V O L U M E 27, NO. 3, M A R C H 1 9 5 5 coefficient of electrical conductance in acetic acid. FVater from a constant temperature bath circulating through the cell jacket permitted temperature control to Zt0.2" C. of the desired temperature. A Leeds & Northrup conductance bridge (catalog No. 4866) was used to determine the conductance values. I n order to increase the sensitivity of the bridge a t high resistances a cathode ray oscilloscope (Type 304-H, Allen B. Dumont Laboratories) was connected in parallel with the null point galvanometer of the bridge. The null point of the bridge was determined from the resulting screen pattern of the oscilloscope. Chemicals and Reagents. ANHYDROUS ACETIC ACID. Reagent grade acetic acid was rendered anhydrous by refluxing over boron acetate ( 4 ) for 4 hours and subsequently distilling the anhydrous acid. The water content of acetic acid prepared by this method vias less than 0.027, by the Karl Fischer method. STASDARD SULFURIC ACID. A standard solution of sulfuric acid in anhydrous acetic acid was prepared by diluting absolute sulfuric acid (5)Tyith acetic acid. The molarity of the acid solution was determined by barium sulfate precipitation. STAXDARD LITHIUM,SODIUM, 4 N D POT.-ISSIC.\r ACETATE. ACcurately weighed quantities of these reagent grade salts previously dried overnight in a vacuum desiccator were dissolved in anhydrous acetic acid and diluted to volume. STASD.4RD TRIAVYL OYICM ACET-ITE.Commercial triamylamine was purified by distilling several times under reduced pressure, rejecting the first and last 20% of the distillates. Accurately Feighed quantities of the amine viere dissolved in anhydrous acetic acid and diluted to volume. The molarity of the resulting solution &-as checked by titrating with standard perchloric acid in acetic acid, using quinaldine red as the indicator. It was noted that acetic acid solutions of the triamylamine used developed a deep red color upon standing for several days. STASD -IRD HYDROCHLORIC ACID. Anhydrous hydrochlorir arid A as passed into cool anh>-drousacetic acid until fairly satu-
411
rated. The resulting solution was diluted with acetic acid and the molarity was determined by silver chloride precipitation. Frequent restandardization of this solution was found necessary owing to the high volatility of hydrochloric acid in acetic acid. Procedure. Accurately measured quantities of previously standardized acids were pipetted into the conductance cell and diluted to a volume of 100 ml. with anhydrous acetic acid. The solution was stirred until it had attained the equilibrium temperature of the thermostated vessel. Small increments of standardized base were added and the solution was stirred for about 30 seconds. The conductance reading was taken nrhen it became constant after stirring had stopped. ACKNOWLEDGMENT
This study was supported in part by the research committee of the Graduate School from funds supplied by the Wisconsin Alumni Research Foundation. REFERENCES
Eichelberger, W.C.. and La Mer, V. K., J . Am. Chem.
Soc., 55,
3633 (1933).
Fuoss, R. II.,and Kraus. C., Ibid., 55, 476, 1019, 2387 (1933). Hall, N. F., and Spengeman, TV. F., Trans. Wisconsin Acad. Sci., 30, 51-6 (1937). Kolthoff, I. XI., and Willman, A , , J . A m . Cheni. Soc.. 56, 1007 (1934).
Kunzler, J. E., ASAL.CHEM.,25,93-7 (1953). R E C E I V EJune D 9, 1954. Accepted November 18, 1954. Presented before the Division of Analytical Chemistry at the 126th Meeting of the . ~ M E R I C A X C H E M I C ASOCIETY, L h'ew York, September 1954.
Purification, Purity, and Freezing Points of Sixty-four American Petroleum Institute Standard and Research Hydrocarbons A N T O N 1. STREIFF, A U R A R. H U L M E , P H Y L L I S A. C O W I E , N E D C. K R O U S K O P , and FREDERICK D. R O S S l N l Carnegie lnstitute of Technology, Pittsburgh, f a .
The purification and determination of freezing point and purity are described for 64 hydrocarbons of the American Petroleum Institute Standard and Research series, including 11 paraffins, 3 alkyl cyclopropanes, 1 alkyl cyclopentane, 4 alkyl cyclohexanes, 24 monoolefins, 12 alkyl benzenes, 3 dicycloparaffins,3 dinuclear aromatics, 1 cycloparaffin-aromatic, and 2 olefin-cycloparaffins. Values of freezing points and cryoscopic constants are reported.
T
HE investigation reported is a continuation of the work of producing highly purified hydrocarbons of the API Standard and Research series ( 2 , 5-9). This paper describes the purification and determination of purity and freezing points of 61 hydrocarbons, which include 11 paraffins, 3 alkylcyclopropanes, 1 alkyl cyclopentane, 4 alkyl cyclohexanes, 24 mono-olefins, 12 alkyl benzenes, 3 dicycloparaffins, 3 dinuclear aromatics, 1 cycloparaffin-aromatic, and 2 olefin-cycloparaffin hydrocarbons. The final lots of material labeled -4PI Standard are sealed in vacuum in glass ampoules and made available as -4PI Standard samples of hydrocarbons, by the Carnegie Institute of Technology. (Twenty-seven of the Standard hydrocarbons are also available from the National Bureau of Standards, Washington 25, D.C.) T h e material labeled B P I Research is made available in appropriate small lots through the American Petroleum Institute Research Project 44 for loan to qualified investigators for the measurement of needed physical, thermodynamic, and spectral properties. Table I gives the names of the 64 compounds, the laboratories providing the starting material, details concerning the first and
succeeding distillations or other methods of purification, the character of the plot of the freezing point of the hydrocarbon part of the distillate as a function of its volume, and the volumes of the final lots of API Standard and Research material. The procedures followed in the process of purification and determination of purity were the same as those described in previous papers (3,5-9). Details of the distillation apparatus and operations also have been described ( 4 , IO). Figures 1, 2, and 3 show graphically the results of some typical distillations. Figures 1, 2, and 3 represent the cases where the purest material is, respectively, largely in the forepart of the distillation, in the middle of the distillation, and in the after part of the distillation. I n each figure plots are given for refractive index, boiling point, freezing point, and purity, as a function of the volume of the hydrocarbon part of the distillate. As emphasized in the previous reports, the blending of fractions of distillate for the preparation of material of the highest purity can be done safely only on the basis of the freezing points. Table I1 gives the following information for the compounds measured: the kind of time-temperature curves, whether freezing or melting, used to determine the freezing point; the freezing point of the actual sample; the calculated value of the freezing point for zero impurity; the value of the cryoscopic eonstant, determined from the lowering of the freezing point on the addition of a known amount of a suitable impurity ( 3 , 4 ) ;and the resulting calculated amount of impurity in the -4PI Standard and Research materials. ACKNOWLEDGMENT
Grateful acknowledgment is made to the organizations mentioned in Table I for their contributions of starting materials.
ANALYTICAL CHEMISTRY
412
Table I.
Compound 2,Z-Dimethylheptane 3,3,5-Trimethylheptane n-Undecane
2-Methyldecane n-Dodecane n-Tridecane n-Tetradecane n-Pentadecane n-Hexadecane n-Heptadecane n-Octadecane 1,cis-Z-Dimethylcyclopropane 1,trans-%Dimethylcyclopropane 1 , l 2 2-Tetrarkkhylcyclcpropane n-Decylcyclopentane 1-Me thvl-cis-4isopr6pylcyclchexane
l-Methyl-trans-4isopropylcyclchexane
Information on Purification of 64 API Standard and API Research Hydrocarbons
Laboratory@ Hydrocarbon Charged for Providing Distillation Starting Volume, Purity. Material liters mole % 1.84 APIRP45 .. 4.00Q KBS Auto 4.66 3.65 Seo. 2.54 85.4 0.2 APIRP6 5.74 3.45 01.7 ' 2 0 . 4 2.56 0.20h 86.4 f 0 . 2 1,108 83.7 f 0 . 2 99.82 f O . 0 8 3.003 APIRP45 6.003 APIRPU 5.46m 9 9 . 7 8 ' 2 0 . 0 3 1.671' 99.91 f 0.03 99.87f0.06 1.95 APIRP42 93.4 f O . 2 10.11 APIRP61 99.58f0.10 3.80 99.89 f 0 . 0 5 APIRP42 2.20 90.2 f 0 . 4 9.86 APIRPBZ 99.82 3Z0.07 3.33 99.84 3Z0.05 APIRP42 1.54 98.60 0.08 5.00 APIRPBZ 2.03 99.90 z t 0 . 0 8 99.5 f O . l 2.69 APIRP45 1.00 0.17 96.0 ' % 0.3 2.70 APIRP45
'g
*
...
60
200 200 200 130 200
Urea i
..
...
...
...
Reg. Reg. Reg. Azeo. Urea i Reg. Urea i Urea i Reg. Urea i Urea i Reg. Urea i Reg. Reg. Azeo. Reg.
.. .. ..
6.0 8.0 5.0 5.5
576 792 1176 936
6.21
1800
.. M
1200
M
2.0
2472
A
2.5 4.0 4.0
ii
2.5
840 360 168 8R4
4.5
672
M
1065
A
1070
368
.. ..
... ... ... ... ... 880 ...
...
...
... ...
I E?
310
Kind0 Reg. Reg. Reg. Azeo. Reg. Reg. Azeo.
1.95
APIRP45
4.03
99.75 f O . 1 8
Reg.
APIRP45
5,340 0.960
*.
Reg. Azeo. Azeo. Reg. Azeo. Azeo. Reg. Azeo. Azeo. Reg. Aseo. Reg. Azeo.
.. ..
1.88~
APIRP45
2-Cyclohexyl-Pmethylbutane (tert-pentylcyclohexane) n-Decylcyclohexane 2,3-Dimethyl1-butene
APIRP45
2,3-Dimethyl%butene trans-2-Heptene trans-3-Heptene 2-Methyl-1-hexene 4-Methyl-1-hexene
General Motors APIRP45 APIRP45 APIRP45 APIRP45
3.37P 1.17q 1.457 5.340 0.960 2.671 2.06 0.45 4.461 2.431
... ... ...
99.78$0.15
99.60';
... ... ...
0.04
Reg. Xt1zn.u Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Reg. Azeo. Reg. Azeo. Reg. Reg. Azeo. Reg. Reg. Azeo. Reg. Reg. Reg. Azeo. Azeo. Reg.
3-Ethyl-2-pentene 2,3-Dimethyl2-pentene
APIRP45 APIRP45
2,4-Dimethyl2-pentene 4,4-Dimethylcis-2-pentene 2.3-Dimethyl2-hexene
APIRP45 APIRP45
2.76
98.98 f 0.15
Reg.
APIRP45
4.37 2.67 1.88 1.65 3.37 1.94 3.68 2.00 11.20 4.00 3.87m 2.063 5.401 2.97m 0.81 0.62
98.3 f 0 . 3 98.7 f 0 . 2 99.65 i O . 1 2
Reg. Azeo. Reg. Azeo. Reg. Reg. Reg. Reg. Reg. Reg. Urea i Azeo. Reg. Urea i Aseo. Ureai
5-Methyl- 1-hexene 2-Methyl-2-hexene 3-Methyl-cie3-hexene 3-Methyl-trona3-hexene 3-Ethyl-1-pentene 2,3-Dimethyl1-pentene
2,2-Dimethyl-cis3-hexene 2,2-Dimethyltrans-3-hexene 1-Dodecene
General Motors
APIRP45 APIRP45 APIRP46 APIRP45 BPIRP45 APIRP45
APIRP45 APIRP45 APIRP61
1-Tridecene 1-Tetradecene
APIRP42 APIRP6i
1-Pentadecene
APIRP42
97.90 f 0 . 1 8 98.73 f 0 . 1 4
Azeo.
3.99 2.16 6.105 6.29m 3.30 5.83 3.98 4.40f 3.741 3.66 5.801 3.83% 3.511 4.74 5.26 3.47, 3.20, 3,45m 3.503 3.33 2.26 1.65 3.200 2.75~ 2.21 4.401 4.23 2.90 2.10 3.70
APIRP45
... ... ... 0 9 . 2 5 % 0.06 99.1 f O . 2
...
9 9 . 6 8 % 0.16
'*o.z ... ... ... 99.61 2 0.12 ... 99.5
98.9 'g0 . 3 9 6 . 3 3Z 0 . 4 99.64
0.20
'g
98.4 0.5 9 9 . 2 4 A 0.40 99.55 f 0 . 3 0
...
99.77'20.16
99.47*0.10 99.60
% 0.09
...
99.4 ' Z o . 1
...
Volume of Selected Sample API API StandRedard, aearch, ml. ml. 100 350 240 700
Rate of collection of distillate, ml./hr 4.5 4.5 4.5 4.5 4.0 8.5 4.5
99.87 f 0.05
APIRP45
Distillation b Amt. of Number hydro- of equivcarbon alent in the theoretiazeo- cal plates in the tropic distilldistillates, % ing by vol. columnb .. 200
Azeotropeforming substanced
...
.. .. .. ..
Bu Cell.
...
77
Me 'Carb.
Me'Carb.
... ... ... ...
...
...
... ...
48
..
.. .. .. .. .. .. .. .. ..
200
200 125 130 130
...
125
...
iii
... . .
8.0
... ...
...
...
...
130
...
Location Time of of purest distil- material lation, in dishours tillate)' hl 480 M 1032 M 1104 hl 1104 M 840 A 744 F 1856
. . ... ...
... ... ...
,..
..
950
150
A M A
1240k
RZ
..
200
1.26
3288
200 200 200 135 200 200 200 200 200 200 200 200 200
4.5 3.26 4.5 4.0 5.0
1368 696 1008 792 824
4.5 3,26 4.5 4.26 2.25 4.75 5.0
1368 69 6 1224 720 1032 1224
1.26
2832
M
4.5 4.5 4.5 8.5 4 .5 7.0 4.0 7.0 4.5 4.5 4.25
1512 1584 1152 840 1152 1200 768 648 1344 1032 1176 1320 924 1008 696 984 528
M M M M A M M
55 55
..
..
Bu Cell. Bu Cell.
59 59
Bu CLll.
59
Me 'Carb.
60
...
.. .. .. .. .. .. .. ..
... ... ... ...
..
..
..
..
200
.. .. ..
..
..
Ethanol
57
Ethanol
60
..
Ethanol
65
Ethanol
65
...
...
Ethanol Methanol
...
135 200 200 130 200 200 200 200 200 200 200 200 200 200 200
.. ..
...
200
..
.. ..
.. ..
56 50
zoo
200 200 200 200 200
zoo
200 200 200
...
4.0
7.0 7.0 7.0 7.0 7.0 B .is 4.5 8.0 4.0
528
528
...
912 R88 ,328
F
F
M
A A A A
.. ..
M
M F M
M
..
738
i i i ok ...
1050
...
...
1080
...
1275 11800 lOlOk
1085
M M
1050
M M A M
1085
M
..... .. ..
M
A M
A
...
llOOk
1105
...
ioio
1130k
500 350
...
450
'lie 70
148
320
... ... .
.
I
...
205
... ...
300k
...
. 350 ... ... 640 ...
380 3ROw 330k 330
...
360 350k 360
...
370
...
300 375k
...
... ...
...
,..
7.2a 7.0 7.0 7.0 4.0
A
A
1000 1040
M A A
400 455
...
... ...
M .4 M
,. O
575k 350
...
...
...
980 648 4.56 788 720 1008 672 1008
1."
...
pq. 1 ...
M
M
420k
...
1050 1080k
340 350k
...
2R5 350
..
200 200
.. ..
200
5.0
696
M
1040
240
7.0 R.0
960
M
., .. .. ...
... ,.. ...
..
200 200 200 200 200 200 200 200 12.5 200
Me 'Cell.
70
Me 'Cell.
ib ..
..
..
... ... ... Me'Carb. ...
.. .. 30 ..
130 130
Bu Carb.
13
130
...
7.5
...
2350 900
200
Bu Cell. Bu Cell.
1130
.. ..
70
55 55
ZlriOk
1320 1430
Ethanol
Bu Cell. Bu Cell.
.,.
.. ..
..
..
375
...
91
...
...
, . .
Meihanol
,
...
...
200 200 200 150
I
...
1070
..
..
..
..
...
...
4.0 7.0 7.0 4.5 A.0 8.0
8.5 3.5
...
8.5
2.0
...
4.0 ...
864 624 504
M A M M
...
,..
600 888 768 1776 1368
1010
280
M
1030
'316
600
...
M
M M M
.. F
852 2904
M
1872
M
...
...
..
950
...
iooo
665k
1000 , . .
360
250
... ...
32.5 212k
...
300
. . I
127
V O L U M E 27, NO. 3, M A R C H 1 9 5 5 Table I.
Compound 1-Hexadecene
Information on Purification of 64 API Standard and API Research Hydrocarbons (Continued)
Laboratorya Providing Starting Material APIRPU
1-hlethyl-2-isopropylbenzene 1-Methyl-3-isopropylbenzene 1-Methyl-4-isopropylbenzene
A P I R P 45
1&Dimethyl5-ethylbenzene 1,2,3,5-Tetramethylbenzene 1,2,4,5-Tetramethylbenzene 2-Phenyl-2-methylbutane (tertpentylbenzene) l-Methyl-3-tei-tbutylbenzene 1-Methyl-4-tertbutylbenzene 1,4-Diisopropylbenzene 1,3,5-Triethylbenzene n-Decylbenzene
NACA
cis-Hexahydroindan (cishydrindan) trans-Hexahydroindan (transhydrindan) Cyclopentylcyclopentane Naphthalene
I-Methylnaphthalene (A)ab
1-Methylnaphthalene (B)0 b 2-Methylnaphthalene 1.2,3,4-Tetrahydronaphthalene EthenylcycloDentane fvinvliyclopentanej Ethenylcyclohexane (vinylcyclohexane)
413
Hydrocarbon Charged for Distillation Volume, Purity, liters mole % 13.00 4.42 97.1 '1'0.2 2.95i 99.5 f O . 1
Kind C Reg. Xt1zn.u Reg.
4.40~ 5.50m 1.66 2.079 1.77m 9 9 . 5 4 . g 0 . 1 0 2.40 99.58 1 0 . 1 0
Azeo. Azeo.
2.48 1.36 5.40i 4 45m 4.20i 2.50i
99.27 f 0.06 99.87f 0.03
Reg. Azeo. Reg. Xt1rn.u Reg. Azeo.
NACA
3.70
99.26 1 0 . 0 8
NACA
3.44
Y9.80 f 0 . 0 3
Atlantic NACA APIRP4.5
APIRPG Humble APIRP45
... ... ...
Reg. Reg. Azeo.
Azeo.
Distillation b Amt. of Number hydroof equivcarbon alent in the theoretical plates azeoin the tropic distillAzeotropedistiling forming late', % column6 substanced by vol. 125 ..
.. ..
..
..
Me 'Carb. Me Carb. Me Carb. Me Carb.
78 78 78 70
Me 'Carb.
52
,..
.. .. .. ..
...
200
Rate of collection of distillate, ml./hr. 3.5
...
4.2s
Volume of ~i~~ Location Selected Sample of of purest API API distil- material StandRelation. in disard, search, hours tillate/ ml. ml. M ... ... 3432 ... .. 1100 1170 984 A 380k 115%
F
130 200 135 130 200 200
8.5 4.5 5.0 8.5 4.5 4.5
600 1368 528 408 672 772
135 200 125
4.5 4.5 12.5
648 720 672
M
456 936
...
...
...
M
M
F
...
1320
... ...
A M
1000 1090
A A
'740
.. M
1000
...
... 330 ... ... 225 280
...
160
... 490 ...
60
125 200
12.5 4.2s
nr
iiiok
Reg.
..
200
4.5
888
F
1075
266
Reg.
..
200
4.5
888
M
1135
355
Me 'Carb.
360b
Atlantic
1.00
99.86 f O . 0 5
Azeo.
Me Carb.
42
200
4.0
720
M
630
150
NACA
3.64
99.88f0.06
Reg.
...
..
130
4.5
1032
M
1980
500
APIRP45
3 36 99.64 * 0 . 1 6 2.50 99.70 f 0.16 5.00 3.67@ 9 9 . 5 8 f 0.06 2.70m 99.2 ' $ 0.2 0.70 99.2 * 0 . 2 ) 4.00g 99.61f0.14 3.35 99.76 1 0 . 0 4 5.50
Reg. Xt1zn.u Reg. Reg. Aseo. Reg. Azeo. Reg.
...
.. ..
200
1.2a
2640
M
502 888 1272 936 796 1320
M A
... ...
...
12.5 4.5 4.5 7.5 7.0 4.5
9.00 6.40 5.40
9 9 . 8 0 1 0.04 99.87 f 0 . 0 4 99.92 f 0 . 0 3
Xt1zn.u Xt1zn.u Reg.
95.2 96.8 97.8 98.8 98.7
Reg. Xt1zn.u Azeo.
APIRP45 .4PIRP45 APIRP45 Am. Cyanamid APIRP6i
-4PIRP61
13.00 10.10 2.391' 2.36 0.414c 7.50ad 4.22 2.22 18.00 4.70
f0.2 10.1
f O . l
10.1 10.1
4PIRP45
3.92
98.5 ' g 0 . l 99.60 f 0 . 0 6 97.3 f 0 . 2 0.10 99.39 99.73 f 0 . 0 8 96.71 f 0 . 2 0 99.38 1 0 . 0 9 99.87 f 0 . 1 2
.4PIRP4;
4.OGi
99.1
APIRPGI
3.00
,1PIRP61
G.Oij
5.15m
*
+ 0.1
Rpn
... BU ceil.
... Bu Cell.
...
...
Si .. 71 ..
..
..
..
...
,..
125 200 200 200 200 200
...
...
125
...
...
121 A M A
1050 ,..
1000
360 340
...
...
..
...
...
6.0
1224
M
2000
{ 005aO b60.
...
...
..
M
...
...
8.0
1800
4.0 3.0
2160 864
..
206 150
2.5 6.0
1800 1152
A
125 200 130 130 200
6.0 3.0 5.0 4.5 4.0
912 1008 1176 1176 960
M M A
1250 1050
200
7.0
648
M
1100
.. .. ..
48
..
.. ..
..
..
...
295
1175 1200
125
...
...
...
130 200
.
..
300
...
...
24
I
Bu Ca'rb.
AGorp.oc ... Xt1zn.u ... Reg. DPG Azeo. Xt1zn.u ... Reg. ... Reg. , . . Reg. , . . Reg. ... Reg. ... Reg.
..
...
...
...
...
.
I
.
...
...
...
..
... ...
hZ N
...
..
1200
A
875
..
..
M M
...
...
... ... 1475 ...
... ... ... ... ...
250
...
260
I
.
.
... 440 ...
400 350
{;$a
a Abbreviations represent tlie following laboratories: .4PI,RP45, American Petroleum Institute Research Project 45, Ohio State University, Columbus Ohio; APIRP42, American Petroleum Institute Research Project 42, Pennsylvanla State College State College Pa: APIRP6 American Petroleum Institutd Research Project 6, Carnegie Institute of Technology. Pittsburgh, Pa.; Am. Cyanamid 4merican Cyanamid' Co.,' Calco Chkmical Division, Bound Brook, N . J . ; Atlantic, Atlantic Refining Co.. Philadelphia, Pa.; General Motors General Mo&s Corp. Detroit Mich: Humble Humble Oil a n d Refining Co. Houston, Tex.; NACA, National Advisory Committee for Aeronautics, Le&s Flight Propulsion LAboratori, Cleveiand. Ohid; NBS Auto. Sec., Automotivd Section, National Bureau of Standards, Washington. D. C. b See ( 4 ) and (IO) for details Azeo., azeotropic; reg., regular. d Me Carb, methyl Carbitol. diethylene glycol monomethyl ether; Bu Cell, butyl Cellosolve, ethylene glycol monobutyl ether; Me Cell, methyl Cellosolve, ethylene glycol monomethyl ether: Bu Carb, butyl Carbitol, diethylene glycol monobutyl ether: D P G , dipropylene glycol. e Approximate value obtained from actual volume of hydrocarbon recovered by extracting the azeotrope-forming substance with water in separatory funnela. I Designations refer t o general location of purest inaterial in the hydrocarbon part of the distillate as a function of its volume. F , fore or front of the dietillate; M , middle part of the distillate; and 9.after part of the distillate. 9 Second lot of this compound. h Similar t o original material. i Fractionation bv use of solid molecular compounds with urea (4, Chap. 10). ! One of two simllar distillations. k Half of this sample obtained from each of similar distillations. I Obtained by purchase of commercially available material. m Material having substantially the same composition from each of previous distillations. n Total API Standard was 820 ml. Total API Research was 180 ml. o Both cis and trans isomers mere obtained from this material. P Cis concentrate from first distillation. P Cis concentrate from each of two distillations immediately preceding. 7 llaterial having substantially same composition from 2nd, 3rd. and 5th distillations above. B Second lot of trans concentrate, 0.67 liter, plus 2 liters from first distillation. t Total API Standard was 1146 ml u Purification by crystallization with centrifuging. See (4 Chap. 9 ) . Y Part of sample obtained from each distillation. u. Material having substantially the same composition from preceding three distillations. z One third of this sample obtained from one distillation and two thirds from other distillation. Y One of 4 similar distillations. z ( A ) sample (Table 11) ( E ) samDle (Table 1 1 ) . a b Footnote a , Table I1 Preceding distillation, 2 05 liters, was divided into 5 equal charges for fractionation by adsorption (4, Chap. 8). Afaterial having substantially same composition from the preceding 4 steps of purification.
ANALYTICAL CHEMISTRY
414 Table 11.
Compound4 2,2-Dimethylheptane 3,3,5-Trimethylheptane n-Undecane 2-Methyldecane n-Dodecane n-Tridecane n-Tetradecane n-Pentadecane n-Hexadecane n-Heptadecane n-Octadecane 1,cis-Z-Dimethylcyclopropane 1,trans-2-Dimethylcyclopropane 1,l,Z,Z-Tetramethylcyclopropane n-Decylcyclopentane l-~lethyl-cis-4-isopropylcyclohexane 1-hlethyl-trans-4-isogropylcyclohexane 2-C yclohexyl-2-methylbutane (tert-pentylcyclohexane) 11-Decylcyclohexane 2,3-Dimethyl-l-butene 2,3-Dimethyl-2-butene trans-2-Heptene trans-3-Heptene 2-Methyl- 1-hesene 4-Methyl- 1-hexene 5-Methyl-1-hexene 2-Methyl-2-hexene 3-Methyl-cis-3-hexene 3-Methyl-trans-3-hexene 3-Ethyl-1-pentene 2,3-Dimethyl-l-pentene 3-Ethyl-2-pentene 2,3-Dimethyl-Z-pentene 2,4-Dimethyl-Z-pentene 4,4-Dimethyl-eis-Z-pentene 2,3-Dimethyl-Z-hexene 2,2-Dimethyl-cis-3- hexene 2,2-Dimethyl-trans-3-liexene 1-Dodecene 1-Tridecene I-Tetradecene 1-Pentadecene 1-Hexadecene 1-Methyl-2-isopropylbenzenef
Freezing Points and Purity of 64 APJ Standard and .4PI Research Hydrocarbons Kind of Time-Temperature Observations Used to Determine Freezing Point b RI
F
31
F F
Freezing Point of Actual Material in .4ir a t 1 4 t m . API .4PI Standard, ReEearch, O c. C. - 113,04 - 113.03
- 2s:599 - 48.877 - 9.600 - 5,404
- Zj'597 - 48.877 - 9.599 - 5,402
Cryosl'oplo
Freezing Point for Zero Impurity inoAir a t 1 Atm., C. -113.00 k O . 0 5
- 2 5 . 5 9 0 ' i 0.010 - 48.860 + 0 . 0 1 0 - 9.595 0 , 0 1 0 - 5.385 i 0,012 Z t
Constant6 9.Mole Fraction/ Deg. 0,042
0 .'0434 0.0524 0.0621
0.0479 0,0705 0,0522 0,0735 0.0559
++ 9.916 5.853 t 18 147 21.964 +- 140.910 28.168
++ 9.916 5.853 ++ 21.964 18.149 + 28.168
5 , 8 6 3 i 0.008 ++ 9.930 i 0.010 4 18.155 i 0.010
- 140.900
++ 28.180 21.980 k 0.010 i 0.010 -140,870 =t0.015
- 149.626
-149.57
A1 31
- 149.626 - 80.733 - 22.164 - 89.866
22.164 89.841
- 80.720 5 0 010 - 22.13 i O . 0 3 - 89.80 1 0 . 0 3
11
-
-
86.360
- 86.350 1 0 . 0 1 0
0 0340
F
F
31
F
31 31
hl
31
T
86.369
... F
-
AI
1,745 -157.30 - 74.323 - 109.508 - 136.66 - 102.863 -141 493
31
- 130: 377
F
F
31
31
A1
..
...
80.732
...
i 0.03
0.082!
0.032
0 041e
0 21 i 0 12
0.23 i 0.12
0 0304
0 04 i 0 03
0 . 0 4 i0 . 0 3
0 0587 0 0307
0 2 0 i O 18 0 2 0 f O 09
0.20 10.18 0.13 i 0.09
-109 507 -136 66 -102 858 -141 485
0 0571 0 04fi 0 0236 0.0622
-130'375
-130.380'i 0.020
0 .'0i34
-
1 741 30
74 304
...
0,068
- 1 2 7 . 4 8 0 ' 1 0.020
0.0283
31
-12f.530 - 134.33
31 31 hl 31 31
-lis136 -127.736 - 135.517 - 115.066 -137.383
- lis:33 -127.730 - 135.502
- 1 1 8 . 2 7 " i 0.05 -127.700 1 0.010 -135.46 1 0 . 0 3 -115.00010.020 -137,350 i 0 . 0 2 5
0 :045
F F F F F
+--
- 3 5 . 2 3 0 ' f 0.020 - 23.070 1 0 . 0 2 0 - 12.85 1 0 . 0 3 - 3.730 fO.O1O
o.oii0 0.0439
;\I
3j:Z66 23.118 12.913 3.762 4.086 71.561 (I)
- 115,058 -137.380
t -
ii:255 23.105 12.913 3.753 4.106 71.561 (I)
0.12 0.14 0.06 0.14 0.20
10.11
i0 . 1 3 i 0.05
10.05
i0 . 1 5
, . .
, . .
-134.30
0.03 i0.03 (0.15 I O .10)d
0,0642 0,0522
- 127:532 - 134.34
31
0 07 i 0 03 ( 0 20 i 0 l5jd
, . .
- 1,720 i o . 0 2 0 -157.27 1 0 . 0 3 - 74.280 i O . 0 2 0 -109.480 i 0,010 -136.63 i 0 . 0 3 -102.840 i 0.015 -141.48 i0.03
-
-157
Calculated Amount of Inipuiity in Actual MaterialC API API Standard, Research, mole % mole 7% 0 17 i 0 15 0.13 i O . 1 0 (0.15 =t0.10jd ( 0 20 i 0 15)d 0.03 i 0.03 0 04 i 0 03 0 09 = 0 06 0 . 0 9 i 0.06 0 031 k 0 025 0.025 i o . 0 2 5 . 0 09 i 0 06 0.08 i 0.06 0 07 i 0 06 0.07 2c 0 . 0 6 0 07 i 0 05 0.07 i0.05 0.04 i0.04 0 06 * 0 04 0 09 f 0 06 0 . 0 9 i 0.06 o i n i o os 0.10 i 0.08 0 1 3 i O 05 0.09 r 0.05
i 0.10
4.120 =k 0.015 71 540 i 0.015 75 24 10 . 0 3 81 53 i 0 . 0 3 63 745 i 0.010
0.044
0.0385 0.0362 0.0443 0.0480
0.0452
0.0490 0.0477 0.0296
...
...
0.11 k 0 . 0 5 0.07 i 0 . 0 6 0 . 0 6 i 0.04
...
0.056'%'0.038 1-Methyl-3-isopropyl- 63,762 - 63.760 0.Oiij O.OG4'+'0.038 31 benzene 67.944 0 . 0 6 i 0 . 0 3 0.02 k 0.02 11 - 67.952 67.935 i 0.010 0,0275 1-Methyl-4-isopropylbenzene 0 . 1 1 1 0.06 0 .08 I .0 . 0 6 84 360 84.353 84.325 = 0 , 0 2 0 0 , 0 3 0 2 31 1,3-Dimethyl-5-ethylhenzene - 23,722 - 23.694 - 23.685 k 0.010 0.0213 0 . 0 8 i 0.02 0 . 0 2 10 . 0 2 1.5~,3,bTerranierh?.lbenr~ne 31 0 14 f 0 . 0 4 0.08 f 0.04 F 79.240 i 0.020 0,0205 1.2.4.5-TetraiLtet h?.lber:zPne 79.174 79.202 10 20 3 0 l5jd (0.15 i 0.lO)J ... ... 2-Phenyl-2-inethylbu rane (tert-pentylbenzenej 0.07 i 0 . 0 5 - 41.403 41.399 - 41.370 i O . 0 2 0 0,0240 0.08 i0.05 >I 1-Methyl-3-tert-butylbenzene 0.05 i 0 . 0 3 0.04 i 0.03 F - 52.541 - 52.539 - 52.515 2cO.016 0.0183 1-Methyl-4-tert-butylbenzene 0.02 0.02 0 . 0 3 i0.03 - 17.038 - 17.030 i 0.010 0.0281 11 - 17.040 1,4-Diisopropylbenzene 0 03 i 0.03 0.03 i0.03 - 60 415 i 0 , 0 1 5 0 0204 - 66.432 - 66.432 AI 1,3.5-Triethylbenzene - 14.403 0.20 i0 . 1 6 0.12 =tO.lO - 14.38 1 0 . 0 3 0.0538 - 14.418 AI n-Decylbenzene 0 . 0 5 2c 0 02 36.70 1 0 . 0 5 0.0033 0.06 i0.02 36.87 - 36.85 F cis-Hexahydroindan (cishydrindan) 0.29 i 0.11 - 59.44 1 0 . 0 5 0.022 0 . 2 9 i 0.11 - 59.57 - 59.57 hf trans-Hexahydroindan (trans-hydrindan) 0 . 0 5 i 0.03 0 04 * 0 03 - 35.360 - 35.345 i 0.010 0.0385 F and hI - 35.361 Cyclopentylcyclopentane 0 04 i 0 03 80.290 0.015 0.01820 0 . 0 4 10 . 0 3 F 80.269 80.269 Naphthalene (A) 0 03 & 0 03 8 0 . 2 9 0 & 0.015 0.0182Q 80.274 F Naphthalene (B) - 30 624 0.22'%'0.06 0 17 2 0 06 - 30.590 - 30.480 i 0 . 0 2 0 0.013 1 F 1-Methylnaphthalene (9) - 30 498 0 . 0 3 i 0.03 0 02 i 0 . 0 2 - 30.496 30.480 1 0 . 0 2 0 0 0151 Af 1-Methylnaphthalene (B) 0.09 1 0.06 0 08 i 0 06 34.58 i O . 0 4 0 01.52Q 34.527 2-Methylnaphthalene 31 34 5 2 2 - 35 838 - 35.790 1 0 . 0 2 0 0.0288 0.14 i0.06 0 07 k 0 06 - 35.814 F 1,2,3,4-Tetrahydronaphthalene -126.480i0.020 0 . 043.5 0.09 i 0 . 0 9 0.08 i 0 . 0 8 -126.498 - 126.500 Ethenylcyclopentane (vinylcyclopentanej 0 . 0 5 i 0.04 0 . 0 5 i 0.04 - 126.773 -126.700 =t0.010 0.0352 -126 773 Ethenylcyclohexane (vinylcyclohexane) (-4) 0.03 i 0.03 -126.760 1 0 . 0 1 0 0.0332 126.770 Ethenylcyclohexane (vinylcyclohexane) (B) a (B) following the name of compound designates, for the API Research series, a second (and usually slightly purer) sample of given compound, first sample of which is labeled (A). b F indicates freezing and hZ indicates melting. For experimental details and definition of cryoscopic constant (3. 4 ) . 0 The values in this column, except as otherwise noted, were calculated (8, 9) using values of cryoscopic constants and freezing points for zero impurity rziven in Drecedinn columns. d~Estimatedbyanalogy with isomers subjected t o similar purification. * Cryoscopic constant determined b y procedure of (3,p. 371). f This hydrocarbon has more than one crystalline form. Three forms indicated are labeled I. 11. and 111 in order of decreasing temperature of fusion (or freezing point). Forms other than I will be, a t their respective freezing points, in metastable equilibrium with the undercooled liquid, b u t will be unstable with respect t o transition t o some other solid form a t same temperature and pressure (1 atmosphere); indicated by a letter u in parentheses following t h e Roman numeral. 0 Kot determined in this inyestigation. From z tables of American Petroleum Institute Research Project 44 ( I )
-
+
+
+
-
*
-
-
+ +
++ + -
~~
++ +
+
V O L U M E 27, NO. 3, M A R C H 1 9 5 5
415
PERCENT BY VOLUME
t (L a 3
a 191.8
-
191.6
-
1
I
_I W
\
-23.16
I.4 32
.< u
W
t
I
-23.68
-23.74
W z
-99.7
I
I
+
-99.8
1
-23.70
-
-99.9
FREEZING POINT PURITY
N W
191.4
p
6 0
PERCENT BY VOLUME 40 60 80
20
0
REFRACTIVE IRDEX
u
5
W (L
99.6 99.4
REFRACTIVE INDEX
c
\
f
W
E
l
PLlRITY 99.8
.I356
"I-
/
\ /-I
z
8
l
FREEZIUG POINT
-
>
(1) .knierican P e t r o l e u m I n s t i t u t e Research Project 44, "Selected S-alues of P h y s i c a l a n d T h e r m o d y n a m i c Properties of H y d r o carbons a n d R e l a t e d C o m p o u n d s . " P e t r o l e u m Research L a b o r a t o r y , Carnegie I n s t i t u t e of Technology, P i t t s b u r g h , Pa. ( 2 ) Glasgow, A . R., Jr., I I u r p h y , E. T., TTillinghaln, C. B., and Kossiiii, F. D., J . Research S a t l . Biir. Standards, 37, 141
(1948). (3) Glasgow, -4.R . , Jr., Streiff, -1.J., a n d Rossini. F. D., Ibid., 35, 365 (1945). (4) Rossini, F. D.,I I a i r , B. J., a n d Streiff, A. J . , " H y d r o c a r b o n s from P e t r o l e u m , " -4merican P e t r o l e u m I n s t i t u t e Research Project 6, .4nierican Chemical Society M o n o g r a p h 121, Reinhold, Yew York, 1953 (6) Streiff, ii. J., M u r p h y , E. T., Cahill, J. C., F l a n a g a n , €1. F., Sedlak, 5'. A, Willingham, C. B., a n d Rossini, F. D., J .
Research AVatl.Bur. Standards, 38, 53 (1947). (6) Streiff, A. J.,M u r p h y , E. T.. Sedlak, V. A., Willingham, C. B., a n d Rossini, F. D., Ibid., 37, 331 (1946). (7) Streiff, A. J., M u r p h y , E. T., Z i m m e r m a n , J. C., Soule, L. F., Sedlak, V. A., Willingham, C. B., a n d Rossini, F. D., Ibid., 39, 321 (1947). (8) Streiff, A. J., Soule, L. F., K e n n e d y , C. RI., Janes, M. E., Sedlak, V. A , , Willingham, C. B., a n d Roshini, F . D., Ibid., 45, li3 (1950). (9) Streiff, A. J., Z i m m e r m a n , J. C., Soule, L. F., B u t t , AI. T., Sedlak, V. A., W i l l i n a h a m , C. B., a n d Rossini, F D., Ibid., 41, 323 (1948). (10) N7illingham, C . B., a n d Rossini. F. D., Ibid., 37, 15 (1948). RECEIVED for review June 7, 1954. Accepted October 30, 1954. Presented before the Division of Petroleum Chemistry a t the 126th hIeeting of t h e . h E R I C A N CHEMICIL SOCIETY, New York. N. Y . , September 1954. This investigation was performed as part of the work of the American Petroleum Institute Research Project 6 in the Petroleum Research Laboratory of the Carnegie Institute of Technology, Pittsburgh, Pa. A portion of tlir work described was completed before June 1950, when the project was moved from Xational Bureau of Standards t o Carnegie Institute of Technology.