Pseudo-molecular ions in ion trap detector electron impact mass

ACS Legacy Archive. Cite this:Anal. Chem. 61, 17, 1983-1984. Note: In lieu of an abstract, this is the article's first page. Click to increase image s...
1 downloads 0 Views 273KB Size
Anal. Chem. 1989, 61, 1983-1984

=.

1

I

1.01

(8) Van Der Linden, W. E. I n Comprehensive Analytical Chemistry X I ;

\ TJ V

E

(9)

.c L

0

(IO)

v

(11)

(12) (13) (14) (15) (18)

,\20

I 30

40

50

60

70

80

90

a /deg.

Flgure 4. I C I S S intensity scattered from Cd atoms measured in the [ l o l o ] azimuth of (0OOj)S face (0)and (0001)Cd face (X). The measurements were carried out under the conditions shown schematically in the inset. The intensity of the I C I S S spectrum for the (0001)s face was multiplied by 3 so that the comparison between the intensity at the (0001)Cd face and that at the (0OOq)S face becomes more accurate for smaller values of a (a 40). The shadowing critical angles calculated (26) for the surface without disorder are indicated by crosses. The difference between calculated (---) and experimental (-) values at a a. (shaded portion) is due to Cd atoms exposed as a result of steps and/or sulfur a t o m defects at the surface.

(17) (18) (19) (20)

(21) (22) (23) (24) (25) (26) (27) (28) (29)

and the (0OOT)S face to Cd2+rather than SH-(S2-). These results were explained by a reversible adsorption/desorption model together with the data for flat-band potentials. ICISS measurements demonstrated the existence of Cd atoms at the (0OOT)S face and S atoms a t the (0001)Cd face, which led to a poor but measurable response of the (0oOI)S face to SH-(S2-) and the (W1)Cd face to Cd2+. The smaller slope is considered to be due to the failure of co-ion exclusion in the classical ion-exchange mechanism without quantitative treatment (2). The employment of a single-crystal CdS ISE with the adsorption/desorption model makes it possible to treat the response of the ISE to specific ions quantitatively.

(30) (31) (32) (33) (34) (35) (36) (37) (38)

Svehla, G., Ed.; Elsevier Press: Amsterdam, 1981; Chapter 3, pp 275-392. Hulanicki, A.; Trojanowlcz, M.; Cichy, M. Talanta 1978, 2 3 , 47-50. Vesely, J. Collect. Czech. Chem. Commun. 1971. 3 6 , 3364-3389. Ross, J. W. I n Ion-Selectbe Electrodes; Durst, R. A., Ed.; National Bureau of Standards Special Publication 314; NBS: Washington, DC, 1969; Chapter 2. Adametzova, H.; Vadura, R. J. Electroanal. Chem. Interfaciel Electrochem. 1974, 55, 53-58. Cammann, K. Working with Ion-Selective Electrodes; Springer-Verlag: 1979; p 58. Strehlow, W. H.; Smith, D. P. Appl. Phys. Lett. 1968, 13, 34, 35. Wolff, G. A.; Frawley, J. J.; Hietanen, J. R. J. Electrochem. SOC. 1964, 1 1 1 , 22-27. Warekois, E. P.; Lavine, M. C.; Mariano, A. N.; Gatos, H. C. J. Appl. Phys. 1962, 3 3 , 690-696. Sullivan, M. V.; Bracht, W. R. J. Electrochem. SOC. 1987, 114, 295-297. Coster, D.; Knol, K. S.; Prins. J. A. 2. Phys. 1930, 6 3 , 345-369. Reynolds, D. C.; Cryzak, S. J. J. Appl. Phys. 1960, 3 1 , 94-98. Zave, R.; Cook, W. R., Jr.; Shbzawa, L. R. Nature 1961, 189, 217-219. Harsanyl, E. G.; Toth, K.; Pungor, E.; Ebel, M. F. Microchim. Acta 1987, 1 1 , 177-186 and references therein. Kellner, R.; Zlppel, E.; Pungor, E.; Toth, K.; Lindner. E. Fresenius' 2. Anal. Chem. 1987, 328, 464-468. Buck, T. M. Methods of Surface Analysis; Czanderna, A. W., Ed.; Elsevier Press: Amsterdam, 1975. Taglauer, E.; Helland, W. Appl. fhys. 1976, 9 , 261-275. Heiland, W. Appl. Surf. Sci. 1982, 73, 282-291. Aono, M.; Souda, R. Jpn. J. Appl. fhys. 1985, 2 4 , 1249-1262. Aono, M. Nucl. Instrum. Met& Phys. Res. 1984, 8 2 , 374-383. Mymlin, V. A.; Pleskov, Yu. V. Electrochemistry of Semiconductors; Plenum Press: New York, 1967. Morrison, S. R. Electrochemistry at Semiconductor and Oxidked Metal Electrodes; Plenum: New York, 1980. Ellis, A. B.; Bolts, J. M.; Wrighton, M. S. J. Electrochem. SOC. 1977, 124, 1603-1607. Frese, K. W., Jr.; Confield, P. G. J. Electrochem. SOC. 1984, 131, 26142618. Minoura, H.; Tsuikl, M.; Okl, T. Ber. Bunsen