15 Properties of Filled Polyphenylene Sulfide Compositions
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
H.
WAYNE
HILL,
JR., R O B E R T T.
WERKMAN,
and G .
E.
CARROW
Phillips Petroleum Co., Research and Development Dept., Bartlesville, Okla. 74004
Blends of polyphenylene sulfide and variousfibrousfillers yield a variety of new reinforced thermoplastics which can be readily injection molded. Compounds containing 40% glassfibercombine good processability with excellent me chanical properties. Fybex inorganic titanate fiber and asbestos which can be used at levels up to 20% reinforce to a lesser extent than glass fiber. The glass-reinforced compounds are equal in mechanical properties to other glass-reinforced thermoplastics up to 300°F and generally are superior from 300°-500°F. The compounds are non burning, possess excellent electrical properties, and have superior resistance to a variety of chemical environments. Compression molded compounds and applications for vari ous filled polyphenylene sulfide compositions are also discussed.
"polyphenylene
sulfide ( P P S ) is a n e w l y a v a i l a b l e , c o m m e r c i a l r e s i n
w h i c h possesses t h e u n u s u a l c o m b i n a t i o n of h i g h t h e r m a l s t a b i l i t y a n d o u t s t a n d i n g c h e m i c a l resistance. affinity f o r a v a r i e t y of r e i n f o r c i n g pression m o l d i n g compositions.
T h e p o l y m e r shows a n excellent fillers
i n both injection a n d com
These properties a n d t h e availability of
the r e s i n i n several different grades p r o v i d e u t i l i t y i n v a r i o u s c o a t i n g applications α
as w e l l
as i n j e c t i o n a n d c o m p r e s s i o n
molding
markets
2,3). R y t o n P P S grade V - l is a s u b s t a n t i a l l y l i n e a r p h e n y l e n e
sulfide
p o l y m e r of r e l a t i v e l y l o w m o l e c u l a r w e i g h t as i n d i c a t e d b y a m e l t
flow
of greater t h a n 2000 g r a m s / 1 0 m i n m e a s u r e d i n a m e l t i n d e x e r at 315 ° C w i t h a 5-kg weight.
G r a d e V - l is a c r y s t a l l i n e p o l y m e r m e l t i n g a t ca. 149
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
150
FILLERS
AND
REINFORCEMENTS FOR
PLASTICS
2 8 5 ° C a n d is u s e f u l for c o a t i n g a p p l i c a t i o n s a n d as a feedstock f o r p r e paring molding compounds
(1,2,3).
W h e n g r a d e V - l p o l y m e r is h e a t e d
i n a i r a b o v e a b o u t 2 6 0 ° C , c h a i n extension a n d c r o s s l i n k i n g o c c u r , p r o d u c i n g a c u r e d p o l y m e r of h i g h e r m o l e c u l a r w e i g h t .
R y t o n P P S grade
P - 4 is a c u r e d p o l y m e r w i t h a n o m i n a l m e l t flow of 50 g r a m s / 1 0 m i n a n d is i n t e n d e d f o r i n j e c t i o n m o l d i n g alone or i n c o m b i n a t i o n various
fillers.
Injection Molding Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
with
Compounds
Preparation. A n y filler w h i c h is stable at the 6 0 0 ° - 7 0 0 ° F p r o c e s s i n g temperatures r e q u i r e d c a n b e u s e d i n P P S m o l d i n g c o m p o u n d s . fillers
Fibrous
s u c h as glass are of p a r t i c u l a r interest since t h e y p r o v i d e t h e great-
est i m p r o v e m e n t i n m e c h a n i c a l properties at t h e lowest cost.
Injection
m o l d i n g c o m p o u n d s are p r e p a r e d b y d r y b l e n d i n g the d e s i r e d filler w i t h P P S g r a d e P - 4 . I n t e n s i v e d r y m i x e r s c a n b e u s e d for b l e n d i n g p a r t i c u l a t e fillers
a n d for some short
fiber
fillers
s u c h as F y b e x i n o r g a n i c t i t a n a t e
fiber w h e n l o w rotor speeds are u s e d . C o n e b l e n d e r s o r d r u m t u m b l e r s are p r e f e r r e d f o r d r y b l e n d i n g c h o p p e d glass to m i n i m i z e fiber d a m a g e . G l a s s fibers c a n b e most r e a d i l y i n c o r p o r a t e d i n t o P P S i n t h e f o r m of r o v i n g i n t r o d u c e d t h r o u g h t h e vent of a t w i n screw extruder. T h e p r e f e r r e d glass is of l o w ( 0 . 3 % ) s i z i n g l e v e l a n d free of c o u p l i n g agents since these are p r o n e to d e c o m p o s e a n d generate gas at the h i g h t e m peratures i n v o l v e d . A l s o , P P S b o n d s w e l l to glass, a n d c o u p l i n g agents are not r e q u i r e d . T h e glass fibers i n t h e P P S c o m p o u n d s
prepared i n a
t w i n screw e x t r u d e r h a v e a n average aspect r a t i o of 20. T h e filler content of these c o m p o u n d s
is l i m i t e d b y the i n j e c t i o n m o l d i n g process a n d
ranges f r o m a b o u t 2 0 % f o r asbestos or F y b e x to a b o u t 40 w t % f o r glass fiber.
T h e i n j e c t i o n m o l d i n g flow decreases s h a r p l y as t h e percentage
filler is i n c r e a s e d a b o v e t h e levels i n d i c a t e d for the respective Table I. S t o c k t e m p e r a t u r e , °F M o l d t e m p e r a t u r e , °F I n j e c t i o n pressure, p s i F i l l speed Nozzle H o l d pressure, p s i B a c k pressure G a t e size, i n c h
of
fillers.
Injection Molding Conditions 600-700 150-300 12,000-18,000 fast nondrool 5,000-10,000 none o r l o w 0.050-0.30
Molding Conditions. P P S c o m p o u n d s c a n b e i n j e c t i o n m o l d e d p r e f e r a b l y i n r e c i p r o c a t i n g s c r e w m a c h i n e s u n d e r c o n d i t i o n s s i m i l a r to other filled resins except f o r h i g h e r stock temperatures. T h e s e c o n d i t i o n s are l i s t e d i n T a b l e I. P P S c o m p o u n d s h a v e a s l i g h t t e n d e n c y to gas at m o l d i n g
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
HILL, JR. E T A L .
temperatures.
Polyphenylene
151
Sulfide
T h e r m o g r a v i m e t r i c analyses s h o w t h a t this amounts
a b o u t 0 . 1 % / h r at 6 0 0 ° F a n d a b o u t 0 . 5 % / h r at 7 0 0 ° F .
to
T o prevent v o i d
f o r m a t i o n e s p e c i a l l y i n t h i c k e r p a r t s , t h e l o w e r stock temperatures a l o n g w i t h h i g h i n j e c t i o n a n d h o l d pressures are r e c o m m e n d e d .
W i t h proper
m o l d i n g c o n d i t i o n s a n d g o o d m o l d d e s i g n , w e l l f o r m e d parts free
of
v o i d s a n d sink m a r k s c a n b e p r o d u c e d . T h e m o l d i n g c o n d i t i o n s w i l l h a v e s o m e effect o n t h e properties of the m o l d e d parts. H i g h e r m o l d t e m p e r a tures f a v o r h i g h e r tensile p r o p e r t i e s a n d better surface a p p e a r a n c e w i t h
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
some loss i n i m p a c t strength. T h e p r o p e r t i e s of t h e c o m p o u n d s
reported
h e r e are b a s e d o n specimens m o l d e d at 600° F stock t e m p e r a t u r e , 150° F m o l d t e m p e r a t u r e , 15,000 p s i i n j e c t i o n pressure, a n d 5,000 p s i h o l d p r e s sure.
T h e compounds
h a v e b e e n r e m o l d e d t h r o u g h three cycles
with
o n l y 1 0 % loss i n tensile strength.
Properties. A s s h o w n i n F i g u r e 1, tensile s t r e n g t h a n d flexural m o d u l u s of P P S increase m a r k e d l y w i t h i n c r e a s i n g glass fiber content, a n d at 50 w t %
glass, tensile is i n c r e a s e d m o r e t h a n t w o f o l d a n d m o d u l u s
more than threefold.
I n c o m p a r i s o n asbestos i m p a r t s o n l y a m o d e r a t e
increase i n these p r o p e r t i e s u p to 25 w t % i n P P S . T h e l o w e r r e i n f o r c e m e n t r e a l i z e d f r o m asbestos c o m p a r e d w i t h glass is a t t r i b u t e d to p o o r e r d i s p e r s i o n a n d l o w e r a d h e s i o n w i t h asbestos.
W h i l e not s h o w n , F y b e x
i m p a r t s a b o u t t h e same i m p r o v e m e n t i n properties as glass fiber u p to 20 w t % .
Asbestos a n d F y b e x fillers r e d u c e t h e m e l t flow of P P S c o m -
p o u n d s m o r e d r a s t i c a l l y t h a n glass
fiber.
Thus, injection moldable P P S
c o m p o u n d s are l i m i t e d to a b o u t 2 0 % asbestos or F y b e x vs. 4 0 % T y p i c a l p r o p e r t i e s of v a r i o u s i n j e c t i o n m o l d e d c o m p o u n d s
glass.
are g i v e n i n
T a b l e I I . T h e a d d i t i o n o f 2 0 % asbestos to P P S gives a m o d e s t increase i n tensile a n d s u b s t a n t i a l i m p r o v e m e n t s i n
flexural
modulus a n d heat
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
152
FILLERS
deflection t e m p e r a t u r e .
AND
REINFORCEMENTS
T h e a d d i t i o n of 4 0 %
FOR
PLASTICS
glass fiber to P P S gives
t h e greatest r e i n f o r c e m e n t a n d d o u b l e s most m e c h a n i c a l p r o p e r t i e s . compound
with 20%
F y b e x has p r o p e r t i e s i n b e t w e e n
those
The
of
the
asbestos a n d glass-filled c o m p o u n d s b u t is s u p e r i o r to t h e m i n c o l o r a n d surface a p p e a r a n c e . P P S is a m o n g the least c o m b u s t i b l e of t h e r m o p l a s t i c s . F o r e x a m p l e , t h e m i n i m u m c o n c e n t r a t i o n of o x y g e n b u s t i o n of P P S is 4 4 % . slightly the percentage
oxygen
required.
com
T h e electrical properties
several P P S c o m p o u n d s h a v e b e e n d e s c r i b e d ( 4 ) .
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
to s u p p o r t
T h e a d d i t i o n of glass o r asbestos to P P S increases of
A l t h o u g h the addition
of fillers degrades the e l e c t r i c a l p r o p e r t i e s — F y b e x m o r e so t h a n g l a s s — the compounds
r e t a i n l o w d i e l e c t r i c constants a n d d i s s i p a t i o n factors
over a w i d e f r e q u e n c y r a n g e .
T h u s these c o m p o u n d s
e l e c t r o n i c a p p l i c a t i o n s at h i g h frequencies
are s u i t a b l e for
w h e r e d i s s i p a t i o n factor is
i m p o r t a n t , a n d t h e y are finding use i n s u c h a p p l i c a t i o n s . Table II.
T y p i c a l Properties of Reinforced PPS
PPS Density Tensile, psi Elongation, % F l e x , mod., psi Χ 10~ Flex, strength, psi Impact, ft-lb/in. n o t c h e d (% X Y ) u n n o t c h e d (% X ]/ ) H a r d n e s s , shore D H e a t deflection a t 264 p s i , ° F Compressive strength, psi M o l d shrinkage, i n c h / i n c h 3
2
2
1.35 9,000 3 600 20,000
80/20' PPS/ Asbestos*
80/20" PPS/ Fybex
60/40"
1.52 12,000 2 1,000 22,000
1.53 15,000 2 1,400 25,000
1.65 22,000 2 2,200 35,000
0.4 2.0 86 278 16,000 0.01
0.4 3.0
1.0 3.0
89 >425
88 >425
— —
° Parts by weight Johns Manville 7RF1 Owens Corning 497 X 5
PPS/ Glass"
1.0 4.0 90 >425 21,000 0.002
— —
6
c
T h e effect of t e m p e r a t u r e o n tensile s t r e n g t h a n d of 4 0 %
glass-reinforced P P S is s h o w n i n F i g u r e 2.
flexural
modulus
T h e curves
k
s i m i l a r trends w i t h a m a r k e d decrease i n b o t h p r o p e r t i e s b e t w e e n
show 175°
a n d 275° F as t h e p o l y m e r undergoes a glass t r a n s i t i o n . A b o v e 2 7 5 ° F the p r o p e r t i e s d e c l i n e m o r e g r a d u a l l y u p to 5 0 0 ° F . u n f i l l e d p o l y m e r , the P P S c o n t a i n i n g 4 0 %
Compared with
the
glass fiber has a m a r k e d s u
p e r i o r i t y i n p r o p e r t i e s over the t e m p e r a t u r e r a n g e s h o w n . A c o m p a r i s o n of t e n s i l e s t r e n g t h vs. t e m p e r a t u r e for several p o l y m e r s r e i n f o r c e d w i t h 30%
glass fiber is l i s t e d i n T a b l e I I I .
These compounds
have similar
tensiles at 7 5 ° F , a n d a l l decrease i n tensile w i t h i n c r e a s i n g t e m p e r a t u r e .
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
Polyphenylene
HILL, JR. E T A L .
153
Sulfide
T h e P P S c o m p o u n d has s o m e w h a t greater loss i n tensile b e t w e e n 150° F a n d 2 5 0 ° F , b u t r e t e n t i o n of tensile a b o v e 300° F is s u p e r i o r . O v e n a g i n g
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
tests at 400° F h a v e i n d i c a t e d no significant loss i n tensile over 1000 hours.
O
100
200
300
TEMP.*F
Figure 2.
400
500
0
100
200
300
TEMP.°F
Effect of temperature on tensile and flexural
400
500
modulus
F l e x u r a l creep, w h i c h is a measure of the l o n g t e r m l o a d b e a r i n g c a p a b i l i t y of a m a t e r i a l , is s h o w n i n F i g u r e 3. A t 75° F a n d 5000 p s i fiber stress, t h e glass-reinforced P P S shows l o w t o t a l creep a n d a v e r y l o w creep r a t e t h r o u g h 1000 hours a n d a v e r y s u b s t a n t i a l i m p r o v e m e n t over the base p o l y m e r . A t 150° F u n d e r the same stress, the glass-reinforced P P S shows s o m e w h a t h i g h e r creep rate u p to 500 hours. Table III.
Tensile vs. Temperature for Various Glass-Reinforced Polymers
Temp.j °F
Polycarbonate + 80% glass
75 150 250 300 350 400 500 550
15,600 12,000 7,000 0
Modified Polyphenylene Oxide + 30% Glass 17,000 14,000 8,900 5,000 2,000 0
Polysulfone + 80% Glass
PPS + 30% Glass
15,700 13,000 11,000 8,000 4,000 0
18,000 15,000 8,000 7,000 6,000 4,000 1,000 0
0
T h e results of f r i c t i o n a n d w e a r tests p e r f o r m e d o n a n L F W - 1 f r i c t i o n a n d w e a r tester are g i v e n i n T a b l e I V . V a r i o u s P P S c o m p o u n d s w e r e tested as flat b l o c k s against s t a n d a r d h a r d e n e d steel rings. U n f i l l e d P P S s h o w e d i n t e r m e d i a t e f r i c t i o n a n d w e a r values. T h e a d d i t i o n of glass fiber
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
154
FILLERS
A N D R E I N F O R C E M E N T S F O R PLASTICS
or F y b e x gave a s m a l l r e d u c t i o n i n coefficient o f f r i c t i o n b u t a m a r k e d increase i n w e a r . Tests o n P P S - f i b e r g l a s s c o m p o u n d s c o n t a i n i n g v a r i o u s l u b r i c a t i n g fillers s h o w e d 5 % m o l y b d e n u m d i s u l f i d e w a s ineffective i n reducing friction or wear, 9 % graphite reduced wear quite markedly, a n d 2 5 % P T F E reduced both friction a n d wear. pounds
S e v e r a l of these c o m
have friction a n d wear properties comparable
w i t h those o f
acetal homopolymer a n d are being further investigated i n sliding-friction a n d j o u r n a l - b e a r i n g tests.
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
1.0
0.8
-
-
6 0 / 40 Ρ P S - G L A S S F I B E R ( l 5 0 F )
6 0 / 4 0 P P S - G L A S S FIBER ( 7 5 F )
-
1 10
1
Figure 3. Table I V .
1 100
T I M E , HRS
1000
Flexural creep at 5000 psi
L F W - l Friction and Wear D a t a Coefficient of
Friction*
Compound
0 rpm
100 rpm
190 rpm
PPS 60/40 PPS-glass 80/20 P P S - F y b e x 70/25/5 PPS-glass-MoS 55/36/9 PPS-glass-graphite 50/25/25 P P S - g l a s s - P T F E 75/25 P P S - P T F E Acetal homopolymer PTFE
0.64 0.50 0.52 0.50 0.50 0.30 0.27 0.29 0.20
0.64 0.55 0.59 0.56 0.48 0.32 0.31 0.32 0.26
0.59 0.53 0.50 0.53 0.52 0.35 0.33 0.35 0.27
2
β b
Wear, mils per 10 min
b
8.0 >15 >15 >15 3.7 3.3 5.2 2.6 1.5
Flat test block, 15-lb load. Flat test block, 90-lb load.
P S S is resistant to m a n y o r g a n i c solvents. T e n s i l e specimens exposed at 200° F f o r 24 h o u r s w e r e unaffected b y h y d r o c a r b o n s , alcohols, ketones, esters, ethers, a n d o r g a n i c acids. U n d e r these c o n d i t i o n s some c h l o r i n a t e d solvents a n d n i t r o g e n c o m p o u n d s s l o w l y attack t h e p o l y m e r w h i l e others d o not. C o n c e n t r a t e d i n o r g a n i c acids ( 9 6 % s u l f u r i c ) a n d s t r o n g o x i d i z i n g
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
HILL, JR. E T A L .
Polyphenylene
155
Sulfide
agents ( c h r o m i c a c i d a n d s o d i u m h y p o c h l o r i t e ) attack P P S w h i l e w e a k e r acids ( 3 0 %
s u l f u r i c ) a n d strong bases d o not.
W h e n compared
with
other p o l y m e r s exposed u n d e r t h e same c o n d i t i o n s ( T a b l e V ) , P P S is resistant to a greater v a r i e t y of c h e m i c a l e n v i r o n m e n t s t h a n most t h e r moplastics. Table V .
Chemical Resistance ( 2 0 0 ° F , 24 hours)
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
Tensile
30% H S0 30% NaOH Acetic anhydride E t h y l e n e chloride Toluene A m y l alcohol M e t h y l e t h y l ketone Pyridine 2
Modified Phenylene Oxide
Polycarbonate
Reagent 4
Compression Molding Preparation.
Retained,
102 102 55 0 0 62 0 0
101 0 0 0 0 48 0 0
%
Polysulfone
PPS 101 114 100 72 98 102 112 93
105 101 0 0 0 48 0 0
Compounds
F o r c o m p r e s s i o n m o l d i n g , as w i t h i n j e c t i o n m o l d i n g ,
v a r i o u s t h e r m a l l y stable m a t e r i a l s h a v e b e e n u s e d for cases c o m p r e s s i o n m o l d i n g c o m p o u n d s t h a n the i n j e c t i o n m o l d i n g c o m p o u n d s .
fillers.
I n most
c o n t a i n h i g h e r l o a d i n g of
filler
Compression molding compounds
are p r e p a r e d b y b l e n d i n g the u n c u r e d p o l y m e r w i t h the d e s i r e d
filler.
T h e u n c u r e d p o l y m e r has a l o w m e l t v i s c o s i t y a n d tends to w e t t h e filler
better t h a n the m o r e viscous c u r e d m a t e r i a l u s e d i n the i n j e c t i o n
m o l d i n g blends.
S t a n d a r d m i x i n g e q u i p m e n t s u c h as H e n s c h e l m i x e r ,
d r u m t u m b l e r s , W a r i n g b l e n d e r , a n d other i n t e n s i v e mixers c a n b e u s e d f o r most
fillers.
T h e most i m p o r t a n t considerations i n b l e n d i n g are t h a t
t h e filler p a r t i c l e s are u n i f o r m l y d i s t r i b u t e d t h r o u g h o u t the m i x t u r e a n d t h o r o u g h l y c o a t e d w i t h the P P S p o w d e r .
F o r glass fibers l o n g e r t h a n
1/32 inch, special equipment a n d techniques are required for good blends. G l a s s w i t h l o n g e r fibers is difficult to separate p r o p e r l y a n d to o b t a i n t h o r o u g h c o a t i n g of t h e i n d i v i d u a l
fibers.
B o t h filled a n d u n f i l l e d P P S m u s t be h i g h l y c u r e d to r e d u c e the m e l t flow
p r i o r to its use as a c o m p r e s s i o n m o l d i n g c o m p o u n d .
C u r i n g can
b e d o n e b y e x p o s i n g the m i x t u r e to a i r at e l e v a t e d temperatures. t i m e a n d t e m p e r a t u r e u s e d are c o n t r o l l e d b y the b u l k d e n s i t y of
The the
m i x t u r e . C o m p o u n d s of l o w b u l k d e n s i t y s u c h as those of h i g h asbestos content c a n be c u r e d sufficiently i n 1 h r at 700° F i n a n a i r - c i r c u l a t i n g oven.
C o m p o u n d s c o n t a i n i n g short glass fiber a n d of i n t e r m e d i a t e b u l k
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
156
FILLERS
AND
REINFORCEMENTS
FOR
PLASTICS
d e n s i t y r e q u i r e s e v e r a l h o u r s c u r e at 550° F a n d t h e n 1 h r c u r e at 7 0 0 ° F . U n f i l l e d P P S a n d b l e n d s w i t h p o w d e r s or p i g m e n t s are u s u a l l y c u r e d 16 h o u r s at 5 1 0 ° - 5 4 0 ° F a n d t h e n 1 h r at 7 0 0 ° F .
T h e cure b e l o w the
m e l t p o i n t of h i g h b u l k d e n s i t y b l e n d s is r e q u i r e d to increase t h e m e l t viscosity.
T h i s p r e v e n t s p u d d l i n g a n d a l l o w s a i r to contact t h e P P S
t h r o u g h o u t the entire m i x t u r e d u r i n g t h e 700° F c ur e .
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
Table V I .
Properties of Compression Molded PPS Compounds 60/40" PPS/ Fybex
60/40" PPS/ Asbestos
60/40" PPS/ Glass
10,700 8,300 3,200 2,200
11,000 8,000 4,000 2,400
8,400 6,600 4,000 2,200
4,800 4,200 600
1,200 1,200 190 100
1,200 1,000 340 180
1,200 1,100 240 120
420 370 10
Flexural strength, psi 75°F 175°F 275°F 400°F
13,680 10,420 6,110 3,070
11,190 8,940 3,520
13,790 12,240 4,780 3,560
9,000 8,600
Compression strength, psi 75°F 175°F 275°F 400°F
21,700 18,800 16,300 8,800
21,000 19,000 15,000 9,000
20,500 17,200 13,800 7,100
14,900 10,600
Tensile, psi 75°F 175°F 275°F 400°F Flexural modulus, psi X 1 0 75°F 175°F 275°F 400°F
PPS
3
T h e r m a l expansion, i n c h / i n c h / ° F X 10~ 75°-200°F 200°-300°F 300°-400°F
6 6
5
2.0 3.5 5.5
2.0 4.2 6.9
2.0 3.0 6.1
" Parts by weight. Ductile, showed no yield point or break. 6
C u r i n g is u s u a l l y d o n e b y p l a c i n g t h e b l e n d e d m a t e r i a l i n a n o p e n t o p p e d p a n at d e p t h s of % to 2 inches. C o m p o u n d s of l o w b u l k d e n s i t y c a n b e c u r e d w i t h b e d d e p t h s u p to 2 i n c h e s w h i l e p o w d e r b l e n d s a n d u n f i l l e d P P S of h i g h b u l k d e n s i t y s h o u l d b e c u r e d at a p p r o x i m a t e l y V2 inch.
T h e c u r e d m a t e r i a l u s u a l l y forms a sheet o r s o l i d mass s l i g h t l y
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
15.
HILL, JR. E T A L .
Polyphenylene
157
Sulfide
m o r e c o m p a c t t h a n t h e u n c u r e d m a t e r i a l . T h i s mass r e q u i r e s g r a n u l a t i n g to p a r t i c l e s a p p r o x i m a t e l y % i n c h i n d i a m e t e r before m o l d i n g . M o l d s w h i c h c a n w i t h s t a n d pressures of
Molding Procedure.
4000
p s i at 750° F are r e q u i r e d for c o m p r e s s i o n m o l d i n g P P S c o m p o u n d s .
In
most cases steel m o l d s h a v e b e e n used. T o p r e v e n t s t i c k i n g a n d to i m p r o v e the p a r t finish, the m o l d s h o u l d b e c l e a n a n d c o a t e d w i t h a m o l d release.
T h e p r e p a r e d m o l d is filled w i t h m o l d i n g c o m p o u n d a n d c o l d
pressed at 2 0 0 0 - 3 0 0 0 p s i pressure.
T h e filled m o l d is t h e n h e a t e d u n t i l
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
a m i n i m u m t e m p e r a t u r e of 600° F i n the m o l d is r e a c h e d . r e q u i r e s f r o m 1 to 3 hours i n a 6 5 0 ° - 7 5 0 ° F o v e n .
This usually
T h e hot m o l d is t h e n
p l a c e d i n a press a n d subjected to 1000 to 4000 p s i pressure, t h i c k e r parts r e q u i r i n g the h i g h e r pressures. C o n t r o l l e d c o o l i n g is r e q u i r e d to p r e v e n t v o i d s or c r a c k i n g of large parts. A m a x i m u m c o o l i n g rate of a p p r o x i m a t e l y 4 ° F / m i n m u s t b e h e l d u n t i l the t e m p e r a t u r e is b e l o w 4 5 0 ° F .
The
p a r t c a n b e r e m o v e d f r o m the m o l d after the t e m p e r a t u r e reaches 3 0 0 ° F . T h i s t e c h n i q u e has been u s e d to m o l d rods, tubes, slabs, a n d p r e f o r m s w h i c h o n l y r e q u i r e d s l i g h t m a c h i n i n g for Properties.
T h e compression
finished,
close-tolerance parts.
molded compounds
containing 4 0 %
asbestos, glass fiber or F y b e x d i s p l a y a s u b s t a n t i a l increase i n m e c h a n i c a l properties over the u n f i l l e d r e s i n as s h o w n i n T a b l e V I . T h e p r o p e r t i e s of the filled c o m p o u n d s
are s i m i l a r over the t e m p e r a t u r e range s h o w n ,
a n d c o n s e q u e n t l y the fillers a p p e a r e q u a l w i t h respect to p r o p e r t i e s i m p a r t e d to the c o m p o u n d s . compounds
T h e properties of the c o m p r e s s i o n
are w e l l b e l o w those of the 4 0 %
molding compound.
molded
glass r e i n f o r c e d i n j e c t i o n
T h e difference i n properties is a t t r i b u t e d to the l o w
c r y s t a l l i n i t y of the h i g h l y c u r e d c o m p r e s s i o n m o l d i n g r e s i n as i n d i c a t e d b y the l o w heat of f u s i o n b y D T A . L i n e a r coefficient of expansion of these c o m p o u n d s is l o w a n d constant f r o m 75° F to 200 ° F , the glass t r a n s i t i o n . A b o v e 200° F the coefficient of e x p a n s i o n g r a d u a l l y increases w i t h i n c r e a s ing temperature.
Applications I n s u m m a r y , p o l y p h e n y l e n e sulfide c o m p o u n d s
offer a c o m b i n a t i o n
of d e s i r a b l e properties s u c h as g o o d t h e r m a l s t a b i l i t y , o u t s t a n d i n g c h e m i c a l resistance, l o w coefficient of f r i c t i o n , excellent e l e c t r i c a l p r o p e r t i e s , and precision moldability.
These
properties
a v a i l a b l e to m a n y other p l a s t i c m a t e r i a l s .
l e a d to a p p l i c a t i o n s
F o r example, a number
not of
p u m p m a n u f a c t u r e r s are u s i n g P P S c o m p o u n d s as s l i d i n g vanes, i m p e l l e r cases, gage guards, a n d seals i n corrosive service i n v o l v i n g materials s u c h as 6 0 % s u l f u r i c a c i d , l i q u i d a m m o n i a , a n d v a r i o u s h y d r o c a r b o n streams. P o l y p h e n y l e n e sulfide c o m p o u n d s w i t h l o w f r i c t i o n a n d l o w w e a r p r o p erties h a v e b e e n e v a l u a t e d as cages for n o n - l u b r i c a t e d b a l l bearings at
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
158
FILLERS A N D REINFORCEMENTS FOR PLASTICS
3 5 0 ° F a n d 5 0 p s i load. These materials have operated longer than 6 0 0 hrs w h i l e o t h e r m a t e r i a l s f a i l i n less t h a n 2 0 hrs.
I n another type of
application, electrical properties a n d t h e ability to injection m o l d very s m a l l parts w i t h great p r e c i s i o n h a v e l e d t o the use o f a v a r i e t y o f c o n nectors, c o i l f o r m s , etc., i n t h e electronics i n d u s t r y . I n a n o t h e r a p p l i c a t i o n a 1 0 . 5 - i n c h d i a m e t e r p i s t o n f o r a n o n - l u b r i c a t e d gas c o m p r e s s o r has b e e n i n service a t 1 0 0 0 r p m f o r over 6 m o n t h s a n d is p e r f o r m i n g better than the a l u m i n u m piston it replaced.
This piston was machined from
a 3 5 - l b c o m p r e s s i o n m o l d e d b l o c k o f P P S . I n a d d i t i o n t o these uses f o r
Downloaded by UNIV OF NEW SOUTH WALES on April 12, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0134.ch015
v a r i o u s m o l d e d parts,
filled
p o l y p h e n y l e n e sulfide coatings a r e
finding
u t i l i t y as release coatings for c o o k w a r e a n d as c o r r o s i o n resistant coatings f o r the c h e m i c a l a n d p e t r o l e u m i n d u s t r i e s .
Literature Cited 1. Hill, H. Wayne, Jr., Edmonds, J. T., Jr., Preprints, Amer. Chem. Soc., Div. Org. Coatings Plastics Chem. (1970) 30 (2) 199. 2. Short, J. N., Hill, H. Wayne, Jr., ChemTech (1972) 2, 481. 3. Hill, H. Wayne, Jr., Edmonds, J. T., Jr., Preprints, Amer. Chem. Soc., Div. Polym. Chem. (1972) 13 (1) 603. 4. Hill, H. Wayne, Jr. et al., ADVAN. CHEM. SER. (1973) 129, 80. RECEIVED October 11, 1973.
Deanin and Schott; Fillers and Reinforcements for Plastics Advances in Chemistry; American Chemical Society: Washington, DC, 1974.