(PTA O): New Diamondoid Building Block for ... - ACS Publications

Jun 7, 2011 - Centro de Qu´imica Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. ‡. Fa...
0 downloads 0 Views 4MB Size
COMMUNICATION pubs.acs.org/crystal

1,3,5-Triaza-7-phosphaadamantane-7-oxide (PTAdO): New Diamondoid Building Block for Design of Three-Dimensional MetalOrganic Frameworks Alexander M. Kirillov,*,† Sabina W. Wieczorek,†,‡ Agnieszka Lis,†,‡ M. Fatima C. Guedes da Silva,†,§ Magdalena Florek,# Jaroszaw Krol,# Zdziszaw Staroniewicz,# Piotr Smolenski,*,‡ and Armando J. L. Pombeiro*,† Centro de Quimica Estrutural, Complexo I, Instituto Superior Tecnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal Faculty of Chemistry, University of Wroczaw, ul. F. Joliot-Curie 14, 50-383, Wroclaw, Poland § Universidade Lusofona de Humanidades e Tecnologias, ULHT Lisbon, Av. do Campo Grande, 376, 1749-024, Lisbon, Portugal # Department of Veterinary Microbiology, Wroclaw University of Environmental and Life Sciences, ul. Norwida 31, 50-375 Wroclaw, Poland † ‡

bS Supporting Information ABSTRACT: The facile self-assembly reactions of 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTAdO) with AgNO3 or Ag2SO4 give rise to the generation of two new distinct silverorganic frameworks [Ag(NO3)(μ3-PTAdO)]n (1) and [Ag2(μ2-SO4)(μ5-PTAdO)(H2O)]n (2), respectively. They have been characterized by IR, 1H and 31P{1H} NMR spectroscopies, electrospray ionization-mass spectrometry (ESI-MS)((), and elemental and single-crystal X-ray diffraction analyses, the latter featuring infinite three-dimensional (3D) noninterpenetrating networks driven by multiply bridging PTAdO spacers that adopt undocumented N2O- or N3O-coordination modes. The topological analysis of 1 reveals a uninodal 3-connected net with the point (Schl€afli) symbol of (103) and the srs topological type, whereas 2 shows a rare trinodal 3,4, 5-connected net with the unprecedented topology defined by the point symbol of (5.6.7)(54.6.8)(54.63.83). Compounds 1 and 2 represent the first 3D metal organic frameworks (MOFs) derived from PTAdO or any cage-like PTA derivative, thus opening up their underexplored applications as versatile building blocks in crystal engineering. Furthermore, 1 and 2 exhibit significant antibacterial and antifungal activities studied in vitro against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans.

T

he design of new metalorganic frameworks (MOFs) or coordination polymers is nowadays a very popular research topic in the areas of crystal engineering, coordination and materials chemistry, as attested by the rapidly growing number of research publications in the field, including state-of-the-art books1 and reviews.2 Although a great variety of organic bridging ligands (typically N- or O-donors such as diamines, polypyridine, or polycarboxylate derivatives) have been used as building blocks for the construction of MOFs, the search for new versatile multidentate spacers capable of adopting different coordination modes and their application in crystal engineering to generate novel types of framework materials are of high current interest.1,2 In particular, the water-soluble aminophosphine 1,3,5-triaza7-phosphaadamantane (PTA, Scheme 1) and its various cage-like derivatives are very important ligands3 in aqueous organometallic chemistry, which, due to the presence of up to four coordinating sites and the diamondoid geometry, can also become rather versatile building blocks for the construction of metalorganic networks. Although a number of PTA-driven one- and two-dimensional r 2011 American Chemical Society

Scheme 1

(1D and 2D) coordination polymers have emerged in recent years,4 the three-dimensional (3D) MOFs bearing PTA or any of Received: May 4, 2011 Revised: May 28, 2011 Published: June 07, 2011 2711

dx.doi.org/10.1021/cg200571y | Cryst. Growth Des. 2011, 11, 2711–2716

Crystal Growth & Design

COMMUNICATION

Scheme 2. Simplified Representation of Self-Assembly Syntheses with the Structural Formulae of 1 and 2a

a Numbers 1, 2, 3, and 4 correspond to extensions of polymeric motifs via (1) N-coordination or (2,3) O-coordination of PTAdO, and (4) O-coordination of sulfate ligand (in 2). The scheme also shows how a slight modification of silver(I) salt leads to structurally distinct compounds.

its cagelike derivatives remain virtually unknown.5 Hence, the filling of this gap constitutes a main objective of the current work. Following our general research projects on the design of new metalorganic networks6 and on the coordination chemistry of PTA and derived ligands,4e,f,7 we have recently reported (i) a new series of Ag(I) coordination polymers obtained via a unique synthetic entry allowing the controlled N,P-coordination mode of PTA4f and (ii) the first metal complex bearing 1,3,5-triaza-7phosphaadamantane-7-oxide (PTAdO, Scheme 1).8a As an extension of these studies, the present work also aims at opening up the application of PTAdO as a new8 and still unexplored N, O-building block for the engineering of MOFs. Hence, we report herein the facile self-assembly synthesis and characterization9 of two distinct 3D silverorganic frameworks, [Ag(NO3)(μ3-PTA=O)]n (1) and [Ag2(μ2-SO4)(μ5-PTAdO)(H2O)]n (2), which constitute the first 3D MOFs derived from any cagelike PTA derivative. Besides, apart from representing the first Ag-PTAdO compounds (only rare examples of PTA oxide complexes are known),8 1 and 2 also feature the undocumented5,8 N2,O- and N3,O-coordination modes of PTAdO. The reaction of silver(I) nitrate with PTAdO as the main ligand and spacer, in equimolar amounts at 20 °C in MeOH/ CH2Cl2 medium, followed by the alkalization with NH4OH, leads to the self-assembly formation of the polymer 1, in which PTAdO acts as a μ3-spacer (Scheme 2).9 However, a resembling synthetic procedure with silver(I) sulfate as the metal source and in MeCN/H2O medium (different solvent composition was used to facilitate crystallization) results in the generation of the distinct and more complex polymer 2, wherein the coordination network is driven by neutral μ5-PTAdO spacers and μ2-SO4 linkers. These MOFs have been isolated as air- and light-stable colorless microcrystalline solids in ca. 50% yields (based on Ag salt). As expected for PTA derivatives,3 compounds 1 and 2 are moderately soluble in water, showing the S25°C values of 2.0 and 5.0 mg mL1, respectively.9 Their molecular structures have been established by single-crystal X-ray crystallography,10 and

supported by elemental analysis, electrospray ionization-mass spectrometry (ESI-MS)((), IR and NMR spectroscopies.9 The IR spectra of 1 and 2 exhibit related features with vibrations in the 29702870 and 1440400 cm1 ranges due to the PTAdO cores, showing in particular the characteristic intense ν(PdO) bands3a,8 with maxima at 1165 (1) and 1144 (2) cm1. In addition, ν(NO3) or ν(SO4) bands are detected at 1384 and 1138 cm1, respectively.11 The ESI-MS(þ) plots of aqueous solutions of both compounds show the [Ag(PTAd O)2]þ (m/z = 454), [Ag(PTAdO)(H2O)2]þ (m/z = 319), [Ag(PTAdO)]þ (m/z = 281), and [PTAdO þ H]þ (m/z = 174) fragments with expected isotopic distribution patterns, whereas the ESI-MS() spectra feature the characteristic [Ag(NO3)2] (m/z = 232) or [Ag(SO4)] (m/z = 204) fragments. The 1H and 31 1 P{ H} NMR spectra also reveal the expected resonances at typical chemical shifts for the PTAdO moieties.8 The orthorhombic structure of 1 (Figure 1) crystallizes within the chiral P212121 space group and is composed of the Ag1 atom, one μ3-PTAdO moiety, and one nitrate ligand per formula unit. The coordination environment of each five-coordinate Ag1 atom is occupied by three alternately N- and O-bound μ3-PTAdO ligands [Ag1N11 2.341(2), Ag1N13i 2.309(2), Ag1O1 2.414(2) Å] and one η2-NO3 ligand12 [Ag1O11 2.562(3), Ag1O12 2.739(2) Å] (Figure 1a), forming a significantly distorted {AgO3N2} square-pyramidal secondary building unit (SBU), wherein the axial site is occupied by the O1 atom. These units are bridged by μ3-PTAdO spacers generating three kinds of the Ag1-PTAdOAg1-PTAdO helical chain motifs (Figure S1, Supporting Information) running along the a, b, and c axis if one considers the connections of the adjacent Ag1 atoms via the N13/O1, N11/N13, and N11/O1 donor pairs of PTAdO, respectively. These helical motifs have the respective pitches of 7.7286(4), 10.0328(6), and 13.4998(8) Å (equal to the a, b, and c unit cell dimensions) and multiply interweave through a third donor atom of PTAdO into an infinite 3D noninterpenetrating helical framework (Figures 1b and S1). Interestingly, if seen 2712

dx.doi.org/10.1021/cg200571y |Cryst. Growth Des. 2011, 11, 2711–2716

Crystal Growth & Design

COMMUNICATION

Figure 1. Structural fragments of 1 showing: (a) ellipsoid plot with partial labeling scheme, (b) helical 3D framework, and (c) topological representation of the simplified underlying 3-connected net with the point symbol of (103). Further details: (a) 50% probability ellipsoids, H atoms are omitted for clarity; (b) rotated view along the a axis, H atoms and nitrate ligands are omitted for clarity, color codes: Ag balls (magenta), N (blue), P (orange), O (red), C (cyan); (c) rotated view along the c axis, topologically equivalent 3-connected Ag1 nodes and centroids of PTAdO nodes are shown as magenta and cyan sticks, respectively. Selected distances (Å): Ag1N11 2.341(2), Ag1N13i 2.309(2), Ag1O1 2.414(2), Ag1O11 2.562(3), Ag1O12 2.739(2), P1O1 1.490(2), Ag1 3 3 3 Ag1iii 5.939(1), Ag1ii 3 3 3 Ag1iii 6.918(1), Ag1 3 3 3 Ag1ii 8.298(1). Symmetry operators: (i) 0.5 þ x, 0.5  y, 2  z, (ii) 0.5  x, 1  y, 0.5 þ z, (iii) x, 0.5 þ y, 1.5  z.

along the a axis (Figure 1b), this network resembles a “basket weave”2l topology composed of long and short stitches. To get a deeper insight into the framework of 1, we have performed its topological analysis using TOPOS software13 and the concept of the simplified underlying net.14 Hence, by contracting μ3-PTAdO moieties to their centroids and by omitting NO3 ligands, the structure of 1 can be considered as an underlying net (Figures 1c and S2) composed of the 3-connected Ag1 and PTAdO nodes that are topologically equivalent, giving rise

to an uninodal 3-connected MOF with the point (Schl€afli) symbol of (103). It means that any node participates in the formation of three 10-membered shortest circuits. This simplified net resembles the srs (SrSi2) topology according to the RCSR15 classification. Although MOFs of the srs topological type are wellknown,5,13,15 those constructed from a somewhat related to PTAdO building block, hexamethylenetetramine (hmt), are limited to only two examples. These include cubic [Ag(μ3-hmt)]n(PF6)n 3 nH2O16a and [Cu3(L)3(μ3-hmt)]n {L = 1,10 -(1,4-phenylene)-bis(hexane-1, 2713

dx.doi.org/10.1021/cg200571y |Cryst. Growth Des. 2011, 11, 2711–2716

Crystal Growth & Design 3-dione)}16b nets assembled from 3-connected μ3-hmt and trigonal Ag or complex Cu3(L)3 nodes, respectively. In contrast to 1, the crystal structure of 2 (Figure 2) features a more complicated 3D noninterpenetrating network owing to the presence of the two symmetry nonequivalent Ag1 and Ag2 atoms, one μ5-PTAdO and one μ2-SO4 moiety, and one terminal aqua ligand (at the Ag2) per formula unit. The Ag1 atom adopts a rather distorted {AgO2N2} tetrahedral environment filled by the N11, N13ii, and O1i atoms [Ag1N11 2.391(3), Ag1N13ii 2.355(3), Ag1O1i 2.652(4) Å] from three adjacent μ5-PTAdO spacers and the O11 atom [Ag1O11 2.460(4) Å] of bridging sulfate ligand (Figure 2a). The Ag2 atom also forms a significantly distorted {AgO3N} tetrahedral SBU with the N12 and O1iv donors [Ag2N12 2.390(3), Ag2O1iv 2.553(3) Å] coming from μ5-PTAdO, and the O11iii and O10 atoms [Ag2O11iii 2.399(4), Ag2O10 2.534(4) Å] from μ2-SO4 and H2O ligands, respectively. In the construction of 2, a main role is thus played by the μ5-PTAdO spacers that unprecedentedly act as tetradentate ligands and multiply assemble the adjacent {AgO2N2} and {AgO3N} SBUs into a new type of complex 3D framework (Figures 2b and S3). It is interesting to note that owing to the presence of the phosphine oxide moiety, the 3D network of 2 significantly differs from the 2D layers17a generated in the reaction of silver(I) sulfate with hexamethylenetetramine as a spacer.17 By applying the above-mentioned concept of the underlying net,14 we can simplify the structure of 2 by contracting μ5PTAdO and μ2-SO4 moieties to their centroids and omitting terminal H2O ligands. The resulting network (Figures 2c and S4) is thus composed of the 3-connected Ag2, 4-connected Ag1 and 5-connected PTAdO nodes as well as μ2-SO4 linkers. The topological analysis13 reveals a trinodal 3,4,5-connected network with the new topology defined by the point symbol of (5.6.7)(54.6.8)(54.63.83), wherein the notations (5.6.7), (54.6.8), and (54.63.83) concern the Ag2, Ag1, and PTAdO nodes, respectively. To our knowledge,5,13,15 this type of topology has not been observed in any other coordination or H-bonded networks. In contrast to the large family of mono- and binodal MOFs,1,1315 the multinodal networks are still little common, although the progress in crystal engineering resulted in the rapidly increasing number of such materials. In particular, a few 3,4,5-connected nets have emerged in recent years.18 The search for applications of MOFs across biology and medicine (so-called BioMOFs) is nowadays a rapidly developing research direction.19 Since silver compounds are widely used as effective antimicrobial agents,20 various Ag coordination polymers have also been screened recently for potential antimicrobial activity.21 Bearing these features in mind, we have tested compounds 1 and 2 for their in vitro antibacterial and antifungal activities against Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus bacteria, as well as Candida albicans fungi. These studies were performed by the serial dilutions method using the Antibiotic Broth,22 and the obtained activities are expressed as the minimum inhibitory concentration (MIC, μg mL1) of compound that fully inhibits microbial growth. Hence, both 1 and 2 exhibit significant antibacterial and antifungal activity showing a comparable behavior, with stronger activities against E. coli and P. aeruginosa strains and the MIC values in the 67 μg mL1 range, whereas S. aureus and C. albicans are more resistant resulting in the MIC values of 2030 μg mL1.23 In contrast, PTAdO shows very low efficiency with the MIC values in the 11002200 μg mL1

COMMUNICATION

Figure 2. Structural fragments of 2 showing: (a) ellipsoid plot with partial labeling scheme, (b) complex 3D framework, and (c) unprecedented topology of the simplified underlying 3,4,5-connected net with the point symbol of (5.6.7)(54.6.8)(54.63.83). Further details: (a) 50% probability ellipsoids, H atoms (apart from those of H2O ligand) are omitted for clarity; (b) rotated view along the c axis, H atoms and H2O ligands are omitted for clarity, color codes: Ag balls (magenta), N (blue), P (orange), O (red), C (cyan), SO42 (yellow); (c) rotated view along the c axis, color codes: 3-connected Ag2 nodes (pale pink), 4-connected Ag1 nodes (magenta), centroids of 5-connected PTAdO nodes (cyan) and centroids of μ2-SO42 linkers (yellow). Selected distances (Å): Ag1N11 2.391(3), Ag1N13ii 2.355(3), Ag1O1i 2.652(4), Ag1O11 2.460(4), Ag2N12 2.390(3), Ag2O1iv 2.553(3), Ag2O10 2.534(4), Ag2O11iii 2.399(4), P1O1 1.495(3), Ag1 3 3 3 Ag2v 3.936(1), Ag1vi 3 3 3 Ag2vii 4.715(1), Ag1viii 3 3 3 Ag2 5.912(1), Ag1 3 3 3 Ag1viii 6.328(1), Ag2 3 3 3 Ag2vii 6.322(1), Ag1 3 3 3 Ag2 6.540(1), Ag1 3 3 3 Ag1vi 6.900(1). Symmetry operators: (i) x, y, 1 þ z, (ii) 0.5  x, 0.5 þ y, 0.5 þ z; (iii) 0.5 þ x, 1.5  y, z, (iv) x, 2  y, 0.5 þ z, (v) 0.5 þ x, 1.5 þ y, z, (vi) x, y, 1 þ z, (vii) x, 2  y, 0.5 þ z, (viii) 0.5  x, 0.5 þ y, 0.5 þ z. 2714

dx.doi.org/10.1021/cg200571y |Cryst. Growth Des. 2011, 11, 2711–2716

Crystal Growth & Design range (Table S1, Supporting Information). In general, the levels of activity exhibited by 1 and 2 are noticeably higher in comparison with those of some other silver(I) coordination compounds.21a,d,24 In summary, the present study has opened up the use of PTAdO as a new and versatile diamondoid building block in the design of MOFs, resulting in the self-assembly generation of the two novel 3D silverorganic networks 1 and 2, their structures featuring the unprecedented N2O- or N3O-coordination modes of PTAdO. The work also shows how a slight modification of the starting silver(I) salt has a marked effect on the topology of the resulting PTAdO driven networks. In the case of using AgNO3, a uninodal 3-connected helical net with the srs topology is obtained, while the use of Ag2SO4 leads to a rare trinodal 3,4,5connected net with a hitherto undocumented topology. Besides, both compounds 1 and 2 exhibit high antibacterial and antifungal activities, and represent the first examples of 3D MOFs derived from PTAdO or any cage-like PTA derivative. The research toward further exploration of PTAdO as a convenient multidentate N,O-building block in the design of new MOFs is currently in progress.

’ ASSOCIATED CONTENT

bS

Supporting Information. Materials and methods, refinement details of X-ray analyses, procedure and results (Table S1) for antibacterial and antifungal activity studies, additional structural representations (Figures S1S4), and crystallographic files in CIF format for 1 and 2. This material is available free of charge via the Internet at http://pubs.acs.org.

’ AUTHOR INFORMATION Corresponding Author

*E-mail: [email protected] (A.M.K.), [email protected] (P.S.), [email protected] (A.J.L.P.). Phone: þ351 218419207/37. Fax: þ351 218464455.

’ ACKNOWLEDGMENT This work was supported by the Foundation for Science and Technology (FCT), Portugal, its PPCDT (FEDER funded) and “Science 2007” programs, as well as by the KBN program (Grant No. N204 280438), Poland. We thank Dr. M. C. Oliveira for ESIMS (IST-node of RNEM/FCT). ’ REFERENCES (1) (a) Metal-Organic Frameworks: Design and Application; MacGillivray, L. R., Ed.; Wiley-Interscience: New York, 2010. (b) Functional MetalOrganic Frameworks: Gas Storage, Separation and Catalysis; Schroder, M., Ed.; Springer: New York, 2010. (c) Batten, S. R.; Turner, D. R.; Neville, S. M. Coordination Polymers: Design, Analysis and Application; Royal Society of Chemistry: London, 2009. (d) Design and Construction of Coordination Polymers; Hong, M.-C.; Chen, L., Eds.; Wiley: New York, 2009. (e) Macromolecules Containing Metal and Metal-Like Elements. In Metal-Coordination Polymers; Abd-El-Aziz, A. S., Carraher, C. E., Jr., Pittman, C. U., Jr., Zeldin, M., Eds.; Wiley: New York, 2005; Vol. 5. (2) (a) Janiak, C.; Vieth, J. K. New J. Chem. 2010, 34, 2366. (b) Fromm, K. M.; Sague, J. L.; Mirolo, L. Macromol. Symp. 2010, 291292, 75. (c) Perry, J. J., IV; Perman, J. A.; Zaworotko, M. J. Chem. Soc. Rev. 2009, 38, 1400. (d) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257. (e) Qiu, S.; Zhu, G. Coord. Chem. Rev. 2009, 253, 2891. (f) Robin, A. Y.; Fromm,

COMMUNICATION

K. M. Coord. Chem. Rev. 2006, 250, 2127. (g) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109. (h) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Angew. Chem., Int. Ed. 2004, 43, 1466. (i) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334. (j) Janiak, C. Dalton Trans. 2003, 2781. (k) James, S. L. Chem. Soc. Rev. 2003, 32, 276. (l) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. (3) (a) Bravo, J.; Bol~ano, S.; Gonsalvi, L.; Peruzzini, M. Coord. Chem. Rev. 2010, 254, 555. (b) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coord. Chem. Rev. 2004, 248, 955.(c) Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences. In Catalysis by Metal Complexes Series; Peruzzini, M; Gonsalvi, L., Eds.; Springer: London, 2011, Vol. 37. (4) (a) Lidrissi, C.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M.; Gonsalvi, L.; Peruzzini, M. Angew. Chem., Int. Ed. 2005, 44, 2568. (b) Mohr, F.; Falvello, L. R.; Laguna, M. Eur. J. Inorg. Chem. 2006, 3152. (c) Serrano-Ruiz, M.; Romerosa, A.; Sierra-Martin, B.; Fernandez-Barbero, A. Angew. Chem., Int. Ed. 2008, 47, 8665. (d) Kirillov, A. M.; Smole nski, P.; Haukka, M.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Organometallics 2009, 28, 1683. (e) Jaremko, y.; Kirillov, A. M.; Smole nski, P.; Pombeiro, A. J. L. Cryst. Growth Des. 2009, 9, 3006. (f) Lis, A.; Guedes da Silva, M. F. C.; Kirillov, A. M.; Smole nski, P.; Pombeiro, A. J. L. Cryst. Growth Des. 2010, 10, 5244. (g) X. Tu, H.; Truong, W.-C.; Nichol, G. S.; Zheng, Z. Inorg. Chim. Acta 2010, 363, 4189. (5) See the Cambridge Structural Database (CSD, version 5.32, Feb. 2011): Allen, F. H. Acta Crystallogr. 2002, B58, 380. (6) (a) Karabach, Y. Y.; Guedes da Silva, M. F. C.; Kopylovich, M. N.; Gil-Hernandez, B.; Sanchiz, J.; Kirillov, A. M.; Pombeiro, A. J. L. Inorg. Chem. 2010, 49, 11096. (b) Kirillov, A. M.; Coelho, J. A. S.; Kirillova, M. V.; Guedes da Silva, M. F. C.; Nesterov, D. S.; Gruenwald, K. R.; Haukka, M.; Pombeiro, A. J. L. Inorg. Chem. 2010, 49, 6390. (c) Karabach, Y. Y.; Kirillov, A. M.; Haukka, M.; Sanchiz, J.; Kopylovich, M. N.; Pombeiro, A. J. L. Cryst. Growth Des. 2008, 8, 4100. (d) Kirillov, A. M.; Karabach, Y. Y.; Haukka, M.; Guedes da Silva, M. F. C.; Sanchiz, J.; Kopylovich, M. N.; Pombeiro, A. J. L. Inorg. Chem. 2008, 47, 162. (e) Karabach, Y. Y.; Kirillov, A. M.; Haukka, M.; Kopylovich, M. N.; Pombeiro, A. J. L. J. Inorg. Biochem. 2008, 102, 1190. (7) (a) Kirillov, A. M.; Smole nski, P.; Ma, Z.; Guedes da Silva, M. F. C.; Haukka, M.; Pombeiro, A. J. L. Organometallics 2009, 28, 6425. (b) Jaremko, y.; Kirillov, A. M.; Smole nski, P.; Lis, T.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Inorg. Chim. Acta 2009, 362, 1645. (c) Kirillov, A. M.; Smole nski, P.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Eur. J. Inorg. Chem. 2007, 2686. (8) For limited examples of PTAdO complexes, see:(a) Jaremko, y.; Kirillov, A. M.; Smole nski, P.; Lis, T.; Pombeiro, A. J. L. Inorg. Chem. 2008, 47, 2922. (b) Frost, B. J.; Harkreader, J. L.; Bautista, C. M. Inorg. Chem. Commun. 2008, 11, 580. (c) Smole nski, P.; Kochel, A. Polyhedron 2010, 29, 1561. (d) Frost, B. J.; Lee, K.; Pal, T. H.; Kim, D.; VanDerveer, D.; Rabinovich Polyhedron 2010, 29, 2373. (9) Synthesis and analytical data: Compound 1: To a MeOH (5 mL) solution of silver nitrate (0.2 mmol, 34 mg) was added PTAdO (0.2 mmol, 35 mg) dissolved in MeOH/CH2Cl2 (10 mL/2.5 mL). The obtained mixture was stirred at room temperature (r.t., 20 °C) for 30 min to produce a white suspension, which was subjected to a dropwise addition of an aqueous 1 M solution of NH4OH (ca. 0.15 mL, until pH ≈ 8.5) and then filtered off. The filtrate was left in a vial to evaporate slowly in air at r.t. Colorless crystals (including those of X-ray quality) were formed in 12 weeks, then collected and dried in air to give 1 in ∼50% yield, based on AgNO3. C6H12AgN4O4P (343.0): calcd. C 21.01, N 16.33, H 3.53; found: C 21.10, N 16.04, H 3.42. S25 °C (in H2O) ≈ 2.0 mg mL1. IR (KBr): 2971 (w) νas(CH), 2932 (w) νs(CH), 1440 (w), 1384 (vs br.), 1283 (s), 1234 (m), 1165 s ν(PdO), 1095 (w), 1003 (s), 973 (s), 903 (s), 825 (w), 807 (s), 785 (m), 752 (w), 615 (w), 575 (m), 543 (w), 449 (m) and 416 (w) cm1. 1H NMR (500.1 MHz, D2O, Me4Si): δ 4.60 and 4.03 (2d, 6H, JAB = 13.4 Hz, NCHAHBN), 4.03 (d, 6H, 3JP-H = 10.3 Hz, PCH2N). 31P{1H} NMR (202.5 MHz, D2O, 85% H3PO4): δ 2.89 (s). ESI-MS(() (H2O), selected fragments with relative abundance >10%: MS(þ), m/z: 454 2715

dx.doi.org/10.1021/cg200571y |Cryst. Growth Des. 2011, 11, 2711–2716

Crystal Growth & Design (50%) [Ag(PTA=O)2]þ, 319 (100%) [Ag(PTAdO)(H2O)2]þ, 281 (20%) [Ag(PTAdO)]þ, 174 (15%) [PTAdO þ H]þ; MS(), m/z: 232 (100%) [Ag(NO3)2]. Compound 2: To a MeCN (5 mL) solution of silver sulfate (0.1 mmol, 31 mg) was added PTAdO (0.2 mmol, 35 mg) dissolved in MeCN/H2O (5 mL/1 mL). The obtained mixture was stirred at r.t. (20 °C) for 30 min, followed by filtration. The filtrate was left in a vial to evaporate slowly in air at r.t, furnishing colorless crystals (including those of X-ray quality) in 12 weeks. These were collected and dried in air to give 2 in ∼50% yield, based on Ag2SO4. C6H14Ag2N3O6PS (503.0): calcd. C 14.33, N 8.35, H 2.81; found: C 14.53, N 8.27, H 2.76. S25 °C (in H2O) ≈ 5.0 mg mL1. IR (KBr): 3320 (m br.) ν(H2O), 2930 (w) νas(CH), 2871 (w) νs(CH), 1635 (m br.) δ(H2O), 1439 (m), 1407 (m), 1283 (s), 1234 (m), 1144 (sh.) þ 1138 (vs br.) ν(PdO) þ ν(SO4), 1004 (m), 972 (s), 943 (m), 903 (s), 806 (m), 676 (m br.), 619 (s), 577 (m), 542 (w) and 450 (m) cm1. 1H NMR (500.1 MHz, D2O, Me4Si): δ 4.41 and 4.27 (2d, 6H, JAB = 14.0 Hz, NCHAHBN), 4.04 (d, 6H, 3JP-H = 10.3 Hz, PCH2N). 31P{1H} NMR (202.5 MHz, D2O, 85% H3PO4): δ 3.00 (s). ESI-MS(() (H2O), selected fragments with relative abundance >10%: MS(þ), m/z: 454 (30%) [Ag(PTAdO)2]þ, 319 (100%) [Ag(PTAdO)(H2O)2]þ, 281 (10%) [Ag(PTAdO)]þ, 174 (20%) [PTAdO þ H]þ; MS(), m/z: 204 (30%) [Ag(SO4)], 97 (100%) [HSO4]. (10) Crystal data: 1: C6H12AgN4O4P, M = 343.04, λ = 0.71073 Å (Mo-KR), T = 150(2) K, orthorhombic, space group P212121, a = 7.7286(4), b = 10.0328(6), c = 13.4998(8) Å, V = 1046.77(10) Å3, Z = 4, Dc = 2.177 g/cm3, F000 = 680, μ = 2.08 mm1, 5720 reflections collected, 2021 unique, I > 2σ(I) (Rint = 0.0224), R1 = 0.0165, wR2 = 0.0480, Flack parameter 0.02(2). 2: C6H14Ag2N3O6PS, M = 502.97, λ = 0.71073 Å (Mo-KR), T = 296(2) K, orthorhombic, space group Pna21, a = 16.6597(7), b = 10.3551(4), c = 6.9008(3) Å, V = 1190.48(9) Å3, Z = 4, Dc = 2.806 g/cm3, F000 = 976, μ = 3.63 mm1, 7412 reflections collected, 2143 unique, I > 2σ(I) (Rint = 0.0225), R1 = 0.0188, wR2 = 0.0465, Flack parameter 0.02(3). (11) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; Wiley: New York, 1997. (12) For examples of Ag compounds with various binding modes of nitrate ligands, see:(a) Robin, A. Y.; Sague, J. L.; Fromm, K. M. CrystEngComm 2006, 8, 403. (b) Sague, J. L.; Meuwly, M.; Fromm, K. M. CrystEngComm 2008, 10, 1542. (c) Slenters, T. V.; Sague, J. L.; Brunetto, P. S.; Zuber, S.; Fleury, A.; Mirolo, L.; Robin, A. Y.; Meuwly, M.; Gordon, O.; Landmann, R.; Daniels, A. U.; Fromm, K. M. Materials 2010, 3, 3407. (13) Blatov, V. A. IUCr CompComm Newslett. 2006, 7, 4. (14) (a) Blatov, V. A.; Proserpio, D. M. In Modern Methods of Crystal Structure Prediction; Oganov, A. R., Ed.; Wiley: New York, 2010; pp 128. (b) Blatov, V. A.; O’Keeffe, M.; Proserpio, D. M. CrystEngComm 2010, 12, 44. (15) The Reticular Chemistry Structure Resource (RCSR) Database, see also http://rcsr.anu.edu.au/; O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 30, 1782. (16) (a) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. J. Am. Chem. Soc. 1995, 117, 12861. (b) Clegg, J. K.; Lindoy, L. F.; McMurtrie, J. C.; Schilter, D. Dalton Trans. 2006, 3114. (17) (a) Tong, M.-L.; Zheng, S.-L.; Chen, X.-M. Chem. Commun. 1999, 56. (b) Zheng, S. L.; Tong, M. L.; Chen, X. M. Coord. Chem. Rev. 2003, 246, 185. (18) (a) Fang, S.-M.; Carolina, S. E.; Hu, M.; Zhang, Q.; Ma, S.-T.; Jia, L.-R.; Wang, C.; Tang, J.-Y.; Du, M.; Liu, C.-S. Cryst. Growth. Des. 2011, 11, 811. (b) Yin, P.-X.; Zhang, J.; Qin, Y.-Y.; Cheng, J.-K.; Li, Z.-J.; Yao, Y.-G. CrystEngComm 2011, 13, 3536. (c) Nettleman, J. H.; Laura, K. S.; LaDuca, R. L. Inorg. Chem. Commun. 2011, 14, 711–714. (d) Han, Z.-B.; Zhang, G.-X. CrystEngComm 2010, 12, 348. (e) Su, Z.; Cai, K.; Fan, J.; Chen, S.-S.; Chen, M.-S.; Sun, W.Y. CrystEngComm 2010, 12, 100. (f) Zhang, L. P.; Ma, J. F.; Yang, J.; Pang, Y. Y.; Ma, J. C. Inorg. Chem. 2010, 49, 1535. (g) Xue, M.; Zhu, G.; Ding, H.; Wu, L.; Zhao, X.; Jin, Z.; Qiu, S. Cryst. Growth. Des. 2009, 9, 1481. (h) Yin, P. X.; Cheng, J. K.; Li, Z. J.; Zhang, L.; Qin, Y. Y.; Zhang, J.; Yao, Y. G. Inorg. Chem. 2009, 48, 10859. (i) Zhang, L.;

COMMUNICATION

Zhang, J.; Li, Z.-J.; Qin, Y.-Y.; Lin, Q.-P.; Yao, Y.-G. Chem.—Eur. J. 2009, 15, 989. (19) For a recent review on BioMOFs, see:McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Ferey, G.; Gref, R.; Couvreur, P.; Serre, C. Angew. Chem., Int. Ed. 2010, 49, 6260. (20) (a) Fromm, K. M. Nat. Chem. 2011, 3, 178. (b) Rai, M.; Yadav, A.; Gade, A. Biotechol. Adv. 2009, 27, 76. (c) Silver, S. FEMS Microbiol. Rev. 2003, 27, 341. (21) For recent examples of Ag coordination polymers with antimicrobial activity, see:(a) Berchel, M.; Gall, T. L.; Denis, C.; Hir, S. L.; Quentel, F.; Elleouet, C.; Montier, T.; Rueff, J.-M.; Salaun, J.-Y; Haelters, J.-P.; Hix, G. B.; Lehn, P.; Jaffres, P.-A. New J. Chem. 2011, 35, 1000. (b) Gordon, O.; Slenters, T. V.; Brunetto, P. S.; Villaruz, A. E.; Sturdevant, D. E.; Otto, M.; Landmann, R.; Fromm, K. M. Antimicrob. Agents Chemother. 2010, 54, 4208. (c) Gerasimchuk, N.; Gamian, A.; Glover, G.; Szponar, B. Inorg. Chem. 2010, 49, 9863. (d) Liu, Y.; Xu, X.; Xia, Q.; Yuan, G.; He, Q.; Cui, Y. Chem. Commun. 2010, 46, 2608. (e) Slenters, T. V.; Hauser-Gerspach, I.; Daniels, A. U.; Fromm, K. M. J. Mater. Chem. 2008, 18, 5359. (22) Grove, D. C.; Randall, W. A. Assay Methods of Antibiotic. A Laboratory Manual; Medical Encyclopedia: New York, 1955. (23) MIC values (μg mL1) of 1 and 2 (figure in brackets) obtained against different strains: E. coli: 6 (6); P. aeruginosa: 7 (6); S. aureus 20 (20); C. albicans 30 (20). (24) (a) Kasuga, N. C.; Sugie, A.; Nomiya, K. Dalton Trans. 2004, 3732. (b) Onodera, K.; Kasuga, N. C.; Takashima, T.; Hara, A.; Amano, A.; Murakami, H.; Nomiya, K. Dalton Trans. 2007, 3646. (c) Nomiya, K.; Yokoyama, H. J. Chem. Soc., Dalton Trans. 2002, 2483.

2716

dx.doi.org/10.1021/cg200571y |Cryst. Growth Des. 2011, 11, 2711–2716