Pt-Frame@Ni quasi Core–Shell Concave Octahedral PtNi3 Bimetallic

Nov 30, 2015 - Watch How Flexible Electronic Skin Could Help Humans and Machines Interact. New research published in ACS Applied Materials & Interface...
1 downloads 0 Views 9MB Size
Article pubs.acs.org/JPCC

Pt-Frame@Ni quasi Core−Shell Concave Octahedral PtNi3 Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution Shan Wang,† Guang Yang,*,‡ and Shengchun Yang*,†,§ †

School of Science, Key Laboratory of Shaanxi for Advanced Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials and ‡Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China § Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Academy of Xi’an Jiaotong University, 215000, Suzhou, People’s Republic of China S Supporting Information *

ABSTRACT: PtNi3 bimetallic concave octahedrons with a majority of platinum atoms deposited on the frames were synthesized in ethylene glycol solution. The high angle annular dark field scanning transmission electron microscopy (HAADSTEM) characterizations and energy-dispersive X-ray spectroscopy (EDS) analysis reveal that the Pt frames have a thickness of less than 2 nm, which surround a nickel core thus forming a quasi core−shell concave octahedral nanoparticle (NP). The element-specific anisotropic growth followed by the nanoscale phase segregation and subsequent oxidation of Ni riched facets are responsible for the formation of the concave nanostructure. The PtNi3 quasi core−shell concave octahedrons exhibit substantially enhanced electrocatalytic properties toward methanol oxidation and hydrogen evolution reaction compared with that of the commercial Pt/C, suggesting that the Ni riched Pt−Ni NPs can be used as a potential candidate for methanol oxidation reaction (MOR) or hydrogen evolution reaction (HER) catalysts with the low utilization of Pt. comprehensive consensus in the field of electrochemical catalysts.23−27 Typically, the PtM bimetallic nanocatalysts with a concave structure have aroused much attention, due to their extraordinary facets and negative curvature which offered a much higher density of low-coordinate atomic steps and kinks, resulting in higher catalytic ability than their counterparts with flat surfaces.28−33 In addition, fabricating the Pt based bimetallic NPs with a very thin Pt surface ( Pt2Ni/C = PtNi3/C. The results indicate that the as-prepared bimetallic PtxNiy/C catalyst do not improve the HER activity on the basis of electrode area, which may be due to the lower loading amount of the bimetallic catalysts (metal loading of ∼10%) deposited on the same area compared to the Pt/C. Interestingly, when the LSV curves was normalized by the mass of Pt, the bimetallic PtxNiy/C catalysts exhibit better catalytic performance for HER. As shown in Figure 8B, the current densities at the same potential are found to be in the order of PtNi3/C > PtNi/C > Pt2Ni/C > Pt/C. The PtNi3/C catalyst shows the highest activity with a current density of 10 A mgpt−1 at the potential of −289 mV (vs Ag/AgCl). Figure 8C presents the geometric area-normalized area current (area activity) and Pt mass-normalized mass current (mass activity) of four catalysts at −0.27 V from which the catalytic activity of four PtxNiy/C for HER reaction can be compared and the trend of catalytic activity agrees well with that shown in Figures 8A and B. The electrochemical durability of the samples is tested by running continuous CVs between −0.52 and −0.02 V (vs

Ag/AgCl) at scan rate of 50 mV/s (Figure 8D). Under acidic electrolyte, dealloying Ni from PtxNiy bimetallic can be conducted.41 As a result, during electrode potential cycling in the range of −0.52 to −0.02 V (vs Ag/AgCl), each PtxNiy sample leaches Ni in its characteristic way with different rates and to different extents, leading the decay of PtxNiy in the catalytic activity for HER. Even though the decay in the catalytic activity of all the samples can be observed between the LSV curves measured at the initial cycle and after 500 CV cycles, the bimetallic NPs still exhibit a higher HER activity than the commercial Pt/C.

4. CONCLUSIONS The concave octahedral PtNi3 NPs with Pt-frame@Ni quasi core−shell structure were synthesized in ethylene glycol solution. We believe that the element-specific anisotropic growth mechanism followed by the nanoscale phase segregation and subsequent oxidation of Ni-enriched facets attributed to the formation of such concave octahedron bimetallic NPs. The nickel-enriched PtNi3 concave octahedral NPs with the Ptenriched frames exhibit enhanced electrocatalytic performance and stability for MOR and HER compared to the commercial Pt/C due to the combination of the composition and facet effects. This work not only provides a method to prepare the bimetallic octahedral NPs with concave surfaces, but also provides the ideas to design advanced catalysts in various fields.



ASSOCIATED CONTENT

* Supporting Information S

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b10083. Molar ratio of Pt to the total Pt and Ni (Pt+Ni) in the Pt23Ni77 was calculated in Calculation details. Scheme S1 illustrates the synthesis process of PtxNiy NPs. Figure S1 shows the photograph of the reaction mixture in different stage; Figure S2 shows the TEM images of Pt−Ni NPs prepared using the standard procedure, except for replacing the air with N2 atmosphere. (PDF) F

DOI: 10.1021/acs.jpcc.5b10083 J. Phys. Chem. C XXXX, XXX, XXX−XXX

Article

The Journal of Physical Chemistry C



(14) Palaniappan, R.; Ingram, D. C.; Botte, G. G. Hydrogen Evolution Reaction Kinetics on Electrodeposited Pt-M (M = Ir, Ru, Rh, and Ni) Cathodes for Ammonia Electrolysis. J. Electrochem. Soc. 2014, 161, E12−E22. (15) Oh, A.; Baik, H.; Choi, D. S.; Cheon, J. Y.; Kim, B.; Kim, H.; Kwon, S. J.; Joo, S. H.; Jung, Y.; Lee, K. Skeletal Octahedral Nanoframe with Cartesian Coordinates via Geometrically Precise Nanoscale Phase Segregation in a Pt@Ni Core−Shell Nanocrystal. ACS Nano 2015, 9, 2856−2867. (16) Zhu, Z.; Zhai, Y.; Dong, S. Facial Synthesis of PtM (M = Fe, Co, Cu, Ni) Bimetallic Alloy Nanosponges and Their Enhanced Catalysis for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2014, 6, 16721−16726. (17) Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Trends in Electrocatalysis on Eextended and Nanoscale Pt-Bimetallic Alloy Surfaces. Nat. Mater. 2007, 6, 241−247. (18) Gong, M.; Fu, G.; Chen, Y.; Tang, Y.; Lu, T. Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum−Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301−7308. (19) Wang, Y.; Zang, J.; Dong, L.; Pan, H.; Yuan, Y.; Wang, Y. Graphitized Nanodiamond Supporting PtNi Alloy as Stable Anodic Andcathodic Electrocatalysts for Direct Methanol Fuel Cell. Electrochim. Acta 2013, 113, 583−590. (20) Antolini, E.; Salgado, J. R. C.; dos Santos, A. M.; Gonzalez, E. R. Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Method as Electrocatalysts for DMFCs. Electrochem. Solid-State Lett. 2005, 8, A226−A230. (21) Bao, H.; Li, J.; Jiang, L.; Shang, M.; Zhang, S.; Jiang, Z.; Wei, X.; Huang, Y.; Sun, G.; Wang, J. Q. Structure of PtnNi Nanoparticles Electrocatalysts Investigated by X-ray Absorption Spectroscopy. J. Phys. Chem. C 2013, 117, 20584−20591. (22) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem., Int. Ed. 2009, 48, 60−103. (23) Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-Specific Anisotropic Growth of Shaped Platinum Alloy Nanocrystals. Science 2014, 346, 1502−1506. (24) Xu, X.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X.; Gao, J.; Li, X.; Zhang, P.; Wang, H. H.; Yu, N. F.; et al. Synthesis of Pt−Ni Alloy Nanocrystals with High-Index Facets and Enhanced Electrocatalytic Properties. Angew. Chem. 2014, 126, 12730−12735. (25) Baldizzone, C.; Mezzavilla, S.; Carvalho, H. W.; Meier, J. C.; Schuppert, A. K.; Heggen, M.; Galeano, C.; Grunwaldt, J. D.; Schuth, F.; Mayrhofer, K. J. Confined-Space Alloying of Nanoparticles for the Synthesis of Efficient PtNi Fuel-Cell Catalysts. Angew. Chem., Int. Ed. 2014, 53, 14250−14254. (26) Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Lee, M. J.; Jang, J. H.; Sung, Y. E. Tuning the Oxygen Reduction Activity of the Pt−Ni Nanoparticles upon Specific Anion Adsorption by Varying Heat Treatment Atmospheres. Phys. Chem. Chem. Phys. 2014, 16, 13726− 13732. (27) Choi, S. I.; Xie, S.; Shao, M.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; et al. Synthesis and Characterization of 9 nm Pt−Ni Octahedra with a Record High Activity of 3.3 A/mgPt for the Oxygen Reduction Reaction. Nano Lett. 2013, 13, 3420−3425. (28) Quan, Z.; Wang, Y.; Fang, J. High-Index Faceted Noble Metal Nanocrystals. Acc. Chem. Res. 2013, 46, 191−202. (29) Huang, Y.; Wu, L.; Chen, X.; Bai, P.; Kim, D. H. Synthesis of Anisotropic Concave Gold Nanocuboids with Distinctive Plasmonic Properties. Chem. Mater. 2013, 25, 2470−2475. (30) Huang, X.; Zhao, Z.; Fan, J.; Tan, Y.; Zheng, N. Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets. J. Am. Chem. Soc. 2011, 133, 4718−4721. (31) Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y.; Jin, C.; Fu, M.; Zhang, H.; Yang, D. Kinetically Controlled Synthesis of Pt−Cu Alloy Concave

AUTHOR INFORMATION

Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS We thank Dr. Chuansheng Ma from the International Center for Dielectric Research, Xi’an Jiaotong University, for their support with HRTEM. This work is supported by National Natural Science Foundation of China (No. 51271135 and 51202180), the program for New Century Excellent Talents in university (No. NCET-12-0455), the Natural Science Foundation of Shaanxi Province (2015JM5166), the Fundamental Research Funds for the Central Universities, and the project of Innovative Team of Shanxi Province (No. 2013KCT-05).



REFERENCES

(1) Wu, J. B.; Yang, H. Platinum-Based Oxygen Reduction Electrocatalysts. Acc. Chem. Res. 2013, 46, 1848−1857. (2) Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catal. 2012, 2, 864−890. (3) Zhang, Z. C.; Hui, J. F.; Guo, Z. G.; Yu, Q. Y.; Xu, B.; Zhang, X.; Liu, Z. C.; Xu, C. M.; Gao, J. S.; Wang, X. Solvothermal Synthesis of Pt−Pd Alloys with Selective Shapes and their Enhanced Electrocatalytic Activities. Nanoscale 2012, 4, 2633−2639. (4) Gu, J.; Zhang, Y. W.; Tao, F. F. Shape Control of Bimetallic Nanocatalysts through Well-Designed Colloidal Chemistry Approaches. Chem. Soc. Rev. 2012, 41, 8050−8065. (5) Ruan, M.; Sun, X.; Zhang, Y.; Xu, W. Regeneration and Enhanced Catalytic Activity of Pt/C Electrocatalysts. ACS Catal. 2015, 5, 233− 240. (6) McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni−Mo Electrocatalysts for Hydrogen Evolution on Crystalline Si Electrodes. Energy Environ. Sci. 2011, 4, 3573−3583. (7) Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts. Chem. Commun. 2013, 49, 8896−8909. (8) Sun, L.; Ca, D. V.; Cox, J. A. Electrocatalysis of The Hydrogen Evolution Reaction by Nanocomposites of Poly(amidoamine)Encapsulated Platinum Nanoparticles and Phosphotungstic Acid. J. Solid State Electrochem. 2005, 9, 816−822. (9) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343, 1339−1343. (10) Gong, M.; Li, F.; Yao, Z.; Zhang, S.; Dong, J.; Chen, Y.; Tang, Y. Highly Active and Durable Platinum-Lead Bimetallic Aalloy Nanoflowers for Formic Aacid Electrooxidation. Nanoscale 2015, 7, 4894− 4899. (11) Raoof, J. B.; Ojani, R.; Kiani, A.; Rashid-Nadimi, S. Fabrication of Highly Porous Pt Coated Nanostructured Cu-Foam Modified Copper Electrode and its Enhanced Catalytic Ability for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2010, 35, 452−458. (12) Jia, Y.; Jiang, Y.; Zhang, J.; Zhang, L.; Chen, Q.; Xie, Z.; Zheng, L. Unique Excavated Rhombic Dodecahedral PtCu3 Alloy Nanocrystals Constructed with Ultrathin Nanosheets of High-Energy {110} Facets. J. Am. Chem. Soc. 2014, 136, 3748−3751. (13) Du, S.; Lu, Y.; Malladi, S. K.; Xu, Q.; Steinberger-Wilckens, R. A Simple Approach for PtNi−MWCNT Hybrid Nanostructures as High Performance Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A 2014, 2, 692−698. G

DOI: 10.1021/acs.jpcc.5b10083 J. Phys. Chem. C XXXX, XXX, XXX−XXX

Article

The Journal of Physical Chemistry C Nanocubes with hHigh-Index Facets for Methanol Electro-Oxidation. Chem. Commun. 2014, 50, 560−562. (32) Zhang, H.; Jin, M.; Wang, J.; Li, W.; Camargo, P. H.; Kim, M. J.; Yang, D.; Xie, Z.; Xia, Y. Synthesis of Pd-Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc. 2011, 133, 6078−6089. (33) Yu, T.; Kim, Y.; Zhang, H.; Xia, Y. Platinum Concave Nanocubes with High-Index Facets and Their Enhanced Activity for Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2011, 50, 2773− 2777. (34) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-Strain Control of the Activity in Dealloyed Core−Shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454−460. (35) Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum Monolayer Fuel Cell Electrocatalysts. Top. Catal. 2007, 46, 249−262. (36) Yang, H. Platinum-Based Electrocatalysts with Core−Shell Nanostructures. Angew. Chem., Int. Ed. 2011, 50, 2674−2676. (37) Durst, J.; Lopez-Haro, M.; Dubau, L.; Chatenet, M.; Soldo Olivier, Y.; Guétaz, L.; Bayle-Guillemaud, P.; Maillard, F. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media. J. Phys. Chem. Lett. 2014, 5, 434−439. (38) Alia, S. M.; Larsen, B. A.; Pylypenko, S.; Cullen, D. A.; Diercks, D. R.; Neyerlin, K. C.; Kocha, S. S.; Pivovar, B. S. Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts. ACS Catal. 2014, 4, 1114−1119. (39) Zhang, Y.; Han, T.; Fang, J.; Xu, P.; Li, X.; Xu, J.; Liu, C. C. Integrated Pt2Ni Alloy@Pt Core−Shell Nanoarchitectures with High Electrocatalytic Activity for Oxygen Reduction Reaction. J. Mater. Chem. A 2014, 2, 11400−11407. (40) Cui, C.; Gan, L.; Neumann, M.; Heggen, M.; Cuenya, B. R.; Strasser, P. Carbon Monoxide-Assisted Size Confinement of Bimetallic Alloy Nanoparticles. J. Am. Chem. Soc. 2014, 136, 4813−4816. (41) Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional Segregation in Shaped Pt Alloy Nanoparticles and Their Structural Behaviour during Electrocatalysis. Nat. Mater. 2013, 12, 765−771. (42) Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu Core@Shell Concave Nanooctahedrons with Enhanced Activity for Formic Acid Oxidation Reaction. Nano Energy 2015, 12, 824−832. (43) Caldwell, K. M.; Ramaker, D. E.; Jia, Q.; Mukerjee, S.; Ziegelbauer, J. M.; Kukreja, R. S.; Kongkanand, A. Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed PtMn (Ni, Co) Electrocatalysts. J. Phys. Chem. C 2015, 119, 757−765. (44) Nalajala, N.; Gooty Saleha, W. F.; Ladewig, B. P.; Neergat, M. Sodium Borohydride Treatment: A Simple and Effective Process for the Removal of Stabilizer and Capping Agents from Shape-Controlled Palladium Nanoparticles. Chem. Commun. 2014, 50, 9365−9368. (45) Zhou, X. W.; Zhang, R. H.; Zhou, Z. Y.; Sun, S. G. Preparation of PtNi Hollow Nanospheres for The Electrocatalytic Oxidation of Methanol. J. Power Sources 2011, 196, 5844−5848. (46) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.; Wan, L. J.; Bai, C. L. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts. Angew. Chem., Int. Ed. 2004, 43, 1540−1543. (47) Ahmadi, M.; Behafarid, F.; Cui, C.; Strasser, P.; Cuenya, B. R. Long-Range Segregation Phenomena in Shape-Selected Bimetallic Nanoparticles: Chemical State Effects. ACS Nano 2013, 7, 9195−9204. (48) Shen, Y.; Zhang, Z.; Long, R.; Xiao, K.; Xi, J. Synthesis of Ultrafine Pt Nanoparticles Stabilized by Pristine Graphene Nanosheets for Electro-oxidation of Methanol. ACS Appl. Mater. Interfaces 2014, 6, 15162−15170. (49) Zhao, H.; Yu, C.; You, H.; Yang, S.; Guo, Y.; Ding, B.; Song, X. A Green Chemical Approach for Preparation of PtxCuy Nanoparticles with a Concave Surface in Molten Salt for Methanol and Formic Acid Oxidation Reactions. J. Mater. Chem. 2012, 22, 4780−4789. H

DOI: 10.1021/acs.jpcc.5b10083 J. Phys. Chem. C XXXX, XXX, XXX−XXX