T H E J O U R N A L OF I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y
May, I 9 I 3
and reliable vital statistics of those communities having impure water supplies as well as those having pure supplies. ( 2 ) A clear definition of what really constitutes a pure drinking water. This means that much light is needed upon the relative numbers and kinds of bacteria, the nature and amount of the organic and inorganic matter which may be present in public r a t e r supplies, and their significance in the causation of disease. I t necessitates an examination of the available bacteriological and chemical data of public water supplies, and a classification of the same in relation to vital statistics. (3) The selection of the maximum limits for the numbers and kinds of bacteria in a drinking water, and the permissible amounts of organic and inorganic matter which such a water m a y contain. ~
~ _ _
STANDARDS FOR SEWAGE AND SEWAGE EFFLUENTS The Eighth Report of the Royal Commission on Sewage Disposal (Suture, 91, 61) deals with the important question of standards and tests for sewage and sewage effluents discharging into rivers and streams. The Commissioners had earlier indicated the desirability of fixing a legal standard for sewage effluents, and proposed that such a standard should be based upon ( I ) suspended solids and ( 2 ) absorption of dissolved oxygen. Their contention then was that the two tests should be taken separately, and they suggested three parts per IOO,OOO as the limit of suspended solids, and that the effluent after removal of its suspended solids should not absorb more than 0.5, I and 1 . 5 parts dissolved oxygen pel- IOO,OOO after one day’s, two days’, and five days’ incubation a t 6 5 O F., respectively. In their present Report the Commissioners recognize the difficulty of the separation of the suspended solids, and finally recommend the following as the normal legal standard, namely: 3 parts per 100,ooo of suspended solids, and, including its suspended solids, the effluent shall not absorb more than 2 parts dissolved oxygen per IOO,OOO after five days’ incubation a t 6 5 O F. I n the opinion of the Commissioners, the legal standard should be a variable one, dependent upon the conditions a t the outfall, i. e . , the condition of the river or stream receiving the effluent and the relation of the volume of sewage effluent to river water. The Commissioners state that their experience leads them to think that if the dilution while not falling below 150 volumes does not exceed 300 volumes, the dissolved oxygen test may be omitted and the standard for suspended solids fixed a t 6 parts per IOO,OOO; and if the dilution while not falling below 300 volumes does not exceed 500, the standard for suspended solids may be further relaxed to 15 parts per IOO,OOO. With a dilution of more than joo volumes all tests might be dispensed with and crude sewage discharged, subject to such conditions as to provision of screens or detritus tanks as might appear necessary to the central authority.
___
“HARDENED” OILS A . W. Knapp (Analyst, 38, No. 444, 1 0 2 ) described three fats which were obtained from a clear cottonseed oil. They were hardened by hydrogen with the aid of difierent catalysts, and gave the following results upon examination: Percentage of catalyst CATALYST in oil h-ickel. , . . . . . . . 1.00 Platinum.. . , , 0 . 1 0 Palladium. ., , . 0 . 0 6
. .
Character of product Hard Hard Brittle
Butyrorefraction (corrected t o 40’ C.) 45.7 47.8 45.5
Melting point. C. 49 46 52
The keeping properties of these “hardened” oils were said to be remarkably good. The fats described had been prepared for nearly a year and a half, had often been exposed to damp air, and yet showed no signs of rancidity. The free acidity (0.70 per cent. as oleic acid) had not appreciably changed.
427
Knapp states that hardened oils give soaps which are good in color, but deficient in lathering properties. H e does not consider that any objection will be raised to their admixture with other fats for soap-making. However, he points out that their use in the preparation of edible fats is more open to question, and that in the interests of public health, certain investigations should first be made to show: ( I ) That no harmful substances are procluced by the chemical changes in the fatty glycerides and unsaponifiable matter. (2)*That a high percentage of tristearin does not render the fat indigestible. ( 3 ) That traces of nickel, from I to I O parts per million, are not harmful. H e considers that there is perhaps little to be feared from objectionable substances in the hydrogen used, as the majority of such substances would poison the catalyst. ___-
WATER GAS TAR AS A WOOD PRESERVATIVE *4t the Fifth Annual Meeting of the Indiana Gas Association, Indianapolis, Ind., March 1 2 , 1913, F. C. Mathers presented the results of some experiments on the preservation of timber with water gas tar. The United States Forest Service has conducted many experiments on the creosoting of wood, but none of the Bulletins issued gives results with water gas tar, although, Mathers stated, fence posts, etc., could be treated with this tar which costs only about 3 cents per gallon as compared to 15 cents per gallon for coal tar creosote. Mathers found that water gas tar would re?der timber water-proof, although it was less strongly antiseptic than coal t a r creosote; and timber exposed t o the weather became very much more resistant to decay after receiving treatment with water gas tar. KINDOF
WOOD
TREATED
Per cent. of tar absorbed
Sycamore(a) . . . . . . . . . . . Black walnut(b). . . . , . Sugar m a p l e . , ..
. . . .. . ...
Gallons of tar for one post
Cost of tar per post in cents
65
‘1.0
168
3 .6 I .9
12 11 6
.). . 2
13
:? , 4 ..
7 ..
39
( a ) The best wood to treat, owing to the reads absorption. ( b ) Partly decayed, hence large absorption.
The table above gives the percentage by weight of tar absorbed, the number of gallons required for a post 7 feet 6 inches long and 4 inches in diameter a t the two ends, and the value of the tar in each post, assuming the cost of the tar to be 3 cents per gallon. One gallon of water gas tar was found to weigh 8.9 pounds. (.kt the Fourteenth Annual Convention of the American Railway Engineering Association, Chicago, March 18, 1913, a committee reported t h a t the use of water gas creosote x a s limited but increasing, and t h a t there was a growing sentiment in favor of mixing this with coal tar creosote. The principal objection to the use of water gas creosote seems to have been its unauthorized use in the adulteration of coal t a r creosote.-W. A. H.)
PULP AND OTHER PRODUCTS FROM WASTE RESINOUS WOODS I t has been demonstrated, both in the laboratory and in the mill, that paper of good quality can be made from pine wood (Bureau of Chemistry, Circular 41 and Bulletin 144). Veitch and Merrill (Bureau of Chemistry, Bulletin 159, 1913) now consider that it is feasible to combine three well developed chemical industries-paper making, wood distillation (in a modified form), and the manufacture of rosin oils-and thus to obtain from a single raw material, waste resinous wood, practically all the valuable constituents. The country’s sources of paper, turpentine, rosin oils, and wood alcohol can be greatly augmented and the injury to forests by fire and insects materially reduced by the utilization of this wood. The approximate yield for 4)000 pounds of cord air-dry wood
428
T H E J O U R N A L OF I N D U S T R I A L A N D E N G I N E E R I N G C H E M I S T R Y
(3,200pounds moisture-free wood) of the valuable products and the value of each is thus given by Veitch and Merrill: Refined wood turpentine, 6 gallons, at $0.40.. . . . . . . . . . . Pine oils, 7 gallons, at $0.35.. . . . . . . . . . . . . . . . . . . . . . . . Rosin spirits, 1 1 gallons, at $0.20.. . . . . . . . . . . . . . . . . . . . Rosin oils, 40 gallons, at $0.35.. . . . . . . . . . . . . . . . . . . . . . . Phenoloids, 12 gallons, at $0.06... . . . . . . . . . . . . . . . . . . Crude methyl alcohol, 3.5 gallons, at $0.35. . . . . . . . . . . . Unbleached pulp, 1,440 pounds, at $0.0175.. . . . . . . . . . . . Total.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vol. 5 , No. 5
In this case-at Fontenoy de Comte-the tar was spread so close to the trees that it prevented the water from getting to the roots.
2.40
2.45 2 .20 14.00 0.72 1.20 25.20 4 8 . *7
Thus products worth $48.17are made from wood which costs from $2.00 to $4.00 delivered a t the works. The values given are approximate wholesale values a t the plant, and are said to hold, approximately, for good average lightwood, except as to refined wood turpentine, which should run higher than reported. All the products are said to be of good quality, the pulp making a good strong brown wrapping paper, quite similar to that now selling a t from 3 to 4 cents per pound. It is believed that such a combination as that mentioned offers the most p ofitable use of refuse wood and stumps on the cutover pine lands of the South and West.
PRESSURE FILTERS FOR CLARIFYING TRADE WASTES The clarification of the liquid wastes from a glue factory by means of pressure filters has been tried out by a Gloucester, Mass., firm, and a plant with a capacity of one million gallons per day has been installed a t its works. The wastes are pumped from a basin by a centrifugal pump and passed through pressure filters until the layer of waste which is intercepted by the top surface of the sand has attained a considerable thickness. The water is then drawn off and compressed air is applied to dry the sludge layer and convert it into a flexible cake, which is rolled up and removed through manholes in the filter. After passing through presses, the sludge cake may, it is claimed, be used as a fertilizer. The pressure filters are cylindrical steel drums containing a bottom layer of pebbles and a filling, 30 inches deep, of coarse quartz sand. In drying the sludge layer, in which operation air under pressure is blown down through the filtering medium, forcing the water out, about one hour is required. The filters are operated continuously for 60 working hours at a time, and are then opened up and the detritus is removed. It is needless to remark that the time of the drying process is dependent upon the blower.
THE EFFECTS OF TAR ROADS UPON VEGETATION AND ANIMALS It has been stated that the dust from tarred roads has appeared to be more irritating to the eyes than that from untarred THE HAMMOND WATER METER roads, and in 1910an investigation of this matter was conducted The Hammond meter, designed for use under the exacting in France by Truc and Fleig (Compt. rend., 151,593). I t was ascertained that dust from untarred roads had only the slightest effect when sprinkled on the eyes of animals, and that dust from old tarred roads, from which the coating had more or less disappeared, gave effects little different. However, dust from old tarred roads with a well preserved surface occasioned conjunctivitis and other lesions, while dust artificially produced from such roads gave still more severe effects. Notwithstanding the fact that bituminous vapors have only a slight action upon the eye (Comfit. rend., 151, 769), the investigations of Truc and Fleig seemed to show that the results corresponded to the proportion of tar, as well as t o the mechanical irritation produced by the dust and to the germs present. Concerning these observations, Baskerville has remarked (N. Y . Med. I., November 30, 1912) that while bituminous dust may rapidly produce various lesions in the eyes, and may leave persistent leucoma, the condition of the eye and the action of sunlight are both predisposing causes. H e noted that the experiments which have been conducted on these points do not, moreover, constitute a n argument against the tarring of roads, for, when tarring is well done, it diminishes the chance of injury to the eyes. I n 1911,Mirande (Comfit. rend., 152, 204) investigated the many substances prepared from coal tar used for preserving wood, destroying moss on tree trunks, as insecticides, etc. He was led to conclude that these all contained creosote and gave off vapors which were destructive to leaves, flowers, shoots, etc., in the same way as coal tar vapors, blackening them and causing death by plasmolysis. Quite recently the statement that the use of tar on roads has an injurious effect on the surrounding trees and vegetation, for which Mirande is held responsible, has been pronounced to be unfounded by German experts. H. F. Fischer has been investigating the matter, and he plans to present his results before the coming International Road Congress, which is to convene in London in June, 1913. I t may also be noted that the conclusions of Mirande respecting tarred roads have been refuted by several French engineers (Ckem. World, 2, IO^), who point out that a large street in Bordeaux has been treated with tar for some years without the slightest damage to the trees bordering the street, and that other towns have also practised tarring without injurious results, though one example is on recQrd where the trees wound a square were destroyed by tar. conditions found in the modern power station, is said to be