Publications of Marshall D. Newton - The Journal of Physical

Jun 18, 2015 - This article is part of the John R. Miller and Marshall D. Newton Festschrift ..... Green Function Theory of Charge Transfer Processes ...
0 downloads 0 Views 160KB Size
Special Issue Preface pubs.acs.org/JPCB

Publications of Marshall D. Newton 1. The Synthesis of Isocamphorquinone. T. A. Spencer and M. D. Newton Tetrahedron Lett. 22, 1019−1021 (1962). 2. Condensation of Diethyl Malonate and Methyl Vinyl Ketone. T. A. Spencer, M. D. Newton and S. Baldwin J. Org. Chem. 29, 787−789 (1964). 3. Extended Huckel Theory and Molecular Hartree−Fock SCF Theory. F. P. Boer, M. D. Newton and W. N. Lipscomb Proc. Natl. Acad. Sci. USA 52, 890−893 (1964). 4. Nonempirical Molecular Orbital Theory from Molecular Orbital Theory from Molecular Hartree−Fock Theory. M. D. Newton, F. P. Boer, W. E. Palke and W. N. Lipscomb Proc. Natl. Acad. Sci. USA 53, 1089−1091 (1965). 5. Molecular Orbital Theory for Large Molecules. Approximation of the SCF LCAO Hamiltonian Matrix. M. D. Newton, F. P. Boer and W. N. Lipscomb J. Am. Chem. Soc. 88, 2353−2360 (1966). 6. Molecular Orbitals for Boron Hydrides, Parametrized from SCF Model Calculations. F. P. Boer, M. D. Newton and W. N. Lipscomb J. Am. Chem. Soc. 88, 2361−2366 (1966). 7. Molecular Orbitals for Organic Systems, Parametrized from SCF Model Calculations. M. D. Newton, F. P. Boer and W. N. Lipscomb J. Am. Chem. Soc. 88, 2367−2384 (1966). 8. Chemical Shifts of Boron-11 in Icosahedral Carboranes. F. P. Boer, R. A. Hegstrom, M. D. Newton, J. A. Potenza and W. N. Lipscomb J. Am. Chem. Soc. 88, 5340−5342 (1966). 9. Recalculation of Formaldehyde Wave Functions. M. D. Newton and W. E. Palke J. Chem. Phys. 45, 2329−2330 (1966). 10. On Cusachs’ H2O Calculation. M. D. Newton J. Chem. Phys. 45, 2716−2717 (1966). 11. Interaction of A Methyl Group with a Triple Bond: An SCF LCAO Study of Methyl Acetylene. M. D. Newton and W. N. Lipscomb J. Am. Chem. Soc. 89, 4261−4267 (1967). 12. Analysis of Koopmans’ Theorem. M. D. Newton J. Chem. Phys. 48, 2825−2826 (1967). 13. Localized and Delocalized π-Electron Energies in the MO and VB Theories. C. A. Coulson and M. D. Newton Mol. Phys. 15, 305−316 (1968). 14. Calculations of Nuclear Spin Coupling Constants from ab initio Wave Functions. N. S. Ostlund, M. D. Newton, J. W. McIver and J. A. Pople J. Magn. Reson. 1, 298−301 (1969). 15. Projection of Diatomic Differential Overlap: Least Squares Projection of 2-Center Distribution onto 1Center Functions. M. D. Newton, N. S. Ostlund and J. A. Pople J. Chem. Phys. 49, 5192−5194 (1968). 16. Localized Bonds in SCF Wave Functions for Polyatomic Molecules. I. Diborane. E. Switkes, R. M. Stevens, W. N. © 2015 Marshall D. Newton

17. 18.

19.

20.

21.

22.

23.

24. 25. 26. 27.

28. 29.

Lipscomb and M. D. Newton J. Chem. Phys. 51, 2085− 2093 (1969). Self-Consistent Molecular-Orbital Methods. II. Projection of Diatomic Differential Overlap (PDDO). M. D. Newton J. Chem. Phys. 51, 3917−3926 (1969). Self-Consistent Molecular-Orbital Methods. III. Comparison of Gaussian Expansion and PDDO (Projection of Diatomic Differential Overlap) Methods Using Minimal STO (Slater-type Orbital) Basis Sets. M. D. Newton, W. A. Lathan, W. J. Hehre and J. A. Pople J. Chem. Phys. 51, 3927−3932 (1969). Self-Consistent Molecular-Orbital Methods. V. Ab Initio Calculation of Equilibrium Geometries and Quadratic Force Constants. M. D. Newton, W. A. Lathan, W. J. Hehre and J. A. Pople J. Chem. Phys. 52, 4064−4072 (1970). Localized Bonds in Self-Consistent-Field Wave Functions for Polyatomic Molecules. II. Boron Hydrides. E. Switkes, W. N. Lipscomb and M. D. Newton J. Am. Chem. Soc. 92, 3847−3853 (1970). Localized Bonds in SCF Wave functions for Polyatomic Molecules. III. C−H and C−C Bonds. M. D. Newton, E. Switkes and W. N. Lipscomb J. Chem. Phys. 53, 2645− 2657 (1970). Localized Bonds in SCF Wave Functions for Polyatomic Molecules. IV. Ethylene, Butadiene, and Benzene. M. D. Newton and E. Switkes J. Chem. Phys. 54, 3179−3184 (1971). Ab Initio Studies on the Structures and Energetics of Inner and Outer Shell Hydrates of H+ and OH−. M. D. Newton and S. Ehrenson J. Am. Chem. Soc. 93, 4971− 4990 (1971). Theoretical Studies of Bicyclobutane. M. D. Newton and J. M. Schulman J. Am. Chem. Soc. 94, 767−773 (1972). Theoretical Studies of Tricyclo[1.1.1.01.3]Pentane and Bicyclo[1.1.1]Pentane. M. D. Newton and J. M. Schulman J. Am. Chem. Soc. 94, 773−778 (1972). Ab Initio Studies of Hydrogen Exchange and Abstraction in the H + CH4 System. S. Ehrenson and M. D. Newton Chem. Phys. Lett. 13, 24−29 (1972). ″Inverted” Tetrahedral Geometry at a Bridgehead Carbon; the X-ray Crystal, Molecular and Electronic Structure of 8,8-Dichloro-tricyclo [3.2.1.01,5] octane (C8H10Cl2) at −40 °C. K. B. Wiberg, G. J. Burgmaier, K-w. Shen, S. J. LaPlaca, W. C. Hamilton and M. D. Newton J. Am. Chem. Soc. 94, 7402−7406 (1972). Electronic Structure of [2.2.2] Propellane. M. D. Newton and J. M. Schulman J. Am. Chem. Soc. 94, 4391−4392 (1972). Comment on “Multiple Potential Energy Surfaces for Reactions of Species in Degenerate Electronic States”. D.

Special Issue: John R. Miller and Marshall D. Newton Festschrift Published: June 18, 2015 7134

DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139

The Journal of Physical Chemistry B

30. 31. 32.

33. 34.

35. 36. 37.

38.

39. 40. 41. 42.

43. 44. 45.

46. 47.

Special Issue Preface

G. Truhlar, J. T. Muckerman and M. D. Newton J. Chem. Phys. 56, 3191−3192 (1972). The Equilibrium Geometry, Electronic Structure, and Heat of Formation of ortho-Benzyne. M. D. Newton and H. A. Fraenkel Chem. Phys. Lett. 18, 244−246 (1973). Seven Basic Conformations of Nucleic Acid Structural Units. S.-H. Kim, H. M. Berman, N. C. Seeman and M. D. Newton Acta Cryst. B29, 703−710 (1973). A Model Conformational Study of Nucleic Acid Phosphate Ester Bonds: The Torsional Potential of Dimethyl Phosphate Monoanion. M. D. Newton J. Am. Chem. Soc. 95, 256−258 (1973). Cyclobutadiene II. On the Geometry of the MatrixIsolated Species. A. Krantz, C. Y. Lin and M. D. Newton J. Am. Chem. Soc. 95, 2744−2746 (1973). Ab Initio Hartree−Fock Calculations with Inclusion of a Polarized Dielectric; Formalism and Application to the Ground State Hydrated Electron. M. D. Newton J. Chem. Phys. 58, 5833−5855 (1973). Theoretical Studies of Benzene and Its Valence Isomers. M. D. Newton, J. M. Schulman and M. M. Manus J. Am. Chem. Soc. 96, 17−23 (1974). Ab initio Studies of Interoxygen Bonding in O2, HO2, H2O2, O3, HO3 and H2O3. R. J. Blint and M. D. Newton J. Chem. Phys. 59, 6220−6228 (1973). Contribution to the Nuclear Spin−Spin Coupling Constants of Directly-Bonded Carbons. J. M. Schulman and M. D. Newton J. Am. Chem. Soc. 96, 6295−6297 (1974). The Impact of Theoretical Chemistry on Elucidation of Hot Atom Reaction Mechanisms. M. D. Newton In Hot Atom Chemistry Report; IAEA, Vienna, 1975; pp 107− 122. Overcomplete Multicenter Basis Sets. H. F. King, R. E. Stanton and M. D. Newton Chem. Phys. Lett. 31, 61−65 (1975). Canonical Orthonormalization and Neglect of Differential Overlap. H. F. King, M.D. Newton and R. E. Stanton Chem. Phys. Lett. 31, 66−69 (1975). Ab Initio Potential Energy Surfaces for the Reactions of Atomic Carbon with Molecular Hydrogen. R. J. Blint and M. D. Newton Chem. Phys. Lett. 32, 178−183 (1975). Proton Stopping Powers: Binary Encounter Calculations Based on Accurate Velocity Distributions for Target Electrons. M. D. Newton, L. L. Lucas and J. W. Root Chem. Phys. Lett. 34, 552−556 (1975). Electronic Structure: Ab Initio Methods M. D. Newton In Modern Theoretical Chemistry; Schaeffer, H. F. III, Ed.; Plenum Press, NY, 1976; Vol. II. The Role of Ab Initio Calculations in Elucidating Properties of Hydrated and Ammoniated Electrons. M. D. Newton J. Phys. Chem. 79, 2795−2708 (1975). Ab initio Effective Potentials for Atoms of the First Three Rows of the Periodic Table. S. Topiol, J. W. Moskowitz, C. F. Melius, M. D. Newton and J. Jafri ERDA Research & Development Report, COO-3077−105, (1976). The Stereochemisry of the α-Hydroxy Carboxylic Acids and Related Systems. M. D. Newton and G. A. Jeffrey J. Am. Chem. Soc. 99, 2413−2421 (1977). Theoretical Observations on the Structural Consequences of Cooperativity in H···O Hydrogen Bonding. Y.-C. Tse and M. D. Newton J. Am. Chem. Soc. 99, 611−613 (1977).

48. Ab initio Configuration Interaction Studies of the Electronic States of S2N2. J. A. Jafri, M. D. Newton, T. A. Pakkanen and J. L. Whitten J. Chem. Phys. 66, 5167− 5172 (1977). 49. Ab initio Studies of the Hydrated H3O+ Ion. II. The Energetics of Proton Motion in Higher Hydrates (n=3− 5). M. D. Newton J. Chem. Phys. 67, 5535−5546 (1977). 50. Ab initio Studies of the Relative Energetics of Glycine and its Zwitterion. Y.-T. Tse, M. D. Newton, S. Vishveshwara and J. A. Pople J. Am. Chem. Soc. 100, 4329−4331 (1978). 51. Effective Core Potentials for the Cadium and Mercury Atoms. H. Basch, M. D. Newton, J. Jafri, J. W. Moskowitz and S. Topiol J. Chem. Phys. 68, 4005−4011 (1978). 52. The Electronic Structure of Ni- and Ni2-Ethylene Cluster Complexes. H. Basch, M. D. Newton and J. W. Moskowitz J. Chem. Phys. 69, 584−597 (1978). 53. The Potential Energy Surfaces of Cyclobutadiene: Ab intitio SCF and CI Calculations for the Low-Lying Singlet and Triplet States. J. A. Jafri and M. D. Newton J. Am. Chem. Soc. 100, 5012−5017 (1978). 54. GAUSSIAN 76--An Ab Initio Molecular Orbital Program J. S. Binkley, R. Whiteside, P. C. Hariharan, R. Seeger, W. J. Hehre, W. A. Lathan, M. D. Newton, R. Ditchfield and J. A. Pople Quantum Chemistry Program Exchange, University of Indiana, Bloomington, IN, 1978. 55. Equilibrium Geometries and Relative Energies of the Lowest Singlet and Triplet States of o-, m-, and pBenzyne. J. O. Noell and M. D. Newton J. Am. Chem. Soc. 101, 51−57 (1979). 56. Nuclear Radiation as a Probe of Chemical Bonding--The Current Interplay Between Theory and Experiment. M. D. Newton At. Energy Rev. 17, 237−285 (1979). 57. Application of ab initio Molecular Orbital Calculations to the Structural Moities of Cabohydrates. 5. The Geometry of the Hydrogen-Bonds. M. D. Newton, G. A. Jeffrey and S. Takagi J. Am. Chem. Soc. 101, 1997−2002 (1979). 58. Ab Initio Study of Inner Solvent Shell Reorganization in the Fe2+-Fe3+ Aqueous Electron Exchange Reaction. J. A. Jafri, J. Logan and M. D. Newton Israel J. Chem. 19, 340− 350 (1980). 59. Ab Initio Calculated Geometries and Charge Distributions for H4SiO4 and H6Si2O7 Compared Experimental Values for Silicates and Siloxanes. M. D. Newton and G. V. Gibbs Phys. Chem. Miner. 6, 221−246 (1980). 60. An Ab Initio Study of the Bonding in Diatomic Nickel. J. O. Noell, M. D. Newton and P. J. Hay J. Chem. Phys. 73, 2360−2371 (1980). 61. Theoretical Study of the O-Methyl Substituent Effect in OH···O Hydrogen Bonds. Y.-C. Tse, M. D. Newton and L. C. Allen Chem. Phys. Lett. 75, 350−356 (1980). 62. A Semiclassical Treatment of Electron-Exchange Reactions: Application to the Hexaaquoiron(II)Hexaaquoiron(III) System. B. S. Brunschwig, J. Logan, M. D. Newton and N. Sutin J. Am. Chem. Soc. 102, 5798−5809 (1980). 63. Ab Initio Calculation of Interatomic Force Constants in H6Si2O7 and the Bulk Modulus of α-Quartz and αCristobalite. M. O’Keefe, M. D. Newton and G. V. Gibbs Phys. Chem. Miner. 6, 305−312 (1980). 64. Formalisms for Electron Exchange Kinetics in Aqueous Solution, and the Role of Ab Initio Techniques in their 7135

DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139

The Journal of Physical Chemistry B

65. 66.

67. 68.

69.

70.

71.

72.

73. 74. 75. 76. 77. 78. 79. 80. 81. 82.

Special Issue Preface

Implementation. M. D. Newton Int. J. Quantum Chem., Symp. 14, 363−391 (1980). The Electronic Structure of Small Nickel Atom Clusters. H. Basch, M. D. Newton and J. W. Moskowitz J. Chem. Phys. 73, 4492−4510 (1980). A Comparison of Experimental and Theoretical Si−O and Al−O Bond Length and Angle Variations for Solids and Molecules. G. V. Gibbs, E. P. Meagher, M. D. Newton and P. K. Swanson In Structure and Bonding in Crystals; O’Keefe, M. and Navrotsky, A., Eds.; Academic Press, 1981. Theoretical Probes of Bonding in the Siloxyl Group. M. D. Newton In Structure and Bonding in Crystals; O’Keeffe, M. and Navrotsky, A., Eds.; Academic Press, 1980. Bond Angles in Disiloxane: A Pseudopotential Electronic Structure Study. C.A Ernst, A.L Allred, Mark A Ratner, M.D Newton, G.V Gibbs, J.W Moskowitz, Sid Topiol Chem. Phys. Lett. 81, 424−429 (1981). Mechanistic Studies of Electron Exchange Kinetics Using ab-initio Electronic Structure Techniques. M. D. Newton ACS Symposium Series on “Inorg. Reaction Mechanisms”, Wayne State University, June 6−12, 1981. Theoretical and Experimental Charge Distributions in Euclase and Stishovite. J. W. Downs, R. J. Hill, M. D. Newton, J. A. Tossell and G. V. Gibbs In Electron Distributions and the Chemical Bond; Coppens, P. and Parr, R.; Plenum, 1981. The Theory of the Fe2+ - Fe3+ Electron Exchange in Water. B. L. Tembe, H. L. Friedman and M. D. Newton J. Chem. Phys. 76, 1490−1507 (1982) Erratum: 76, 1420 (1982). The Structure of Dinitrogen Tetroxide, N2O4: Neutron Diffraction Study at 100 K, 60K and 20K and Ab Initio Theoretical Calculations. Å. Kvick, R. K. McMullan and M. D. Newton J. Chem. Phys. 76, 3754−3761 (1982). Valence Ionization in Small Nickel Clusters: SymmetryBroken Wave function for Ni2+ and Ni4+. M. Newton Chem. Phys. Lett. 90, 291−295 (1982). A Crystal Chemical Study of Stishovite. R. J. Hill, M. D. Newton and G. V. Gibbs J. Solid State Chem. 47, 185− 200 (1983). The Theory of the Fe2+-Fe3+ Electron Exchange in Water. H. L. Friedman and M. D. Newton Faraday Discuss. 74, 73 (1982). Theoretical Aspects of the OH···O Hydrogen Bond and its Role in Structural and Kinetic Phenomena. M. D. Newton Acta Cryst. B39, 104−113 (1983). Ab Initio Study of Electronic Coupling in the Aqueous Fe2+-Fe3+ Electron Exchange Processes. J. Logan and M. D. Newton J. Chem. Phys. 78, 4086−4091 (1983). Small Water Clusters as Theoretical Models for Structural and Kinetic Properties of Ice. M. D. Newton J. Phys. Chem. 87, 4288−4292 (1983). The Water Dimer: Theory vs Experiment. M. D. Newton and N. R. Kestner J. Chem. Phys. 94, 198−201 (1983). Potential Energy Calculations for Various Water Dimer Configurations. N. R. Kestner, M. D. Newton and T. Mathers Int. J. Quantum Chem., Symp. 17, 583 (1983). Electron Transfer Reactions in Condensed Phases. M. D. Newton and N. Sutin Annu. Rev. Phys. Chem. 35, 437− 480 (1984). Electronic States of CuO P. V. Madhavan and M. D. Newton. J. Chem. Phys. 83, 2337−2347 (1985).

83. Factors Governing Electronic Localization in Transition Metal Clusters and Complexes. J. Logan, M. D. Newton and J. O. Noell Int. J. Quantum Chem., Symp. 18, 213− 235 (1984). 84. Vibrational Spectrum, Structure and Energy of [1.1.1]Propellane. K. B. Wiberg, W. P. Dailey, F. H. Walker, S. T. Waddell, L. Crocker and M. Newton J. Am. Chem. Soc. 107, 7247−7257 (1985). 85. A Proposed Neutron Diffraction Experiment to Measure Hydrogen Isotope Fragmentation in Solution. M. D. Newton and H. L. Friedman J. Chem. Phys. 83, 5210− 5218 (1985). 86. H/D Isotope Effect on Outer Sphere Electron Exchange. H. L. Friedman and M. D. Newton J. Electroanal. Chem. 204, 21−29 (1986). 87. Stability of Buckminsterfullerene and Related Carbon Clusters. M. D. Newton and R. E. Stanton J. Am. Chem. Soc. 108, 2469−2470 (1986). 88. Comparison of Electron-Transfer Matrix Elements for Transition-Metal Complexes: t2g vs eg Transfer and NH3 vs H2O Ligands. M. D. Newton J. Phys. Chem. 90, 3734− 3739 (1986). 89. Ab Initio Models for Electron Tunnelling Between Transition Metal Complexes. M. D. Newton 19th Jerusalem Symposium, Tunneling, Jortner, J. and Pullman, B., Eds., pp 305−314, Jerusalem, Israel, 1986. 90. Current Views of Hydrogen Bonding from Theory and Experiment -- Structure, Energetics, and Control of Chemical Behavior. M. D. Newton Trans. Am. Cryst. Assoc. 22, 1−17 (1986). 91. Interaction of Atomic Oxygen with Copper Clusters. P. V. Madhavan and M. D. Newton J. Chem. Phys. 86, 4030−4037 (1987). 92. Electronic Structure Analysis of Electron Transfer Matrix Elements for Transition Metal Redox Pairs. M. D. Newton J. Phys. Chem. 92, 3049−3056 (1988). 93. The Role of Electron Structure Calculation in Mechanistic Analysis of Electron Transfer Reactions in the Liquid Phase. M. D. Newton In Chemical Reactions in the Liquid State, in Chemical Reactivity in Liquids; Moreau, M. and Turq, P., Eds.; Plenum Publishing, New York, 1988. 94. Normal Vibrational Modes of Buckminsterfullerene. R. E. Stanton and M. D. Newton J. Phys. Chem. 92, 2141− 2145 (1988). 95. Green Function Theory of Charge Transfer Processes in Solution. M. D. Newton and H. L. Friedman J. Chem. Phys. 88, 4460−4472 (1988). 96. Structure and Energetics of High-Spin Co(NH3)62+/3+ Complexes. M. D. Newton Okazaki National Research Institutes, Okazaki, Japan, Computer Center Report, No. 9 (1988). 97. The Role of High-Spin and Low-Spin Electronic States in the Co(NH3)62+/3+ Exchange Reaction. M. D. Newton In ACS Symposium Series; Salahub, D. R. and Zerner, M. C., Eds.; American Chemical Society, Washington, DC, 1989; No. 394, pp. 378−392. 98. Calculation of the Thermodynamic Solvent Isotope Effect for Ferrous and Ferric Ions in Water. C. L. Kneifel, H. L. Friedman and M. D. Newton Z. Naturforsch. 44a, 385−394 (1989). 99. Superexchange Coupling Mechanisms for Electron Transfer Processes. M. D. Newton In Perspectives in Photosynthesis; Jortner, J. and Pullman, B., Eds.; Kluwer 7136

DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139

The Journal of Physical Chemistry B

100.

101.

102. 103. 104.

105. 106. 107.

108. 109. 110. 111.

112. 113.

114. 115.

Special Issue Preface

Academic Publishers, The Netherlands, 1990; pp 157− 170. Effects of Conformational and Environment on Bacteriochlorophyll Optical Spectra: Correlations of Calculated Spectra with Structural Results. G. Gudowska-Nowak, M. D. Newton and J. Fajer In Current Research in Photosynthesis; Balischeffsky, M., Ed.; Kluwer Academic Publishers, Netherlands, 1990; Vol. II, pp 149−152. Conformational and Environmental Effects on Bacteriochlorophyll Optical Spectra: Correlations of Calculated Spectra with Structural Results. E. Gudowska-Nowak, M. D. Newton and J. Fajer J. Phys. Chem. 94, 5795−5801 (1990). The Co(NH3)62+/3+ Exchange Reaction: Ground-State versus Thermally-Excited Pathways. M. D. Newton J. Phys. Chem 95, 30−38 (1991). Analysis of Superexchange Coupling in MetalloceneMetallocenium Redox Pairs. M. D. Newton, K. Ohta and E. Zhong J. Phys. Chem. 95, 2317−2326 (1991). Micro-Environmental Effects on Photosynthetic Chromophores. J. Fajer, K. M. Barkigia, K. M. Smith, E. Zhong, E. Gudowska-Nowak and M. D. Newton In Structure and Function of Bacterial Reaction Centers; Michel-Beyerle, M. D., Ed.; Springer-Verlag, 1990; pp 367−376. Electronic Structural Control of Electron Transfer Kinetics. M. D. Newton Electrochim. Acta 36, 1892− 1893 (1991). Quantum Chemical Probes of Electron Transfer Kinetics: The Nature of Donor−Acceptor Interactions. M. D. Newton Chem. Rev. 91, 767−792 (1991). Cluster Models for Condensed-Phase Electron Transfer Processes. M. D. Newton In Cluster Models for Surface and Bulk Phenomenon, NATO ASI Series; Pacchioni, G. and Bagus, P. S., Eds.; Plenum Press, New York, 1992; pp 551−563. Ab Initio Studies of Electron Transfer: Pathway Analysis of Effective Transfer Integrals. C. Liang and M. D. Newton J. Phys. Chem. 96, 2855−2866 (1992). Electronic Structure and Magnetic Coupling in Copper Oxide Superconductors. Y. J. Wang, M. D. Newton and J. W. Davenport Phys. Rev. B46, 935−951 (1992). Ab Initio Studies of Electron Transfer. 2. Pathway Analysis for Homologous Organic Spacers. C. Liang and M. D. Newton J. Phys. Chem. 97, 3199−3211 (1993). Diabatic Surfaces and the Pathway to Primary Electron Transfer in a Photosynthetic Reaction Center. M. Marchi, J. N. Gehlen, D. Chandler and M. Newton J. Am. Chem. Soc. 115, 4178−4190 (1993). Simulation of Solvent Isotope Effects on Aqueous Ferrous and Ferric Ions. C. L. Kneifel, M. D. Newton and H. L. Friedman J. Mol. Liquids 60, 107−145 (1994). The Multi-Configurational Adiabatic Electron Transfer Theory and Its Invariance Under Transformations of Charge Density Basis Functions. M. V. Basilevsky, G. E. Chudinov and M. D. Newton Chem. Phys. 179, 263−278 (1994). Metal−Ligand and Metal−Metal Coupling Elements. C. Creutz, M. D. Newton and N. Sutin J. Photochem. Photobiol., A 82, 47−59 (1994). Reorganization Energy for Electron Transfer at FilmModified Electrode Surfaces: A Dielectric Continuum

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127. 128.

129. 7137

Model. Y−P Liu, M. D. Newton J. Phys. Chem. 98, 7162− 7169 (1994). Molecular Theory of Solvation Processes in Polar and Non-Dipolar Solvents. H. L. Friedman, F.O. Raineri, B.C. Perng and M. D. Newton J. Mol. Liquids, 65/66, 7−14 (1995). The Kinetics of Electron Transfer Through FerroceneTerminated Alkanethiol Monolayers on Gold. J. F. Smalley, S. W. Feldberg, C.E.D. Chidsey, M.R. Linford, M. D. Newton, Y.-P. Liu J. Phys. Chem. 99, 13141−13149 (1995). Solvent Reorganization and Donor/Acceptor Coupling in Electron Transfer Processes: Self Consistent Reaction Field Theory and Ab Initio Applications. Y.-P. Liu and M. D. Newton J. Phys. Chem. 99, 12382−12386 (1995). Generalization of the Mulliken-Hush Treatment for the Calculation of Electron Transfer Matrix Elements. R. Cave and M. Newton Chem. Phys. Lett. 249, 15−19 (1996). Orbital Analysis of Metal-to-Ligand Charge Transfer and Oxidation in (NH3)5RuL2+ Complexes: Effective t2g Orbital Ordering and the Role of Ligand π and π* Orbitals. Y. g. Shin, B. S. Brunschwig, C. Creutz, M. D. Newton and N. Sutin J. Phys. Chem.100, 1104−1110 (1996). A Theoretical Study of Solvent Effects on the Electronic Coupling Matrix Element in Rigidly Linked Donor− Acceptor Systems. R. J. Cave, M. D. Newton, K. Kumar and M. B. Zimmt J. Phys. Chem. 99, 17501−17504 (1995). Energetics of Charge Transfer Reactions in Solvents of Dipolar and Higher Order Multipolar Character I. Theory. B.-C. Perng, M. D. Newton, F. O. Raineri and H. Friedman J. Chem. Phys. 104, 7153−7176 (1996). Energetics of Charger Transfer Reactions in Solvents of Dipolar and Higher Order Multipolar Character II. Results. B.-C. Perng, M. D. Newton, F. O. Raineri and H. L. Friedman J. Chem. Phys. 104, 7177−7204 (1996). Molecular Control of Electron and Hole Transfer Processes: Theory and Applications M. D. Newton and R. J. Cave. In Molecular Electronics, J. Jortner and M. A. Ratner, Eds.; Blackwell Science (1997), p 73. Donor−Acceptor Coupling in Mixed-Valent Dinuclear Iron Polypyridyl Complexes: Experimental and Theoretical Considerations. C. M. Elliott, D. L. Derr, S. Ferrere, M. D. Newton and Y.-P. Liu J. Am. Chem. Soc. 118, 5221−5228 (1996). Quantum Chemical Evaluation of Energy Quantities Governing Electron Transfer Kinetics: Applications to Intramolecular Processes. M. V. Basilevsky, G. E. Chudinov, I. V. Rostov, Y.-P. Liu and M. D. Newton J. Mol. Struct. (THEOCHEM) 371, 191−203 (1996). Medium Reorganization and Electronic Coupling Coupling in Long-Range Electron Transfer. M. D. Newton J. Electroanal. Chem. 438, 3−10 (1997). Calculation of Electronic Coupling Matrix Elements for Ground and Excited State Electron Transfer Reactions: Comparison of the Generalized Mulliken Hush (GMH) and Block Diagonalization (BD) Methods. R. J. Cave and M. D. Newton J. Chem. Phys. 106, 9213−9226 (1997). Interfacial Electron Transfer Rates Through π-Conjugated Spacers. S. B. Sachs, S. Dudek, C. E. D. Chidsey, R. DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139

The Journal of Physical Chemistry B

130.

131.

132.

133.

134. 135.

136. 137.

138. 139. 140.

141.

142.

143. 144.

Special Issue Preface

145. Distance-Dependent Activation Energies for Hole Injection from Protonated 9-Amino-6-Chloro-2-Methoxyacridine into Duplex DNA. W. B. Davis, S. Hess, I. Naydenova, R. Haselsberger, A. Ogrodnik, M. D. Newton, M.-E. Michel-Beyerle J. Am. Chem. Soc. 124, 2422−2423 (2002). 146. Application of the Linearized MD Approach for Computing Equilibrium Solvation Free Energies of Charged and Diplar Solutes in Polar Solvents. M. V. Vener, I. V. Leontyev, Y. A. Dyakov, M. V. Basilevsky and M. D. Newton J. Phys. Chem. A 106, 13078−13088 (2002). 147. Thermal and Optical Electron Transfer Involving Transition Metal Complexes: Insights from Theory and Computation. M. D. Newton Coord. Chem. Rev. 238, 167−185 (2003). 148. The Indirect Laser-Induced Temperature Jump Method for Characterizing Fast Interfacial Electron Transfer: Concept, Application and Results. S. W. Feldberg, M. D. Newton and J. F. Smalley In Electroanalytical Chemistry Series, A. J. Bard and I. Rubinstein, Eds.; Marcel Dekker, New York, NY, 2003, p 101. 149. Electronic Coupling of Donor/Acceptor Sites Mediated by Homologous Unsaturated Organic Bridges. M. D. Newton ACS Symp. Ser. 844, 196 (2003). 150. Heterogeneous Electron Transfer Kinetics for Ruthenium and Ferrocene Redox Moieties Through Alkanethiol Monolayers on Gold. J. F. Smalley, H. O. Finklea, C. E. D. Chidsey, M. R. Linford, S. E. Creager, J. P. Ferraris, K. Chalfant, T. Zawodzinski, S. W. Feldberg and M. D. Newton J. Am. Chem. Soc. 125, 2004−2013 (2003). 151. Charge Transfer on the Nanoscale. D. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley and X. Zhu J. Phys. Chem. B 107, 6668−6697 (2003). 152. Estimate of the Reorganization Energy for Charge Transfer in DNA K. Siriwong, A. A. Voityuk, M. D. Newton and N. Rosch J. Phys. Chem. B 107, 2595−2601 (2003). 153. Distance Dependence of Electron Transfer Across Peptides with Different Secondary Structures: The Role of Peptide Energetics and Electronic Coupling. Y.-g. K. Shin, M. D. Newton and S. S. Isied J. Am. Chem. Soc. 125, 3722−3732 (2003). 154. A Continuum Level Treatment of Electronic Polarization in the Framework of Molecular Simulations of Solvation Effects. I. V. Leontyev, M. V. Vener, I. V. Rostov, M. V. Basilevsky and M. D. Newton J. Chem. Phys. 119, 8024− 8037 (2003). 155. Electronic Coupling in Electron Transfer and the Influence of Nuclear Modes: Theoretical and Computational Probes M.D. Newton Theor. Chem. Acc. 110, 307− 321 (2003). 156. Electronic Coupling Elements and Electron Transfer Theory. M. D. Newton In Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Vol.1, A. B. P. Lever, Ed.; Elsevier, Oxford (2003), p 573. 157. Theory and Computation of Electron Transfer Reorganization Energies with Continuum and Molecular Solvent

P. Hsung, L. R. Sita, J. F. Smalley, M. D. Newton, S. W. Feldberg J. Am. Chem. Soc. 119, 10563−10564 (1997). A Two-State Born−Oppenheimer Treatment of Intramolecular Electron Transfer Reactions. M. V. Basilevsky, I. V. Rostov and M. D. Newton J. Electroanal. Chem. 450, 69−82 (1998). A Frequency-Resolved Cavity Model (FRCM) for Treating Equilibrium and Nonequilibrium Solvation Energies. M. V. Basilevsky, I. V. Rostov, and M. D. Newton Chem. Phys. 232, 189−199 (1998). A Frequency-Resolved Cavity Model (FRCM) for Treating Equilibrium and Nonequilibrium Solvation Energies 2: Evaluation of Solvent Reorganization Energies. M. D. Newton, M. V. Basilevsky and I. V. Rostov Chem. Phys. 232, 201−210 (1998). A Direct Experimental Comparison of the ElectronTransfer Theories of Marcus and Hush Employing a Mixed-Valence Dinuclear Iron Polypyridyl Complex. C. M. Elliott, D. L. Derr and M. D. Newton J. Am. Chem. Soc. 120, 11714−26 (1998). Control of Electron Transfer Kinetics: Models for Medium Reorganization and Donor/Acceptor Coupling. M. D. Newton Adv. Chem. Phys. 106, 303 (1999). Theory and Computational Modeling: Medium Reorganization and Donor/Acceptor Coupling in Electron Transfer Processes. M. D. Newton, S. W. Feldberg and J. F. Smalley In Interfacial Electrochemistry; Ed., A. Wieckowski.; Marcel Dekker: New York, 1999, p 303. Classical and Quantum Simulation of Electron Transfer Through a Polypeptide. L. W. Ungar, M. D. Newton and G. A. Voth J. Phys. Chem. B 103, 7367−7382 (1999). Advanced Dielectric Continuum Models of Solvation, Their Connection to Microscopic Solvent Models, and Application to Electron Transfer Reactions. I. V. Rostov, M. V. Basilevsky and M. D. Newton; In Simulation and Theory of Electrostatic Interactions in Solution, G. Hummer and L. R. Pratt, Eds.; AIP, 1999, p 331. Modeling Donor/Acceptor Interactions: Combined Roles of Theory and Computation. M. D. Newton Int. J. Quantum Chem. 77, 255−263 (2000). Estimation of Electron Transfer Distances from AM1 Calculations. S. F. Nelson and M. D. Newton J. Phys. Chem. A 104, 10023−31 (2000). An Informative Subtlety of Temperature-Jump or Coulostatic Responses for Surface-Attached Species. J. F. Smalley, M. D. Newton and S. W. Fledberg Electrochem. Commun. 2, 832−38 (2000). Electron Transfer: Theoretical Models and Computational Implementation. M. D. Newton In Electron Transfer in Chemistry, Vol I, V. Balzani, Ed.; WileyVCH Verlag GmbH: Weinhein, Germany, 2001, p 3. Adiabatic Interfacial Electron Transfer over 26 Å through Oligophenylenevinylenes. H. D. Sikes, J.F. Smalley, S. P. Dudek, A. R. Cook, M. D. Newton C. E. D. Chidsey and S. W. Feldberg Science. 291, 1519−23 (2001). Understanding the Optical Band-Shape: Coumarin-153 Steady-State Spectroscopy. D. V. Matyushov and M. D. Newton. J. Phys. Chem. A 105, 8516−32 (2001). Emission State of Tris(8-Quinolinolato)Aluminum and its Related Compounds. A Theoretical Study. M. Sugimoto, S. Sakaki, K. Sakanoue, and M. D. Newton J. Appl. Phys. B90, 6092−97 (2001). 7138

DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139

The Journal of Physical Chemistry B

158. 159. 160.

161.

162.

163.

164.

165.

166.

167. 168.

169.

170.

171.

Special Issue Preface

Models. I. V. Leontyev, M. V. Basilevsky and M. D. Newton Theor. Chem. Acc. 111, 110−121 (2004). Bridge-Mediated Electron Transfer and Multiple Reaction Coordinates. M. D. Newton Israel J. Chem. 44, 83 (2004). Multichromophoric Forster Resonance Energy Transfer. S. Jang, M. D. Newton, and R. J. Silbey Phys. Rev. Lett. 92, 218301 (2004). Interfacial Electron-Transfer Kinetics of Ferrocene through Oligophenyleneethynylene Bridges Attached to Gold Electrodes as Constituents of Self-Assembled Monolayers: Observation of a Non-Monotonic Distance Dependence. John F. Smalley, Sandra B. Sachs, Christopher E. D. Chidsey, Stephen P. Dudek, Hadley D. Sikes, Stephen E. Creager, C. J. Yu, Stephen W. Feldberg, and Marshall D. Newton J. Am. Chem. Soc. 126, 14620−14630 (2004). Theory of Torsional Non-Condon Electron Transfer: A Generalized Spin-Boson Hamiltonian and Its NonAdiabatic Limit Solution. Seogjoo Jang and Marshall D. Newton J. Chem. Phys. 122, 24501 (2005). A Theoretical Investigation of Charge Transfer in Several Substituted Acridinium Ions. J. Lappe, Robert J. Cave, M. D. Newton, and I.V. Rostov J. Phys. Chem. B 109, 6610− 6619 (2005). Intermolecular Electron Transfer Mechanisms via Quantitative Stuctures and Ion-Pair Equilibria for SelfExchange of Anionic (Dinitrobenzenide) Donors. S. V. Rosokha, J. M. Lu, M. D. Newton, and J. K. Kochi J. Am. Chem. Soc. 127, 7411−7420 (2005). Electronic Structure of S−C6H5 Self-Assembled Monolayers on Cu(111) and Au(111) Substrates. V. Perebeinos and M. D. Newton Chem. Phys. 319, 159− 166 (2005). Single Molecule Electron Transfer Dynamics in Complex Environments: A Model Simulation Study. Vitor B. P. Leite, Luciana C. P. Alonso, Marshall Newton, and Jin Wang Phys. Rev. Lett. 95, 11830 (2005). Mulliken-Hush Elucidation of the Encounter (Precursor) Complex in Intermolecular Electron Transfer via Self− Exchange of Tetracyanoethylene Anion-Radical. S. V. Rosokha, M. D. Newton, M. Head-Gordon, and J. K. Kochi Chem. Phys. 324, 117−128 (2006). Activation Entropy of Electron Transfer Reactions. A. Milischuk, D. V. Matyushov, and M. D. Newton Chem. Phys. 324, 172−194 (2006). A Simple Comparison of Interfacial Electron-Transfer Rates for Surface-Attached and Bulk Solution-Dissolved Redox Moieties. John F. Smalley, Marshall D. Newton, Stephen W. Feldberg J. Electroanal.Chem. 589, 1−6 (2006). A Parameter Free Quantum Mechanical Approach to the Calculation of Electron Transfer Rates for Large Systems in Solution. Roberto Improta, Vincenzo Barone, and Marshall D. Newton ChemPhysChem 7, 1211−1214 (2006). Dissociative Electron Transfer in Donor-Peptide-Acceptor Systems: Results for Kinetic Parameters from a Density Functional/Polarizable Continuum Model. Vincenzo Barone, Marshall D. Newton, and Roberto Improta J. Phys. Chem. B 110, 12632−12639 (2006). Closed Form Expressions of Quantum Electron Transfer Rates Based on the Stationary Phase Approximation.

172.

173.

174.

175.

176.

177.

178.

179.

180.

7139

Seogjoo Jang and Marshall D. Newton J. Phys. Chem. B 110, 18996−19003 (2006). Interfacial Bridge-Mediated Electron Transfer: Mechanistic Analysis Based on Electrochemical Kinetics and Theoretical Modeling. Marshall D. Newton and John F. Smalley Phys. Chem. Chem. Phys. 9, 555−572 (2007). Multichromophoric Førster Resonance Energy Transfer from B800 to B850 in the Light Harvesting Complex 2: Evidence for Subtle Energetic Optimization by Purple Bacteria. Seogjoo Jang, Marshall D. Newton, and Robert J. Silbey J. Phys. Chem. B 111, 6807−6814 (2007). The Role of Dielectric Continuum Models in Electron Transfer: Theoretical and Computational Aspects. Marshall Newton In “Continuum Solvation Models in Chemical Physics: From Theory to Applications”,B. Mennucci and R. Cammi, Eds.; John Wiley & Sons, Ltd., New York (2007), p 389. First-principles Studies on the Structural and Electronic Properties of (Ga1−xZnx)(N1−xOx) Solid Solution Photocatalyst. Linlin Zhao, James T. Muckerman, and Marshall D. Newton J. Phys. Chem C 112, 3439−3446 (2008). Structure, Energetics and Electronic Coupling in the TCNE/TCNE−· Encounter Complex in Solution: A Polarizable Continuum Study. Qian Wang and M. D. Newton J. Phys. Chem. B 112, 568−576 (2008). The Spectral Elucidation versus the X-ray Structure of the Critical Precursor Complex in Bimolecular Electron Transfers. Application of Theoretical/Experimental Solvent Probes to Ion-Radical (Redox) Dyads. Sergiy V. Rosokha, Marshall D. Newton, Almaz S. Jalilov and Jay K. Kochi J. Am. Chem. Soc. 130, 1944−1952 (2008). Reduced Electronic Spaces for Modeling Donor/Acceptor Interactions. Robert J. Cave, Stephen T. Edwards, and J. Andrew Kouzelos, and Marshall D. Newton J. Phys. Chem. B 114, 14631−14641 (2010). Characterizing the Locality of Diabatic States for Electronic Excitation Transfer By Decomposing the Diabatic Coupling. Josh Vura-Weis, Marshall Newton, Mike Wasielewski and Joseph Subotnik J. Phys. Chem. C 114, 20449−20460 (2010). Multi-State Treatments of the Electronic Coupling in Donor-Bridge-Acceptor Systems: Insights and Caveats from a Simple Model. Robert J. Cave and Marshall D. Newton J. Phys. Chem A 118, 7221−7234 (2014).

DOI: 10.1021/jp511316g J. Phys. Chem. B 2015, 119, 7134−7139