i t i v i t y as d e f i n e d b y e i t h e r l i n e s h o u l d n o t b e e x p e c t e d analysis
of these data
blend
the
crystallinity for our
f o r t h e c r y s t a l l i n e , P V F - r i c h b l e n d s l i e c l o s e r to t h e s o l i d l i n e . c a u s e of v a r i a t i o n i n c r y s t a l l i n i t y w i t h
deter-
between
T h e solid line connects this p o i n t w i t h that f o r a m o r p h o u s
T h e b r o k e n line connects the latter w i t h the V
value
c
T h e experimentally
approximately
which
The V
composition.
those
Strict v o l u m e
for all blends beA more
can be effected b y defining a n apparent
detailed
density for
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
376
COPOLYMERS, POLYBLENDS, A N D COMPOSITES
PVF
2
i n the b l e n d , ρ
Ρ ν
ρ , as: 2
1 _ Ρ
w
(1 - w)
PPVF2
PPMMA
w h e r e ρ is t h e o b s e r v e d d e n s i t y o f a b l e n d c o n t a i n i n g a w e i g h t f r a c t i o n , w, o f PVF , 2
PPVF
2
a n d P MA PM
i
s
the observed
density
of p u r e
is r e l a t e d
to t h e p a r t i a l specific
F i g u r e 4 shows apparent P V F
2
v o l u m e of this c o m p o n e n t ,
but not simply.
1, t h e d e n s i t y i s t h a t o b s e r v e d f o r p u r e P V F , b u t i t d e c r e a s e s as P M M A
w =
2
on blending when P V F
2
Figure
(see
1).
Annealed blends
crystallinity that
occurs
showed no endotherm
at a l l
2
c o n t e n t w a s 4 0 % o r less; t h u s o n e w o u l d e x p e c t t h a t t h e a p p a r e n t
density w o u l d a p p r o a c h the a m o r p h o u s density of P V F i n g t o R e f . 20) PVF
T h e calculated
d e n s i t y as a f u n c t i o n o f b l e n d c o m p o s i t i o n . A t
is a d d e d , p r i m a r i l y b e c a u s e o f t h e r e d u c t i o n i n P V F
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
PMMA.
v a l u e i s t h e d e n s i t y t h a t is n e e d e d t o a s s u r e v o l u m e a d d i t i v i t y , a n d i t
2
2
(1.667 g / c m
3
accord
a t 4 0 % a n d t h e n w o u l d r e m a i n c o n s t a n t at t h i s l e v e l f o r l o w e r
contents if crystallinity were the only factor.
experimentally until P V F
2
content has been
T h i s value is not reached
r e d u c e d to 3 0 % , a n d i t appears
10'
^ÎOÔ
^50
0
50
100
Temperature, °C Figure 5.
Dynamic mechanical properties of annealed PVF
2
at 110 Hz
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
32.
P A U L AND ALTAMIRANO
Compatible
Polymer
377
Blends
Temperature, °C Figure 6. to
continue
Dynamic mechanical properties of annealed PMMA
decreasing
thereafter
although
experimental
at 110 Hz
uncertainty
i n the
a p p a r e n t d e n s i t y i n c r e a s e s r a p i d l y as w a p p r o a c h e s z e r o . L a c k o f v o l u m e a d d i tivity i n the amorphous phase
(arising f r o m molecular interactions)
c o n t r i b u t e to t h e o b s e r v e d apparent density. m a y be operative here,
with
c a n also
T h e data suggest that this effect
the volume changes o n m i x i n g being
for P V F - r i c h blends a n d positive for P M M A - r i c h blends. 2
negative
H o w e v e r , the con
c o m i t a n t a n d m o r e massive effect of c r y s t a l l i n i t y makes this c o n c l u s i o n u n c e r t a i n . Dynamic
Mechanical
Properties
of
Blends
T h e d y n a m i c m e c h a n i c a l p r o p e r t i e s , £ ' , E " , a n d t a n 8, o f a n n e a l e d b l e n d s and pure components tometer.
w e r e m e a s u r e d at 1 1 0 H z b y a R h e o v i b r o n v i s c o e l a s -
Data for pure P V F
2
are presented i n F i g u r e 5.
Three principal re
l a x a t i o n r e g i o n s , l a b e l e d « , β, a n d γ , w e r e o b s e r v e d p r e v i o u s l y f o r t h i s p o l y m e r type b y various techniques.
M a r k e r s i n d i c a t e t h e range of p e a k
temperatures
for each transition reported i n the literature f o r a f r e q u e n c y of 110 H z . F o r u n k n o w n r e a s o n s , o u r a p e a k o c c u r s at a s o m e w h a t l o w e r t e m p e r a t u r e ; ever, w e believe this is the same transition.
how
L o c a t i o n s of the β a n d γ peaks
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
378
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
agree w e l l w i t h the literature. M o s t reports w o u l d be compatible w i t h the m e c h a n i s m s f o r these d i s p e r s i o n regions g i v e n b y Y a n o ( 1 0 ) : a , m o l e c u l a r m o t i o n s a s s o c i a t e d w i t h c r y s t a l l i n e r e g i o n s a n d t h e i r d e f e c t s ; β, m o t i o n o f t h e m a i n c h a i n i n t h e a m o r p h o u s r e g i o n w h i c h m a y t h u s b e r e g a r d e d as t h e m a i n T ; γ, local molecular m o t i o n i n the amorphous regions. H o w e v e r , Peterlin a n d H o l b r o o k (17, 18) a s s i g n e d d i f f e r e n t m e a n i n g s t o t h e s e p e a k s ( w h i c h t h e y l a b e l e d d i f f e r e n t l y ) . T h e y suggest that t h e a peak discussed here is c a u s e d b y r o t a t i o n of d i p o l e s o f c h a i n s i n c r y s t a l d e f e c t s . T h e y m e n t i o n e d a p r e m e l t i n g peak at h i g h e r temperatures, b u t they d i d n o t extend their measurements to l o w e n o u g h t e m p e r a t u r e s t o see t h e γ r e g i o n . T h e y r e f e r r e d t o c a l o r i m e t r i c a n d d i l a t o m e t r i c m e a s u r e m e n t s (17) t h a t l o c a t e T at 1 3 ° C a n d r e f e r e n c e o t h e r d i l a t o m e t r i c d a t a o f t h e i r s (18) t h a t fix t h i s v a l u e a t 2 7 ° C . g
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
g
D a t a for p u r e P M M A ( F i g u r e 6) indicate t w o major relaxation regions l a b e l e d a a n d β. M a r k e r s i n d i c a t e t h e r a n g e s r e p o r t e d i n t h e l i t e r a t u r e f o r t h e s e t r a n s i t i o n s at 1 1 0 H z . T h e a p e a k is t h e m a i n T ( 2 3 ) , a n d the data l o c a t e i t at 1 0 5 ° C b y E" a n d at 1 4 2 ° C b y t a n δ. T h i s w i d e s e p a r a t i o n o f t h e g
Figure 7.
Dynamic mechanical properties at 110 Hz for an annealed 80 wt % PVF blend 2
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
32.
P A U L AND ALTAMIRANO
Compatible
Polymer
379
Blends
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
10'
I
I
I
-100
I
-50
ι
0
I
50
L_l
100
150
Temperature, °C Figure 8.
Dynamic mechanical properties at 110 Hz for an annealed 60 wt % PVF blend 2
p e a k s i s c o m m o n f o r w h o l l y a m o r p h o u s p o l y m e r s (24).
T h e β region is be
l i e v e d t o a r i s e f r o m r o t a t i o n s o f t h e ester s i d e g r o u p ( 2 3 ) , a n d i t a p p e a r s h e r e as a s h o u l d e r i n E" a n d t a n δ i n t h e v i c i n i t y o f 5 0 ° C .
T h e presence of w a t e r is
k n o w n to p r o d u c e a l o w t e m p e r a t u r e r e l a x a t i o n (23)
w h i c h is w e a k l y e v i d e n t
here. T h e d y n a m i c m e c h a n i c a l p r o p e r t i e s of v a r i o u s P V F - P M M A 2
shown i n Figures 7 - 1 1 . F o r the 8 0 % a n d 6 0 % P V F
2
blends are
blends (Figures 7 a n d 8)
w h i c h a r e p a r t i a l l y c r y s t a l l i n e , t h e r e a r e t w o m a j o r p e a k s i n e i t h e r E" o r t a n δ. T h e h i g h e r t e m p e r a t u r e p e a k is m o r e d o m i n a n t a n d w o u l d a p p e a r t o b e t h e T
g
of t h e b l e n d .
As P M M A
content
shifts t o w a r d h i g h e r temperatures. of p u r e P V F
2
increases,
this peak
becomes
larger a n d
It a p p e a r s t o d e g e n e r a t e i n t o t h e a p e a k
shown i n Figure 5 when P M M A
content decreases to zero. T h e
l o w e r t e m p e r a t u r e p e a k decreases i n m a g n i t u d e a n d shifts t o w a r d l o w e r t e m p e r a t u r e s as P M M A c o n t e n t i n c r e a s e s ; w h e n a l l P M M A i s e l i m i n a t e d , i t a p p e a r s to r e d u c e to t h e P V F
2
β peak.
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
380
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
F o r the noncrystalline 4 0 % , 2 0 % , a n d 1 0 % P V F blends ( F i g u r e s 9, 10, a n d 1 1 ) , t h e r e i s o n e m a j o r p e a k w h i c h o c c u r s v e r y n e a r t h e e n d of t h e t e m p e r a t u r e r a n g e . T h i s p e a k is v e r y l a r g e , a n d t h e m a g n i t u d e o f t a n 8 is a l m o s t t h e s a m e f o r a l l t h r e e m a t e r i a l s . Its l o c a t i o n s h i f t s t o h i g h e r t e m p e r a t u r e s as P M M A c o n t e n t i n c r e a s e s . It i s c l e a r l y t h e m a i n T f o r t h e b l e n d s , a n d i t merges directly into the pure P M M A T peak w h e n a l l P V F is e l i m i n a t e d . T h e s h o u l d e r at a b o u t + 5 0 ° C is e s p e c i a l l y a p p a r e n t f o r t h e 1 0 % P V F b l e n d . T h i s is e v i d e n t l y the P M M A β dispersion, a n d i t does n o t shift a p p r e c i a b l y o n b l e n d i n g , a l t h o u g h i t s m a g n i t u d e d i m i n i s h e s as t h e P M M A is d i l u t e d w i t h P V F . A n o t h e r s i g n i f i c a n t s h o u l d e r a p p e a r s at o r b e l o w — 5 0 ° C f o r a l l t h r e e blends. T h i s is discussed b e l o w . 2
g
g
2
2
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
2
F i g u r e 1 2 s h o w s p e a k l o c a t i o n s as a f u n c t i o n of b l e n d c o m p o s i t i o n f o r the well-defined peaks i n F i g u r e s 7 - 1 1 (shoulders are not i n c l u d e d ) . Since the storage m o d u l u s drops p r e c i p i t o u s l y at the highest temperature transition, t h e t a n 8 a n d E" p e a k s o c c u r at q u i t e d i f f e r e n t t e m p e r a t u r e s ( 2 4 ) ; conse quently, both positions are indicated. Smooth curves, although sigmoidal i n
Temperature, °C Figure 9.
Dynamic mechanical properties at 110 Hz for an annealed 40 wt % PVF blend 2
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
32.
P A U L AND A L T A M I R A N O
Compatible
Polymer
381
Blends
shape, c a n be d r a w n t h r o u g h the u p p e r transitions for the blends w h i c h nect w i t h the major
T
g
p e a k of p u r e P M M A
a n d t h e a p e a k of p u r e
O n l y t h e E" p e a k is s h o w n f o r t h e l o w e r t e m p e r a t u r e p e a k s at s u b s t a n t i a l l y t h e s a m e l o c a t i o n .
2
T h e y can be connected
β peak b y a simple curve.
F o r miscible p o l y m e r blends, one expects a single T
w h i c h depends on
g
c o m p o s i t i o n i n s u c h a w a y as t o c o n n e c t t h e T s g
(25, 2 6 ) .
2
transition since t a n δ
O n l y t w o points are s h o w n f o r blends
s i n c e these are t h e o n l y ones t h a t s h o w a d i s t i n c t p e a k . to t h e p u r e P V F
con PVF .
of t h e t w o p u r e
components
T o d a t e , h o w e v e r , t h e r e is v e r y l i t t l e to suggest w h a t s h o u l d h a p p e n
to s e c o n d a r y a m o r p h o u s p e a k s o r those a s s o c i a t e d regions w h i c h w o u l d i n c l u d e P M M A interpretations
noted
P M M A are m i s c i b l e . temperatures
above.
β and P V F
A l l evidence
w i t h motions i n crystalline 2
a a n d γ a c c o r d i n g to the
strongly
T h u s one might expect the P V F
suggests t h a t P V F 2
2
and
β peak to shift to h i g h e r
as P M M A is a d d e d , a n d to c o n n e c t w i t h t h e T
g
of P M M A ,
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
given
382
COPOLYMERS,
POLYBLENDS,
A N D COMPOSITES
that t h e β p e a k is T . F u r t h e r , o n e m i g h t expect t h e a p e a k to d i m i n i s h i n m a g n i t u d e as P M M A is a d d e d a n d s u b s e q u e n t l y t o d i s a p p e a r w h e n a l l c r y s t a l l i n i t y is lost, g i v e n t h a t t h e a p e a k is a s s o c i a t e d w i t h P V F c r y s t a l l i n e r e g i o n s . H o w e v e r , t h e d a t a f o r t h e b l e n d s , s h o w n i n F i g u r e 1 3 as t a n 8 c u r v e s , do n o t c o n f o r m to these expectations. I n s t e a d , w h e n P M M A is a d d e d , t h e PVF t a n 8 a n d E" p e a k s s h i f t as f o l l o w s . T h e β p e a k d i m i n i s h e s i n m a g n i t u d e a n d e v e n t u a l l y d i s a p p e a r s ( a p p r o x i m a t e l y w h e n a l l c r y s t a l l i n i t y i s lost ) . T h i s p e a k s e e m s t o s h i f t t o l o w e r t e m p e r a t u r e s as P M M A i s a d d e d ; h o w e v e r , t h i s m a y n o t b e r e a l , as i t c o u l d reflect t h e i n c r e a s e i n r e l a t i v e i m p o r t a n c e of t h e l o w e r t e m p e r a t u r e γ r e g i o n w h i c h o n l y a p p e a r s as a s h o u l d e r i n p u r e P V F . W h a t is e v i d e n t l y t h e s m a l l a p e a k increases i n m a g n i t u d e a n d shifts t o w a r d h i g h e r t e m p e r a t u r e s as P M M A i s a d d e d (see t h e h i g h t e m p e r a t u r e p o r t i o n of t h e 8 0 % a n d 6 0 % t a n 8 curves i n F i g u r e 1 3 ) . A f t e r a l l crys t a l l i n i t y h a s b e e n lost ( b e t w e e n 6 0 a n d 4 0 % P V F ) , t h i s p e a k n o l o n g e r increases i n m a g n i t u d e w i t h a d d e d P M M A , b u t i t does c o n t i n u e to shift t o w a r d higher temperatures. g
2
2
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
2
2
10'
10% PVF 90% PMMA 2
10',10
Ε ο CO
φ c
CO
ιο-
10"
-σ ο
c σ
108
-2
10'
-100
-50
50
0
100
150
Temperature, °C Figure 11.
Dynamic mechanical properties at 110 Hz for an annealed 10 wt % PVF blend S
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
32.
P A U L AND A L T A M I R A N O
1
1 0
1 20
Compatible
1
1 40
ι
Polymer
ι 60
ι
ι 80
Weight % P V F
383
Blends
ι
I 100
2
Figure 12. Effect of blend composition on temperature location of major peaks (locations of shoulders are not indicated)
T h e s e results a r e e a s i l y e x p l a i n e d b y t h e i n t e r p r e t a t i o n a n d β p e a k s g i v e n b y P e t e r l i n a n d H o l b r o o k (17,
18).
of t h e P V F
Figure
2
a
12 p l u s t h e
r e s u l t s d i s c u s s e d i n e a r l i e r sections
s t r o n g l y s u p p o r t this v i e w , a n d i t i s v e r y
t e m p t i n g to d r a w this c o n c l u s i o n .
H o w e v e r , this a p p r o a c h d e a l s t o o l i g h t l y
w i t h the considerable (JO). plex,
evidence
for the interpretations
a n d they
pose
some
intriguing
questions
about
explanation requires additional investigative techniques speculate
i n this d i r e c t i o n at t h e p r e s e n t
a b o u t t h e t r a n s i t i o n a l b e h a v i o r of P V F (16)
2
g
2
time.
polymer
blends;
H o w e v e r , other
are appropriate.
this
so w e c h o o s e n o t t o comments
N a k a g a w a a n d Ishida
recently described very extensive a n d t h o r o u g h investigations of relaxa
tions a n d m o l e c u l a r m o t i o n s i n P V F . Τ
summarized by Yano
I f t h e l a t t e r v i e w is c o r r e c t t h e n e x p l a n a t i o n o f o u r d a t a i s m o r e c o m
T h e y c o n c l u d e t h a t t h e β r e g i o n is t h e
f o r P V F ; h o w e v e r , t h e y d i d n o t e a n u m b e r of p e c u l i a r i t i e s b y w h i c h t h e T 2
behavior of P V F
g
2
differs f r o m that of other p o l y m e r s , a n d they suggest
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
that
384
COPOLYMERS,
POLYBLENDS, A N D COMPOSITES
— 3 8 ° C is o n l y a n a p p a r e n t T . T h e y d i s c u s s these m o t i o n s i n t e r m s of t h e size of t h e c o o p e r a t i v e l y r e a r r a n g i n g r e g i o n w h i c h is m a c r o s c o p i c at a v e r y l o w t e m p e r a t u r e , T , a n d w h i c h decreases to a m i n i m u m at T = + 3 0 ° C . S t a r k w e a t h e r (27) h a s p u b l i s h e d s o m e v e r y t h o r o u g h a n d i n t e r e s t i n g studies on molecular motions i n a n alternating ethylene-tetrafluoroethylene copolymer w h i c h of c o u r s e is i s o m e r i c w i t h P V F . H e also o b s e r v e d α, β, a n d γ r e g i o n s , a l t h o u g h t h e t e m p e r a t u r e l o c a t i o n s a r e n o t e x a c t l y t h e s a m e as those f o r P V F . H e c o n c l u d e s f r o m a v a r i e t y of e v i d e n c e t h a t t h e a a n d γ r e l a x a t i o n s reflect m o t i o n s i n a m o r p h o u s o r d i s o r d e r e d r e g i o n s , a n d that t h e β r e l a x a t i o n o c c u r s i n c r y s t a l l i n e r e g i o n s . H e notes t h a t these a s s i g n m e n t s p a r a l l e l those m a d e f o r polytetrafluoroethylene. g
2
3
2
2
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
Summary It is c l e a r f r o m o u r findings a n d t h e e a r l i e r w o r k o f N o l a n d et al. (2) that P V F a n d P M M A are compatible. H o w e v e r , no definitive mechanism has been i d e n t i f i e d t h a t e x p l a i n s t h e s p e c i f i c i n t e r a c t i o n s b e t w e e n these m o l e c u l e s t h a t m a k e s t h i s so. 2
ι
1
1
1
r
0
50
100
PMMA -100
-50
150
Temperature, °C Figure 13. For
Tan δ at 110 Hz for pure PVF and PMMA selected blends (broken lines) Z
(solid lines) and
clarify, portions of curves have been omitted; no significant peaks appear in omitted regions
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
32.
P A U L AND ALTAMIRANO
Compatible
Polymer
385
Blends
S e v e r a l serious q u e s t i o n s a b o u t t h e t r a n s i t i o n a l b e h a v i o r o f p u r e P V F have been raised. O n e might identify the a peak of P V F as i t s a m o r p h o u s p h a s e T i n o r d e r t o e x p l a i n F i g u r e 1 2 i n t e r m s of p r e v i o u s e x a m p l e s o f p o l y m e r c o m p a t i b i l i t y t h a t s h o w s i m p l e c o n n e c t i o n s b e t w e e n t h e TJs o f t h e p u r e c o m p o n e n t s ( 2 5 , 2 6 ) . T h e s i g m o i d a l s h a p e of t h e c u r v e i n F i g u r e 1 2 c a n n o t b e d e s c r i b e d b y t h e u s u a l t y p e of e q u a t i o n ( 2 5 , 26) t h a t g e n e r a l l y fits b l e n d d a t a . T h i s , h o w e v e r , m i g h t easily b e explained b y crystallinity w h i c h changes t h e amorphous phase composition b y r e m o v i n g P V F . T h e T f r o m D T A ( F i g u r e 2) has a different dependence o n overall b l e n d composition, perhaps because c r y s t a l l i n i t y is l o w e r as a r e s u l t o f c y c l i c h e a t i n g t h a n i t w a s i n t h e a n n e a l e d b l e n d s ( F i g u r e 1 2 ) . C r y s t a l l i z a t i o n of P V F from blends rich i n P V F does not necessarily signal i m m i s c i b i l i t y since t h e evidence indicates that a l l t h e P M M A a n d the r e m a i n i n g P V F f o r m a homogeneous amorphous phase. 2
2
g
2
g
2
2
Downloaded by UNIV OF SYDNEY on September 29, 2015 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0142.ch032
2
Acknowledgments
The authors gratefully acknowledge helpful discussions and correspondence with J. W . Barlow, C . E . Locke, Y. Ishida, and A. Peterlin.
Literature Cited 1. Paul, D. R., Vinson, C. E., Locke, C. E., Polym. Eng. Sci. (1972) 12, 157. 2. Noland, J. S., Hsu, N. N.C.,Saxon, R., Schmitt, J. M., "Multicomponent Polymer Systems," ADVAN. CHEM. SER. (1971) 99, 15.
3. Koblitz, F. F., Petrella, R. G., Dukert, Α. Α., Christofas, Α., Pennsalt Corp., U.S. Patent 3,253,060 (1966). 4. Miller, C. H., American Cyanamid Corp., U.S. Patent 3,458,391 (1969). 5. Schmitt, J. M., American Cyanamid Corp., U.S. Patent 3,459,834 (1969). 6. Dohany, J. E., private communication. 7. Flory, P. J., "Principles of Polymer Chemistry," Cornell University, Ithaca, 1953. 8. Natov, M., Peeva, L., Djagarova, E.,J.Polym. Sci. Part C (1968) 16, 4197. 9. Mandelkern, L., Martin, G. M., Quinn, F. Α., J. Res. Nat. Bur. Std. (1957) 58, 137. 10. Yano, S.,J.Polym. Sci. Part A-2 (1970) 8, 1057. 11. Sasabe, H., Saito, S., Asahina, M., Kakutani, H.,J.Polym. Sci. Part A-2 (1969) 7, 1405. 12. Koizumi, N., Yano, S., Tsunashima, K., J. Polym. Sci. Part Β (1969) 7, 59. 13. Kakutani, H.,J.Polym. Sci. Part A-2 (1970) 8, 1177. 14. Ishida, Y., Watanbe, M., Yamafuji, K., Kolloid Z. (1964) 200, 48. 15. Koo, G. P., in "High Polymer Series," Vol. 25: "Fluoropolymers," L. A. Wall, Ed., Chap. 16, Interscience, New York, 1972. 16. Nakagawa, K., Ishida, Y.,J.Polym. Sci. Part A-2 (1973) 11, 1503. 17. Peterlin, Α., Holbrook, J. D., Kolloid Z. (1965) 203, 68. 18. Peterlin, Α., Elwell, J. (Holbrook), J. Mater. Sci. (1967) 2, 1. 19. Nakagawa, K., Ishida, Y., J. Polym. Sci. Part A-2 (1973) 11, 2153. 20. Locke, C. E., private communication. 21. Nakagawa, K., Ishida, Y., Kolloid Z. (1973) 251, 103. 22. Doll, W. W. Lando, J. B.,J.Macromol. Sci. Phys. (1968) B2, 219. 23. McCrum, N.G.,Read, Β. E., Williams,G.,"Anelasticand Dielectric Effects in Polymer Solids," Wiley, New York, 1967. 24. Locke, C. E., Paul, D. R., Polym. Eng. Sci. (1973) 13, 308. 25. Koleske, J. V., Lundberg, R. D.,J.Polym. Sci. Part A-2 (1969) 7, 795. 26. Krause, S., Roman, N.,J.Polym. Sci. Part A (1965) 3, 1631. 27. Starkweather, H. W., J. Polym. Sci. Part A-2 (1973) 11, 587. ;
RECEIVED February 20, 1974.
In Copolymers, Polyblends, and Composites; Platzer, N.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.