Raman spectrometry - Analytical Chemistry (ACS Publications)

Peter M.G. Broughton , John B. Dawson. 1972,287-379. Article Options. PDF (1379 KB) · PDF w/ Links (1784 KB) · Abstract · Citing Articles. Tools & Sha...
0 downloads 0 Views 1MB Size
(31E) Manning, D. L., Heneage, P.,At. Ahsorwtion Newslett.. 6. 124 (1967). (32Ej h i d . , 7, 80 (1968): (33E) hlansfield, J. &I., Bratzel, &I. P., Norgordon, H. O., Knapp, D. N., Zacha. K. E.. Winefordner, J. D., Spectrbchim. A k a , 23B, 389 11968). ‘ (34E) hlassmann, H., ibid., p 215. (35E) Matousek, J., Sychra, V., ANAL. CHEM.,41, 518 (1969). (36E) Menis, O., Rains, T. C., ibid., p 952. (37E) Mossotti, V. G., Duggan, hl., Appl. Opt., 7, 1325 (1968). (38E) Omenetto, N., Rossi, G., Anal. Chim. Acta, 40, 195 (1968). ~I

(39E) Omenetto, N., Rossi, G., Spectrochim. Acta 24B, 95 (1969). (40E) Robinson, J. W., Hsu, C. J., Anal. Chim. Acta, 43, 109 (1968). (41E) Rossi, G., Omenetto, N., Talanta, 16, 263 (1969). (42E) Smith, R., Elser, R. C., Winefordner, J. D., Anal. Chim. Acta, 48, 35 (1969). (43E) Smith, R., Stafford, C. >I., Winefordner, J. D., ANAL.CHEM.,41, 946 (1969). (44E) Smith, R., Stafford, C. hl., Winefordner, J. D., Can. Spectrosc., 14, 2 (1969).

(45E) Sychra, V., Matousek, J., hls S., Chem. Listy, 63,177 (1969). (46E) Vickers, T. J., Merrick, 8. Tahnta, 15, 873 (1968). (47E) Vickers, T. J., Vaught, R. ANAL.CHEM.,41,1477 (1969). (48E) West, T. S., Williams, X . ibid., 40, 335 (1968). (49E) West, T. S., Williams, X. K., A Chim. Acta, 42, 29 (1968). (50E) Ibid., 45, 27 (1969). (51E) Zacha, K . E., Bratzel, 31. Winefordner, J. D., Mansfield, J. ANAL.CHEM.,40,1733 (1968).

Raman Spectrometry Ronald E. Hester, Chemistry Department, University of York, England

T

HI^ REVIEW covers the literature which appeared between late 1967 and late 1969, but in a highly personal, non-comprehensive manner. The growth of activity in this area, primarily due to the widespread application of lasers as Ranian light sources, has resulted in a volume of literature which it is not possible to deal with comprehensively in a short article. Since the preparation of the previous review in this series ( I ) , the first two volumes of that excellent Specialist Report series of The Chemical Society dealing with “Spectroscopic Properties of Inorganic and Organometallic Chemistry” have been published ( 2 ) . These works do attempt to cover the “vast majority” of papers concerned with application of the Raman technique (and others) in inorganic and organometallic chemistry, and this reviewer warmly commends them to the reader. Several other books and reviews which cover various aspects of the field of Raman spectrometry have been produced, and a personal selection of these appears in the bibliography appended to this article. I n order to avoid cluttering this narrative unnecessarily with numbers, only a limited selection of the references quoted are designated by numbers in the text, those which are so designated being selected so as t o aid the reader in finding his way through the bibliography. Further simplification is achieved by dividing the references into subject categories, and presenting them in the order of their discussion in the text, rather than as an alphabetical listing based on first-named authors. It is hoped that the reader will find these changes from the usual form of review presentation helpful to his rapid comprehension of the material discussed, and that those whose valuable contributions have been neglected or inadequately surveyed will be generous in their forgiveness and understanding.

EXPERIMENTAL TECHNIQUE

This has been a period of steady progress in the development of Raman instrumentation and technique. The excellent Jarrell-Ash (U.S.A.) spectrometer has come into full production, as have new instruments from Spectra Physics (U.S.A.), Huet (France), and Japan Electron Optics Laboratory Co. (Japan), joining the upgraded instruments from Perkin-Elmer ( U S A . ) , Coderg (France), Cary and Spex (G.S.A.). A11 these spectrometers employ cw laser light sources. He-Xe lasers still are most commonly used, but the predicted reduction in price of ion lasers ( 1 ) has enabled many uSers to employ krypton and argon gas lasers during the period reviewed, the argon laser being particularly advantageous for gas-phase studies, due to its high power (6 watts available commercially) in the blue and green regions of the spectrum. A number of other Raman spectrometer systems have been described, one of them using the doublebeam principle (26) to help discriminate against stray light and grating ghosts which tend to interfere at very low frequencies (23). Other solutions to this problem have been proposed, most of them employing narrow band interference filters, sometimes combined u i t h chopper systems (24). I n addition to the rapid development of relatively inexpensive (say $5000) and reliable ionized gas lasers, interesting source developments have been in the application of solid state pulsed lasers. Quasi-continuous operation of a ruby laser a t 50 Hz, with a pulse amplifier and a linear gate which is opened only during the (1 msec) laser emission, and suppresses the photomultiplier detector noise in the remaining time (19 msec), has been shown to produce very good signal/noise performance. Further progress has been made in the development of tuneable lasers (27-

Attention has been paid to the problems of efficiently eliminating plasma lines from gas laser discharges, of beam focussing into the sample area, and coupling the Raman scattered light to a monochromator, and generally to optimising the sample illumination geometry, using lasers as light sources (31-34). At the other end of the monochromator, photon counting systems using photomultipliers have become the most popular general purpose Raman detectors, though other detection systems are better for certain applications. For example, work with very hot samples calls for ac phase-sensitive detection, and image intensifier phototubes coupled with storage video equipment have been put to good use for very fast (-20 nsec) recording of spectra. Help in eliminating recording errors has been provided by papers dealing with continuously scanning spectrometers, routine frequency calibration, and the calculation of the Raman shift in vacuum (41-43). A report a t the recent Ottawa Raman Conference (44) M arned against the convergence errors commonly made when measuring depolarization ratios by simple rotation of a half-wave plate in the laser beam before the sample. Polarization measurements using 180’ laser illumination have been reported. A major advantage of using laser illumination is the smallness of the sample size required. Improvements in the techniques for dealing with very small samples have been made, and excellent spectra from a few nanolitres of liquid (46) and gas (33) have been published. The versatility of the laser source has eased the design problems for sample cells required to operate a t temperatures both higher and lower than ambient, and has made it possible to obtain Raman spectra from solids, liquids and gases at very high pressures (54-58).

SO).

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

231 R

THEORETICAL ADVANCES

This section deals mainly with spontaneous, first-order Raman scattering, the discussion of the various non-linear and second-order effects being postponed to the last section of this review. Some of the papers quoted are partly experimental, but all represent attempts to improve our understanding of Raman intensities, depolarization ratios, resonance effects, or band shapes and intermolecular forces in liquids. Intensities. Interpretations of experimental intensities have largely remained based on Placzek’s polarizabili t y theory, b u t considerable progress has been made in developing a more versatile theory based on a vibronic model. A major advantage of this latter approach is its ability to predict resonance and near-resonance effects. Further Russian experimental work indicating asymmetry in the angular distribution of Raman intensity from liquids such as benzene, chloroform, and methanol, has been reported (63), but this does not find explanation in available theories. Measurement of reliable absolute intensities of Raman bands has always been a difficult matter, but several recent reports have appeared, treating scattering from gases, liquids, and solids. Such measurements form the basis for advances in semi-empirical interpretations of intensity values, and chemical bond polarizability information has been derived from some of the results. Even the determination of relative intensities of bands from a single substance must be undertaken with care, and due attention paid to the various potential sources of error if the values obtained are to be meaningfully interpreted in terms of available theory (73). The information which is (at least potentially) available on structure and bonding in chemical systems from Raman intensity measurements is, however, worth some trouble in deriving. Changes in absolute molar intensities accompanying changes in phase from the gas to the liquid or solid state have been further examined for a number of molecules. Since Raman intensity theories are mostly based on the assumption of dilute gas conditions, such measurements are of considerable significance for the application of theoretical concepts to spectra from condensed phases. The Polo-Wilson equation, relating liquid and gas phase intensities, has been re-derived from the Kraniers-Kronig relations, without the assumption of any specific band shape, but the derivation again relies on ill-founded assumptions about the absorption properties of individual molecules remaining invariant through the phase-change (76). The selection rules for the Raman 232 R

*

effect have been re-examined, and a number of observations of overtone, combination, and difference bands have been reported. However, it is apparent that unless careful measurements of band depolarization ratios are made, confusion can arise in assignments between these and second-order Raman lines, which also have been observed from liquids (86). Raman fundamentals from CCld mixed with various other solvents, such as CS,,CeH6, etc., have been studied for information on the nature of solvent effects on their intensities, and a static Jahn-Teller effect has been reported for CC14. Further work also has been reported on the concentration dependence of band intensities. Finally in this area, both theoretical and experimental work on the form and symmetry of the Raman scattering tensor has been performed. Resonance Raman Effect (RRE). The enhancement of some Raman band intensities which is observed when the exciting radiation approaches t h e energy of a n allowed electronic transition between t h e ground state and a certain excited state has been given its fullest theoretical explanation by Behringer. However, t h e theory is far from complete as yet, and much remains to be done in this area. Kotable contributions have been made by Russian workers, and it is clear that the accumulation of more experimental data, particularly for relatively simple molecular systems whose electronic spectra also have been studied, will be needed to test the theoretical predictions in a thorough way. Recent contributions in this area have included reports of R R E in some particularly simple halogen and interhalogen gases, in liquid bromine, and in some halogen cations (Br2+, Brgf, I,+) and the Te2+ ion in anhydrous liquid H2S04. A study of the RRE in p-nitroaniline, excited by a n argon ion laser, has demonstrated both the utility and the limitations of the Schorygin and the *klbrecht theories for Raman scattering in the near-resonance concjition. Ultraviolet excitation a t 2537 A has been used to excite a resonance Raman spectrum of CS2. Multiple - phonon - resonance Raman scattering has been discovered in CdS, using laser excitation (97,98). Force Constants. The tremendous volume of literature which continues to appear on t h e topic of force fields, and methods for computing meaningful force constants with t h e minimum of effort, seems t o this reviewer to be out of proportion t o t h e real value of much of t h e work done. Without doubt, this is a n area where real progress can be of great benefit t o chemists concerned with problems of bonding and structure, but the bulk of the papers read have not overcome,

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

and indeed in many cases apparently not even faced, the fundamental ambiguity of values produced by various force field approximations. Some of the difficulties inherent in approximate methods have been discussed recently (99, loo),but most of the problems have been recognised for a long time. Among the newer approaches to t h e force constant problem the perturbed Hartree-Fock calculations of Rlills and coworkers merit special attention (101). Green’s function analysis also has been applied to this problem, with particular reference to tetrahedral XY4 molecules and some deuterated ethylenes, and Russian workers have used the HellmanFeynman theorum for the calculation. External force constants in the secular equation for molecular vibrations have been discussed, and the theory of ab initio calculations has been presented. d parametric representation of force constants used in the investigation of the molecular force field for nitrosyl fluoride has proved useful (108). The Urey-Bradley force field has continued to find wide application, and some use has been made of the orbital valence force field and an overlay valence force field (113), as well as the common valence and simple valence force fields. Isotopic data have been used to good effect in the refinement of potential constants of nitrosylfluoride, where centrifugal-distortion data have helped limit errors in the interaction constants. The detailed procedures of force constant calculations, including the common iterative method and means for improving convergence, have received attention. Califano’s timely review lecture to the Madrid Molecular Spectroscopy Meeting in late 1967, dealing with force fields in large molecules, now has appeared in print. Essentially all of these theoretical approaches have been made within the harmonic approximation, and but little work has been done on the quantitative effects of anharmonicity in molecular vibrations. Coriolis coupling constants have been evaluated for several types of molecule. A selection of the many applications of relatively straight forward normal mode analysis leading to determination of sets of force constants for particular molecules is represented by References 127-141. The first group of these deal with simple inorganic molecules (127-18.3), and the second with larger organic and organometallic systems (194-141). Intermolecular Forces and Band Shapes. Raman spectroscopy finds increasing application t o the problems of determining t h e nature of intermolecular potentials, and of molecular motions in liquids and, to a lesser extent, in pressurized gases. Theoretical groundwork laid by Gordon several years ago has been further de-

veloped, and even the Raman band shapes of liquid water have been subjected to an analysis in terms of an intermolecular correlation function (143). Other theoretical approaches to the interpretation of line shapes and widths have been reported, and a number of experimental studies have been made which show clearly the effects of intermolecular interactions on band shapes, depolarization ratios, and even isotope structures. It has been shown that reliable information on the kinetics of fast reactions, such as proton transfer processes, can be obtained from line shape and broadening determinations, though little work has been reported in this area during the past two years (153). Raman studies of molecular motion have included very simple systems such as liquid nitrogen and oxygen, as well as more complex organic liquids, and the appearance of broad depolarized Raman bands a t low frequencies, sometimes superimposed on the Rayleigh wing, has been interpreted in terms of scattering by collisionally perturbed molecules. Care is needed, however, to distinguish such bands from simple difference bands, which also can occur in low frequency spectra. SOLID STATE

Much of the work in this area continues to be mainly of interest to the physicist, though the large number of oriented single crystal studies which have been made are of considerable chemical significance. Reports have appeared of Raman scattering in metals, though it appears that fluorescence problems can be very severe here. Phonon-Raman scattering in solids has continued the subject of a large number of papers, the group theoretical interpretation of spectra by now being sufficiently well-understood that complete identification of all the phonons even of YAG (yttrium aluminium garnet), with 80 atoms per primitive unit cell, has been achieved (178). Ferroelectric crystals have been examined, and some aspects of the theory of optical spectra of antiferromagnets have been reviewed. The excellent signal/noise characteristic of modern equipment has enabled further studies of Raman scattering by F-centers to be made, and the spectrum of the superoxide ion, 02-, in low concentration in alkali halide crystals has been reported (182). Second-order Raman scattering has been observed in alkali-metal and thallous halides, in zinc blende, and in magnesium oxide. A wide variety of special effects in solid state Raman scattering have been reported on, such as magnon or spinflip scattering (190-194), scattering by polaritons (195-198), and plasmons (199-202).

The value of oriented single-crystal laser Raman spectroscopy to the structural inorganic chemist is well-illustrated by the long series of papers emerging from the Southampton laboratory. The theory of the method has been outlined, and application to a wide range of interesting compounds, from simple materials like elemental sulphur and phosphorus pentachloride to organometallic complexes such

as trans-hydridochloro-bis(triethy1phosphine) platinum, has been made. A few other recent single crystal studies of inorganic compounds have been made (210, H I ) , but most solid studies have been based on polycrystalline samples, where the considerable advantages of well-defined and variable crystal orientation are lost. However, much useful structural information has been obtained from such work, with both molecular and ionic crystal types. The effects of high pressures on crystal Raman spectra have been examined. A number of organic single crystal studies, and spectra from some low expansion glasses have been reported. GASES

Improvements in equipment, particularly the availability of high power argon ion lasers, have produced a growth in the number of papers reporting Raman spectra of gases. Rotational Raman scattering has been recorded a t high resolution using a pressure-scanned Fabry-Perot spectrometric technique, or high resolution double grating monochromators. Oz, Nz, NO, and NzO are typical molecules studied under high resolution conditions, but several reports also have appeared recently of gas phase Raman spectra from larger molecules a t subatmospheric pressures. Examples are MoF6, SbF,, SnClz, NbOC13, and the trihalides of aluminium, gallium, and indium. The theoretical importance of gas phase Raman intensities has been stressed already, and a review of “pre-laser” data has been prepared. Comparative gas-liquid intensity studies are expected to receive increasing attention during the next few years. INORGANIC COMPOUNDS

The bibliography contains a representative selection of the vast number of recent papers dealing with Raman spectra of inorganic compounds. The special advantages of the technique for dealing with water and aqueous solutions have been exploited, and the versatility of the laser sources has led to an increased number of variable temperature studies. Fused salt spectra have been reported which provide interesting data on the structure of ionic liquids, and the formation of

molecular complexes a t high temperatures. The Raman spectrum of water has been re-examined and interpreted variously as providing evidence both for and against each of the current theories! The Raman spectrum of “anomolous water” has been used as support for a strongly hydrogen-bonded polymeric structure. Metal-metal bonded compounds have been extensively studied by Raman spectroscopy, which commonly provides more intense and more readily assignable metal-metal stretching frequencies than the infrared method. Compounds studied range from the simple Ted2+ cation to complex polynuclear metal carbonyls. A surprisingly small number of mononuclear transition metal carbonyl compounds have been examined by the Raman method, although direct examination of metal-carbon vibrational modes can do much to establish the extent to which metal &*-electrons are involved in the bonding. The role played by Raman spectra in the general determination of the nature of metal-ligand bonding in transition metal complexes has been reviewed. Some examples of individual systems studied are as follows, much of the work having been with metalhalides: ZrX62-, and HfX62-, where X is C1 or Br (263); species R&flVXe, R W X 6 , with R being Et4N or Cs, MIV being Ti, Zr, or Hf, W V being N b or Ta, and X being C1 or Br (264); NbF5 and TaFs (265); Mo(CN)84-, W(CN)84-, and TaFs*-- (266, 267) ; WC16 and WCh2- (268) ; hhO4(269) ; Os04 and RUO4 (270) ; FeC14(271); Ki(CN)d2- (272) ; the ion [Ru(NH3)6]2Nz4+(273) ; various platinum complexes, including Pt(CO)C13-, Pt(NHS)Cla-, and Pt(CK)6’- (274, 276); and NpF6 (276). A number of copper and silver complexes have been examined (277-279), and several papers have appeared on the subject of halide complexes of zinc, cadmium, and mercury (280-283). Spectra have been reported for many compounds of the main group elements. The methyldiboranes (Be), isotopically substituted bisboranohypophosphite anions (285), carborane and neocarborane (286), are among the more interesting boron compounds investigated, and a number of halogen complexes and metal halide adducts of indium and thallium also have been studied (287289). The spectroscopic evidence for the geometry of trisilylphosphine and arsine has been re-examined, and earlier evidence for their planarity refuted (290, 291). Spectra of silicate minerals, of some siloxanes, and halosilanes have been determined (292-296). Tin halides and some of their adducts, dichlorogermane, and some isotopically substituted monogermyl arsines are

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

233 R

other examples of group IV compounds studied (297-302). Some of the group V compounds examined by Raman spectroscopy are as follows: NCl, (303, 304); the N2F+ cation (305); NO dimers (306); HCP, the phosphorus analogue of HCN (306); (PNC12)4 (307); F ” 4 I (308, 309) ; and halogen-complexes of antimony(II1) and bismuth(II1) (310312). I n group VI, salts containing 02-and Oz2- anions have been studied, and the peroxide frequency in OzF2, Co(NHz)H202, and other systems determined (313-317). Sulphur and selenium compounds examined include S Z ( C H ~ Sez(CHd2, Z, S2Bi-2, SZNZ,S4N4, NSF,, SF,, CSe2, and a number of selenoand telluro-pentathionates (317-383). Some interesting halogen compounds studied are ClF,, ClFh-, HBrz-, IC&, IF,, and IF6- (324-329). The structure of Xe02F2 has been determined from its vibrational spectrum (330). This selective listing of some of the inorganic structural work published during the past two years illustrates the immense range of problems which can now be tackled by Raman spectroscopy. ORGANOMETALLIC COMPOUNDS

Again a very large number of papers have been published in this area, only a small selection of which can be quoted. Spectra of cyclopentadienyl complexes of mercury, vanadium, iron, cobalt, and nickel have been reported (331336), and metal-carbon modes assigned. Silicon-carbon bonding has been characterized in a number of methyl silanes and methyl-silyl compounds (337-339), and the structures of several organogermanes, and organotin compounds, such as alkyl tin halides, have been Organolead determined (340, 341). compounds studied include methyllead halides, tetraphenyllead, hexaphenyllead, phenyllead halides, and hexamethyldilead (342, 343). Organorhenium compounds, and several platinumethylene complexes have been studied, and more work with the trimethylplatinum (IV) group has been reported (344-346). ORGANIC COMPOUNDS

The past two years have seen a considerable growth in the number of organic chemists using Raman spectra as an aid to determining structures and the nature of bonding in organic molecules. I n addition to the obvious advantages over infrared spectroscopy, such as the high intensity of bands characterizing homopolar or near-homopolar groups, and the routine availbility of frequencies in the low region down to ca. 50 cm-l where the torsional oscillations which can distinguish conformers are located, it has been ob234R

served that more distinctive “fingerprint” spectra often can be obtained by the Raman method. A number of groups are currently undertaking the task of building up extensive sets of reference spectra such as are available for the infrared, and these should lead to still more widespread application of Raman spectroscopy in organic chemistry. Aliphatic compounds studied recently include the alkyl halides (347-352), a number of alkanes, alkenes, and alkynes (363-356), some cycloakanes and their derivatives (357-359), and a large assortment of compounds such as acetaldehyde (360), nitromethane and some dinitromethyl anions (361, 362), methylamines (363, 364, adipic acid (365), acetophenone (366), succinic acid (367), and a number of aliphatic ethers (368). Spectra from halogenoand nitro-benzenes (369-373), from fluorotoluenes (374, variously substituted styrenes (375), and from alkylbenzenes (376) have been reported, and a study of the torsional barriers in anisole and some monohalogen derivatives (377) has been made. The Raman spectrum of anthracene-dlo has been obtained (378). Examples of heterocyclic molecules studied are thiophene (379, 380), some pyridinium halides (381), 1,3,4-oxadiaeole (382), carbazole (383), and some imidazole complexes (384). Some success has been achieved in obtaining Raman spectra from molecules adsorbed a t solid surfaces (385, 386). POLYMERS

Pre-1968 spectra from polymers have been reviewed (387), and considerable progress has been made since then. The 180’ laser illumination technique appears to be well-suited to polymer samples, and very good quality spectra have been recorded from a larger number of samples. Polyethylene has been examined in a crystalline form (388), and as partially crystalline stretched fibers (389). Assignments have been made, based on earlier work by Schachtschneider and Snyder, though some doubt has been expressed about the Bs, wagging fundamental (390). The phenomenon of dichroism in the Raman spectra of oriented polymers has been discussed (391). Spectra from polytetrafluoroethylene (392), from syndiotactic polypropylene (393), polyvinylidenechloride (394, polyvinylfluoride (395), polymethacrylic acid (396), and polyoxymethylene (397, 398) also have been reported. Normal coordinate calculations with this final polymer have proved useful in making assignments, but their accuracy is necessarily very limited (398). A great deal of interest currently centers on macromolecules of biological

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

significance, and Raman spectra have been obtained in a number of cases. The ease with which aqueous solution spectra are obtainable represents a great advantage of the Raman technique in this context, though the tendency of most biopolymers to fluoresce has proved a considerable limitation. Spectra have been reported from polyglycines and poly-Z-proline in aqueous solution (399), and aqueous solutions of a number of protein molecules, including lysozme, ribonuclease, and achymotrypsin have produced good quality Raman spectra in R. C. Lord’s laboratory a t M.I.T. Particular interest lies in the fact that these spectra evidently are sensitive to conformational changes in soIution. D.N.A. and some of its constituents also have been examined by Raman spectroscopy (400403). ELECTRONIC, STIMULATED, HYPER, AND INVERSE EFFECTS

Although the great bulk of Raman studies have been concerned with vibrational or rotational transitions in molecules or crystals, an increasing number of reports of electronic Raman spectra are appearing in the current literature. Most of the work reported to date has been with rare earth ions, and has come from a single laboratory. Most electronic Raman spectra are intrinsically very weak, and measurement on both the Stokes and the anti-Stokes side of the exciting line is often necessary t o eliminate confusion with fluorescence, but in spite of these difficulties spectra have been recorded for a wide range of systems, and some of the theoretical implications have been explored (404-408). Further progress in the development of the theory of the stimulated Raman effect has been achieved (409-411), and many experimental studies have been reported with gaseous, liquid, and solid samples. Scattering efficiencies are much higher in the stimulated Raman effect than in normal spontaneous Raman scattering, and the giant pulse lasers required to exceed the threshold intensities demanded by the process are now widely available. However, since far fewer vibrational modes are “active” in this stimulated effect than in the spontaneous effect, and most of the work reported remains concentrated on a very small number of chemical systems, there still is little to report of great chemical interest. The papers listed in the bibliography deal with intensity and gain measurements, thresholds, temperature effects, angular dependence, and stimulated scattering by polaritons (412-418). A paper on Raman linewidths for stimulated threshold and gain calculations (419) describes a good method for getting pre-

cise line shapes for liquids. The principal practical uses of the stimulated Raman effect appear t o be in the generation of new laser frequencies (up t o 75% conversion achieved), in the production of picosecond laser pulses, and in the measurement of vibrational lifetimes. The theory of hyper-Raman scattering, where a Raman spectrum appears at 2 v 0 f Y ~ ,with vo the exciting frequency and vi the internal mode frequency, has been discussed further by Decius (420). Since the selection rules for this effect include all infraredactive modes, and also sometimes modes inactive in either infrared absorption or spontaneous Raman scattering, it is potentially of very great interest to chemists. However, the effect is exceedingly weak, and but few observations have been reported. The pure rotational spectra of the spherical top molecules CH, and CCld inactive in both infrared and normal Raman spectra, have been obtained, and the hyperRaman spectrum of water has been compared with the normal infrared and Raman spectra (421). The inverse Raman effect also is potentially of great interest to chemists, since it promises t o provide a method for obtaining spectra in a very short time (picoseconds) of species at low concentration (free radicals, and other short-lived species). This potential has yet to be realised, however, and t o date spectra only of long-lived materials such as benzene and diamond have been reported (492). The best experimental arrangement demonstrated involves a giant pulse laser, which simultaneously irradiates the sample and a dye celle.g., Rhodamine B or 6G. This latter produces a continuum, from which frequencies corresponding t o Raman lines are absorbed on passage through the giant pulse laser-illuminated sample. One of the problems of the method is degradation of the sample due to the high laser power. LITERATURE CITED

(1) Hester, R. E., AKAL.CHEM.,40, 320R

(1968). (2) Greenwood, N. N., Akitt, J. W., Errington, W., Gibb, T. C., Straughan, B. P., Spectroscopzc Properties of Znorganic and Organometallic Compounds, Specialist Periodical Reports, The Chemical Society, London; vols. 1 and 2, 1968 and 1969. (3) Ware, hi. J., in Physical Methods in Advanced Inorganic Chemistry, ed. Hill, II. A. O., Day, P., Interscience, London 1968, ch. 6. (4) Schuler, C. J., in Progress in Nuclear Energy, Series Z X , ed. Elion, H. A., Steward, 0. C., Pergamon Press, Oxford, 1968, vol. 8, part 2. (5) Long, D. A., Ann. Reports Chem. SOC., 65, 83 (1968). (6) Hendra, P. J., Stratton, P. M., Chem. Revs., 69,325 (1969). (7) Jones, W. J., Quart. Rev. Chem. SOC., 23, 73 (1969).

(8) Haught, A. F., Ann. Rev. Phys. Chem., 19. 343 (1968). (9) Strauss, H.-L., ibid., 19,419 (1968). (10) Maki, Jr., A. G., ibid., 20,273 (1969). (11) Wright, G. B., ed. of Light Scattemng Spectra-of-Solids,’ Springer Verlag, New York 1969-mot. Internat. Conf. on Light Scattiring Spectra of Solids, N.Y.U., Sept. 1968. (12) Koningstein, J. A., Chem. Weekbl., 65, 24 (1969). (13) Gorelik, V. S., Suchinskii, M. M., Usp. Fiz. Nauk, 98, 237 (1969); Chem. Abstr., 71, 54968f (1969). (14) Porto, S. P. S., Znd. Res., 11, 66 (1969). (15) Klaeboe, P., Kjemi, 29, 40 (1969); Chem. Abstr., 71, 7914a (1969). (16) Evans, J. C., Advan. Anal. Chem. Instrum., 7, 41 (1968). (17) Ito, M., Yokoyama, T., Kohnshi, 17, 1027 (1968); Chem. Abstr., 70, 91843m (1969). (18) Bobovich, Ya. S., Usp. Fiz. Nauk, 97, 37 (1969). (19) Delhaye, M., Deporcq-Stratmains, Mrs., Chim. Anal., 50, 625 1968).

Theoretical Advancer

Experimental Technique

(20) Griffiths, J. E., Appl. Spectrosc., 22, 472 (1968). (21) Michel, G., Spectrochim. Acta, 25A, 517 (1969). (22) Arguello, C. A., Rousseau, D. L., Porto. S. P. S.., SDex . Ramaloo.”, 2., 1 (1969j. (23) Garavaglia, M., Massone, C. A., A p 1. Optics, 7, 1443 (1968). (24) Eandon, D. O., Mooradian, A., and Griffiths, J. E., all in Spex Ramulog, 2, 1-3 (1969). (25) Kiefer, W., Ber. Bunsenges, 72, 1062 (1968). (26) Kiefer, W., Schrotter, H. W., 2. Angew. Phys., 25, 236 (1968). (27) Gelbwachs, J., Pantell, R. H., Puthoff, H. E., Yarborough, J. M., Appl. Phys. Letters, 14, 258 (1969). (28) Collins, Jr., S. A., Patent US473006, 14 Jan 1969. (29) Wolff, P. A., Patent US3436373, 25 Mar. 1969. (30) Budin, J. P., Raffy, J., Ernest, J., J. Quantum Electron., 4, 558 (1968). (31) Claasen, H. H., Selig, H., Shamir, J. Appl. Spectrosc., 23, 8 (1969). (32) Griffiths, J. E., Spex Ramalog, 2, 2 (1S6R) \ - - - - I .

(33) Barrett, J. J., Adams, 111, N. I., J . Opt. SOC.Am., 58, 311, (1968). (34) Schwiesow, R. L., abad., 5 9 , 1285 (1969). (35) Morton, G. A., Appl. Optics, 7, 1 (1968). (36) Miller, S. A., Rev. Sci. Znstr., 39, 1923 (1968). \~.._,

(37) Griffiths, J. E., Appl. Spectrosc., 23, 66 (1969). (38) Alfano, R. R., and Ockman, N., J. Opt. SOC.Am., 58, 90 (1968). (39) Delhaye, M., Appl. Optics, 7, 2195 (1968). (40) Richards, W. G., Hall, J. A., Taylor, A. R., J. Sci. Instrum., 2, 146 (1969). (41) Kaplan, A,, Lengyel, G., Mitra, S. S., Optzk, 27, 403 (1968). (42) Hendra, P. J., Loader, E. J., Chem. Znd., 718 (1968). (43) Strey, G., Spectrochim. Acta, 25A, 163 (1969). (44) Holtzer, W., Murphy, W. F., Bernstein, H. J., report to 1st International Conference on Raman Spectroscopy, Ottawa, August, 1969. (45) Allkins, J. R., Lippincott, E. R., Spectrochim. Acta, 25A, 761 (1969). (46) Freeman, S. K., Landon, D. O., ANAL.CHEW,41, 398 (1969). (47) Krasser. W.. Niirnbere. Chem. Znstr.. 1; 47 (1968). ’ -I



(48) Clarke, J. H. R., Hester, R. E., J . Chem. Phus.. 50. 3106 (1969). (49) Antion; D. J.,- Durig, J.’ R., Appl. Spectrosc., 22,675 (1968). (50) Levin, I. W., Spectrochim. Acta, 25A, 1157 (1969). (51) Shriver, D. F., Swanson, B., Nelson, N., Appl. Spectrosc., 23, 274 (1969). (52) Carlson, G. L., Spectrochim. Acta, 24A, 1519 (1968). (53) Bryant, J. I., ibid., 24A, 9 (1968). (54) Brafman, O., Mitra, S. S., Crawford, R. K., Daniels, W. B., Postmus, C., Ferraro, J. R., Solid State Commun., 7, 449 (1969). (55) Postmus, C., Maroni, V. A., Ferraro, J. R., Mitra, S. S., Znorg. Nucl. Chem. Letters, 4, 269 (1968). (56) Brasch, J. W., Melveger, A. J., Lippincott, E. R., Chem. Phys. Letters 2, 99 (1968). (57) Cavagnat, R., Martin, J. J., Turrell, G., Appl. Spectrosc., 23, 172 (1969). (58) Aumont, R., Dayan, E., Vodar, B., Vu, H., Widenlocher, G., Compt. Rend., 268B, 1565 (1969).

INTENSITIES (59) Placzek, G., translated from Handbuch der Radiologie, 6, 209 (1934): UCRL-trans-526(L). (60) Tang, J., Albrecht, A. C., J. Chem. Phys., 49, 1144 (1968); Tang, J., Diss. Abstr., 29B, 2009 (1968). (61) Shorygin, P. P., Krushinski, L. L., Ber. Bunsenges Phys. Chem., 72, 495 (1968). (62) Ting, C.-H., Spectrochim. Acta, 24A, 1177 (1968). (63) Kondilenko, I. I., Korotkov, P. A,, Opt. Spectrosc., 24, 246 (466) (1968). (64) Holtzer, W., J. Mol. Spectrosc., 25, 123 (1968); ibid., 27, 522 (1968). (65) Vakhlyueva, V. I., Kats, S. M., Sverdlov, L. Xi., Opt. Spectrosc., 24, 431, 643 (1968). (66) Borisov, M. G., Sverdlov, L. M., ibid., 24, 34, 72 (1968). (67) Averbukh, B. S., Mayants, L. S., ibid., 24, 98 (1968). (68) Skinner, J. G., Nilsen, W. G., J. Opt. SOC.Am., 58,113 (1968). (69) Gandini, F., Moser, H., Peral, F., 2. Angew. Phys., 23, 461 (1967); Blomer, F., Moser, H., ibid., 27, 302 (1969). (70) Brandmuller, J., Clam, R., Spectrochim. Acta, 25A, 103 (1969). (71) James, H. M., van Kranendonk, J., Phys. Rev., 164, 1159 (1967). (72) Hess, W. R., Hacker, H., Schrotter, H. W., Brandmuller, J., 2. Angew. Phys., 27,233 (1969). (73) Beattie, I. R., Gall, M. J., Znorg. Nucl. Chem. Letters, 4, 677 (1968). (74) Perzl, F., Moser, H., J. Mol. Spectrosc., 26, 237 (1968). (75) Vorobiova, G. O., Kondilenko, I. I., Klossen, I. F., Ukr., Fiz. Zh., 13, 193 (1968). (76) Clifford, A. A., J. Mol. Structure, 4, 98 (1969). (77) Behringer, J., Brandmuller, J., Klauss, K., Strey, G., 2. Naturforsch, 23A. 2121 (1968). (78) Stal’makhova, L. S., Sidorov, N. K., Kuryshin, V. I., Zzv. Vyssh. Ucheb. Zaved. Fiz., 10, 75 (1967). (79) Kenney, J. T., Powell, F. X., J . Chem. Phys., 47, 3220 (1967); 49, 3326 (1968). (80) Hacker, H., Schrotter, H. W., ibid. 49, 3325 (1968). (81) Koningstein, J. A,, J. Mol. Spectrosc., 28, 309 (1968); Chem. Phys. Letters, 2, 31 (1968). (82) Schrotter, H. W., Bofilias, J., J. M o l . Structure, 3, 242 (1969).

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970

235R

(83) Sjdorov, N. K., Stalmakhova, L. S., Eskin, V. A., Opt. Spectrosc., 25, 104 (1968). (84) Fini, G., Mirone, P., Patella, P., J. Mol. Spectrosc., 28, 144 (1968). (85) Bohnick, D. A,, Person, W. B., J. Chem. Phys., 48, 1251 (1968). (86) Verlan, E. M., Opt. Spektrosk., 24, 378 (1968). (87) Babick, I. L., Kondilenko, I. I., ibid., 23, 726,(1967). (88) Koningstein, J. A,, Chem. Phys. Letters, 2,469 (1968). (89) Koningstein, J. A,, Mortensen, 0. S., Nature, 217, 445 (1968). RESONANCE RAMAN EFFECT (90) Behringer, J., report to 1st International Conference on Raman Spectroscopy, Ottawa, August, 1969. (91) Shorygin, P. P., Ivanova, T. M., Opt. Spectrosc., 25, 107 (1968). (92) Holtzer, W., Murphy, W. F., Bernstein, H. J., report to is1 International Conference on R a m n Spectroscopy, Ottawa, August, 1969. (93) Kiefer, W., Schrotter, H..W., ibid. (94) Booth, M, R.! Gillespie, R. G., Morton, M. J., zbzd.; Gillespie, R. G., Morton, M. J., Chem. Comm., 1565 (1968); J . Mol. Spectrosc., 30, 178 (1969). (95) Hutley, M. C., and Jacobs, D. J., report to 1st Internatzonal Conference on Raman Spectroscopy, Ottawa, August, 1969. (96) Bernard, L., Dupeyrat, R., J. Chim. Phys. Physicochim. Biol., 65,410 (1968). (95) Leite, R. C. C., Scott, J. F., Damen, T. C., Phys. Rev. Letters, 22, 780 (1969). (98) Klein, M. V., Porto, S. P. S., zbzd., 22, 782 (1969). FORCE CONSTANTS (99) O'Reilly, E. J., J . Chem. Phys., 48, 1086 (1968). (100) Freeman. D. E., ibid.. 49, 4250 ' (1968). (101) Gerratt, J., Mills, I. M.,ibid., 49, 1719 (1968); 49, 1730 (1969). (102) Mills, I. Sf., Chem. Phys. Letters, 3, 267 (1969). (103) Ramaswamy, K., Devarajan, V., Austral. J. Chem., 22, 299 (1969); Indian J. Pure Appl. Phys., 6, 651 (1968). (104) Rossikhin, V. V., RIorozov, V. P., Teor. i eksp. Khim., 5 , 32 (1969). (105) Freeman, D. E., Chem. Phys. Letters, 2, 615 (1968). (106) Strey, G., Klaus, K., 2. Naturforsch., 23A, 1717 (1968). (107) Pulay, P., Mol. Phys., 17, 197 (1969). (108) Torok, F., Pulay, P., J . Mol. Structure, 3, l(1969); 3, 283 (1969). (109) Brown, R. D., Peel, J. B., Austral. J . Chem., 21, 2361 (1968). (110) Rao, D. V. R. A., Rai, D. K., Indian J . Pure Appl. Phys., 7, 276 (1969); 7, 277 (1969). (111) Sanyal, N. K., Pandey, A. N., Singh, H. S., J . Mol. Spectrosc., 30, 144

(114) Jones,'L. H;, Ryan, R. R., Asprey, L. B., J . Chem. Phys., 49, 581 (1968); Rvan. R. R.. Jones, L. H.. ibid.,. 5 0 ., 1492 (1969). ' (115) King, W. T., ibid., 49,2866 (1968). (116) Sawodney, W., J. Mol. Spectrosc., 30, 56 (1969). (1171 Freeman. J. M.. Henshall., T.,. ibid., 25; 101 (1968). ' (118) Nemes, L., Spectrochim. Acta, 24A, 300 (1968).

236R

(119) Califano, S., Pure Appl. Chem., 18, 275 (1969). (120) Suzuki. I.. Overend., J..,Svectrochim. . Acta, 25A,'977 (1969). (121) Machide, K., Overend, J., J. Chem. Phys., 50, 4429 (1969). (122) Green, W. H., Diss. Abs., 29B, 567 (1968). (123) Muller, A., Krebs, B., Fadini, A., Glemser O., Cyvin, S. J., Brunvoll, J., Cyvin, 8.N., Elvebredd, I., Hagen, G., Vizi. B.. 2. Naturforsch, 23A, 1656 ~

(154) Ewing, G. E., Accounts Chem. Res., 2, 168 (1969). (155) Scotto, M., J. Chem. Phys., 49, 5362 (1968). (156) Cahill, J. E., Leroi, G. E., ibid., 51, 97 11969).

(158) Gabelnick,. H. S., Strauss, H. J . Chem. Phys., 49, 2334 (159) Gornall, W. '

'ague, J. P., Birnbaum, Phys. Rev. Letters, 21, 661 (1968).

Solid State

.

.

(1938j. ' (127) Thomas T. H., Ladd, J. A., Jones, V. I. P.. brville-Thomas. W. J.. J . Mol. Structure, 3, 49 (1969): (128) Walfe, D. F., Humphrey, G. L., ibid., 3,293 (1969). (129) Wieser, H., Kreuger, P. J., Muller,, E., Hyne, J. B., Canad. J. Chem., 47, 1633 (1969). (130) Yamadera, R., Krimm, S., Spectrochim. Acta, 24A, 1677 (1968). (131) Kumar, S. P., Padma, V. A., Rao, N. R., Indian J . Pure Appl. Phys., 7, 373 (19691. (132' Kozulin, A. T., Opt. Spectrosc., 25, 192 (1968). (133) Thyagarajan, G., Sarma, C. R., Subhedar, M. K., J. Mol. Spectrosc., 31, 100 (1969). (134) Narasimham, N. A., Ramachandrarao, C. V. S., ibid., 30, 192 (1969). (135) Duncan, J. L., Burns, G. R., ibid., 30, 253 (1969). (136) Scott, D. W., ibid., 31, 451 (1969); Scott, D. W., El-Sabban, zbd., 30, 317 (1969). (137) Durig, J. R., Lau, K. K., Turner, J. B., Bragin, J., ibid., 31, 419 (1969). (138) Gayles, J. N., J . Chem. Phys., 50, 799 (1969). (139) Shanmugasundaram, G., Nagara jan, G., Monatsch., 100, 385 (1969). (1401 Venkateswarlu. K.. Rudra Warrier. M- K., Natarajan,'A.,'Current Sci., 38; _ 211 (1969). (141) Ashley, P. J., Torrible, E. G., Canad. J. Chem., 47, 167 (1969). INTERMOLECULAR FORCES AND BANDSHAPES (142) Gordon, R. G., McGinnis, R. P., J . Chem. Phys., 49, 2455 (1968); Schlier, C., Ann. Rev. Phys. Chem., 20, 191 (1969). (143) Wall, T. T., J . Chem. Phys., 51, 113 (1969). (144) Ivanov, E. N., Valiev, K. A,, Bildanov, M. M., Opt. Spectrosc., Suppl. 3, 319 (1967); (Opt. SOC.Am., 1968, p. 159). (145) Grav. C. G.. Diss. Abs.,, 29.. 3052-B (1969). " ' (146) Masso, J. D., Harker, Y. D., Edwards, D. F., J . Chem. Phys., 50, 5420 (1969). (147) Girin, 0. P., Bakhshiev, Opt. Spectrosc., 24, 488 (1968). (148) Cunliffe-Jones, D. B., Spectrochim. Acta, 25A, 779 (1969). (149) Hess, W. R., Brandmiiller, J., 2. Physik, 224, 144 (1969). (150) Kroto, H. W., Pao, Y. H., J . Opt. SOC.Am., 58, 479 (1968). (151) Griffiths, J. E., J . Chem. Phys., 49, 642 (1968). (1.52) Clase, H. J., Kroto, H. W., Mol. Phys., 15, 167 (1968). (153) Irish, D. E., report to 1st International Conference on Raman Spectroscopy, Ottawa, August, 1969. \ - - - - ,

:

~

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

(161) Feldman, D. W., Parker, Jr., J. H., Ashkin, M., Phys. Rev. Letters, 21, 607 (1968). (162) Mills, D. L., Maradudin, A. A., Burstein, E., ibid., 21, 1178 (1968). (163) Kwok, P. C., Woo, J. W. F., Jha, S . S., Phys. Rev., 182, 671 (1969). (164) Porto, S. P. S., Fraas, L., The Spes Speaker, 14 (2), 1 (1969). (165) Asawa, C. K., Phys. Rev., 173, 869 (1968). (166) Brafman, O., and Mitra, S. S., ibid., 171, 931 (1968). (167) Nilsen, W. G., ibid., 182,838 (1969). (168) Argnello, C. A., Rousseau, D. L., Porto, S. P. S., ibid., 181, 1351 (1969). (169) Balkanski, M., Nusimovici, M. A,, Reydellet, J., Solid State Commun., 7, 815 (1969). (170) Brafman, O., Lengyel, G., Mitra, S. S., Gielisse, P. J., Plendl, J. N., Mansur, L. C., ibid., 6, 523 (1968). (171) Barker, Jr., A. S., Phys. Rev., 165, 917 (1968). (172) Savoie, R., Pezolet, >I., J . Chem. Phys., 50, 2781 (1969). (173) Rimai, L., Parsons, J. L., Hickmott, J. T., Nakamura, T., Phys. Rev., 168, 623 (1968). (174) Fleury, P. A., Worlock, J. M., ibid., 174, 613 (1968). (175) Burstein, E., Mills, D. L., Pincur, A., Ushioda, S., Pltys. Rev. Letters, 22, 348 (1969); 22, 913 (1969). (176) Koningstein, J. A., Mortensen, 0. S., J . Mol. Spectrosc., 27, 343 (1968). (177) Koningstein, J. A,, Toaning-Ng, J . Opt. SOC.Am., 58, 1462 (1968). (178) Hurrell, J. P., Porto, S. P. S., Chang, I. F., Mitra, S. S., Bauman, R. P., Phys. Rev., 173, 851 (1968). (179) Tsuboi, hl., Terada, M., Kajiwa, T., Bull. Chem. SOC., Japan, 41, 2545 (1968); 42, 1871 (1969). (180) Louden, R., Adv. Phys., 17, 243 (1968). (181) Radhakrishna, S., Sehgal, H. K., Phys. Letters, 29A, 286 (1969). (182) Holzer, W., Murphy, W. F., Bernstein, H. J., Rolfe, R., J . Mol. Spectrosc., 26, 543 (1968). (183) Krauzman, M., Compt. Rend., B268, 148 (1969). (184) Hardy, J. R., Karo, A. M., Morrison, I. W., Sennet, C. T., Russell, J. P., Phys. Rev., 179, 837 (1969). (185) Hardy, J. R., Karo, A. M., ibid., 168, 1054 (1968). (186) Raunio, G., Solid State Common., 7, 803 (1969). (187) Krauaman, M., Compt. Rend., 266B, 1224 (1968). (188) Mon, J. P., ibid., 266B, 1222 (1968). (189) Hooper, M. A., James, D. W., Trans. Farad. SOC.,65, 2016 (1969). (190) Fleury, P. A,, Loudon, R., Phys. Rev., 166,514 (1968). (191) Moch, P., Parisot, G., Dietz, R. E., Guggenheim, H. J., Phys. Rev. Letters, 21, 1596 (1968). (192) Elliot, R. J., Thorpe, M: F., Imbusch, G. F., Loudon, R., Parkinson, J. B., ibid., 21, 147 (1968).

(1931 Jha. S. S., Rev., 179, 764 , Phvs. ' (1969). ' (194) Thomas, D. G., Hopfield, J. T., ibid., 175, 1021 (1968). (195) Pinczuk, A., Burstein, E., Ushioda, S., Solid State Commun., 7, 139 (1969). (196) Hopfield, J. J., Phys. Rev., 182, 945 (1969). (197) Scott, J. F., Fleury, P. A., Worlock, J. M., ibid., 177, 1288 (1969). (198) Patel, C. K. N., Slusher, R. E., Phys. Rev. Letters, 22,282 (1969). (199) Tell, B., Martin, R. J., Phys. Rev., 167, 381 (1968). (200) Patel, C. K. N., Slusher, R. E., ibid., 167,413 (1968). (201) Taoar. N.. Foo. E.-N.. ibid.. 180, ' 535 (igsgj. ' (202) Platzman, P. M., Tzoar, N., ibid., 182, 510 (1969). (203) Beattie, I. R., Gilson, T. R., Proc. Roy. SOC.,307A, 407 (1968). (204) Beattie, I. R., Gilson, T. R., J . Chem. SOC.( A ) ,2322 (1969). (205) Ozin, G. A., ibid., 116 (1969). (206) Livingston, K . 31. S., Ozin, G. A., ibid., 2840 (1969). (207) Beattie, I. R., Gall, &I. J., Oain, G. A., ibid., 1001 (1969). (208) Beattie, I. R., Livingston, K. RI. S., Ozin, G. A., Reynolds, I). J., ibid., 958 (1969). (209) Beattie, I. R., Livingston, K. AI. S., ibid., 2201 (1969). (210) Khanna, R. K., Brown, C. W., Jones, L. H., Znorg. Chem., 8, 2195 (1969). (211) Tosi, L., Poulet, H., Mathieu, J. P., Compt. Rend., 268B, 249 (1969). (212) Tobin, AI. C., J . Opt. Soc. Am., 58, 1057 (1968). (213) Cooney, R. P. J., Hall, J. R., Hoouer. hl. A.. Austral. J . Chem.., 21.. 214g (1968). ' (214) Pawley, G. S., J . Chem. Phys., 50, 2785 (1969). (215) Cooney, R. P. J., Hall, J. R., Austral. J . Chem., 22, 331 (1969). (216) Suzuki, M., Yokoyama, T., Ito, M., J . Chcm. Phys., 50,3392 (1969). (217) Carabatos, C., Compt. Rend., 267B, 1339 11968). _ _ _. (218) Scheurmann, W., Ritter, G. J., 2. Yaturforsch., 24A, 408 (1969). (219) Zumofen, G., Dressler, K., Helv. Phys. Acta, 42, 596 (1969). (220) Asell, J. F., Nicol, M.,J. Chem. ' P ~ ~ 49; s . ,5395 (i968). 1221) Ebisuzaki. Y., Nicol, M.,. Chem. Phys. Letters, 3, 480 (1969). (222) Melveger, A. J., Dzss. Abs., 29, 4131B (1969). (223) Obremski, R. J., ibid., 29, 4618B ( 1969). (224) Obremski, R. J., Brown, C. W., Lippincott, E. R., J . Chem. Phys., 49 185 (1968): (225) Suzuki, &I., Ito, AI., Spectrochim. Acta, 25A, 1017 (1969). (226) Arnau, J. L., Giguere, P. A., Compt. Rend., 267B, 793 (1968). (227) Tobin, AI. C., Baak, T., J . Opt. SOC. Am., 58, 1459 (1968). I

.

\ - - - - ,

~

Gases

(228) Weber, A., Porto, S. P. S.,Cheesman, L. E., Barrett, J. J., J . Opt. SOC. Am., 57, 19 (1967). (229) Barrett, J. J., Adams 111, N. I., ibid., 58, 311 (1968). (230) Claasen, H. H., and Holloway, J. W., report to f s t International Conference on Raman Spectroscopy,Ottawa, August, 1969. (231) Perry, O., Chem. Comm., 886 (1969). (232) Ozin, G. A., Reynolds, D. J., ibid., 884 (1969). (233) Beattie, I. R., Ozin, G. A., J . Chem. SOC.( A ) ,1691 (1969); 2619 (1969).

(234) Beattie, I. R., Horder, J. R., ibid., 2655 (1969). (235) Murphy, W. E., Holzer, W., Bernstein, H. J., Appl. Spectrosc., 23, 211 (1969). Inorganic Compounds

AQUEOUS ELECTROLYTE SOLUTIONS (236) Irish, D. E., Davis, A. R., Canad. J . Chem., 46, 943 (1968); Irish, D. E., Davis, A. R., Plane, R. A., J . Chew. Phys., 50,2262 (1969). (237) Cooney, R. P. J., Hall, J. R., Austral. J . Chem., 22,337 (1969). (238) Oertel, R. P., Plane, R. A., Inorg. Chem., 7,1192 (1968). (2391 Loehr. T. M.. Plane. R. A..' ibid.., 8., ~~~73 (1969): 7, 1708 (1968). (240) Hanson, M. P., Plane, R. A., ibid., 8, 746 (1969). (241) Krishnan, K., Plane, R. A., J . Amer. Chem. SOC.,90, 3195 (1968); Spectrochim. Acta, 25A, 831 (1969). \ - - - ,

MOLTENSALTS (242) Hester, R. E., Krishnan, K., J . Chem. Phys., 48, 825 (1968); 49, 4356 (1968). (243) Hester, R. E., Krishnan, K., J . Chem. SOC.( A ) , 1955 (1968). (244) Clarke, J. H. R., Hester, R. E., Chem. Commun., 1072 (1968); Znorg. Chem., 8, 1113 (1969); J . Chem. Phys., 50, 3106 (1969). (245) James, D. W., Leong, W. H., ibid., 51, 640 (1969). (246) Clarke, J. H. R., Chem. Phys. Letters, 4, 39 (1969). (247) Ponyatenko, N. A., Radchenko, I. V., Opt. Spektosk., 26,645 (1969). WATER WATERAND ANOMALOUS (248) Schiffer, J., Hornig, D. F., J . Chem. Phys., 49, 4150 (1968). (249) Walrafen, G., zbul., 50, 560, 567 (1969). (250) Schiffer, J., ibid., 50,566 (1969). (251) Bellamy, L. J., Osborn, A. A., Lippincott, E. R., Bandy, A. R., Chem. and Ind., 686 (1969). (252) Lippincott, E. R., Stromberg, R. R., Grant, W. H., Cessac, G. L., Science, 164, 1482 (1969). METAL-METAL BONDS (253) Barr, J., Gillespie, R. J., Kapoor, R., Pez, G. P., J . Amer. Chem. SOC.,90, 6855 (1968); Gillespie, R. J., Pez, G. P., Znorg. Chem., 8, 1229 (1969). (254) Adams, D. M., Crosby, J. N., Kemmitt, R. D. W., J . Chem. SOC.( A ) , 3056 (1968). (255) Griffith, W. P., Wickham, A. J., zbid., 834 (1969). (256) Quicksall, C. O., Spiro, T. G., Inorg. Chem., 7, 2365 (1968); 8,. 2011 (1969). (257) Watters, K. L., Brittain, J. N., Risen, Jr., W. M., ibid., 1347 (1969). METALCARBONYLS (258) Bouquet, G., Loutellier, A., Bigorgne, M., J. Mol. Structure, 1, 211 (1968). (259) Hendra, P. J., Qurashi, hl. M., J . Chem. SOC.( A ) ,2963 (1968). (260) Abel, E. W., McLean, R. A. N., Tyfield, S.P., Braterman, P. S., Walker, A. P., Hendra, P. J., J. Mol. Spectrosc., 30, 29 (1969). (261) Clark, R. J. H., Crosse, B. C., J . Chem. SOC.( A ) ,224 (1969). TRANSITION hIET.4L COMPLEXES (262) James, D. W., Nolan, M. J., Progr. Znorg. Chem., 9, 195 (1968). (263) Brisclon, B. J., Ozin, G. A., Walton, R. A,, J . Chem. SOC.( A ) ,342 (1969).

(264) Van Bronswyk, W., Clark, R. J. H., Maresca, L., Znorg. Chem., 8, 1395 (1969). (265) Selig, H., Reis, A., Gasner, E. L., J . Znoig. Nucl. Chem., 30, 2087 (1968). (266) Hartman, K. O., Miller, F. A., Spectrochim. Acta, 24A, 669 (1968). (267) Parish, R. V., Simms, P. G., Wells, M. A,, Woodward, L. A., J . Chem. SOC. ( A ) ,2882 (1968). (268) Creighton, J. A., Chem. Commun., 163 (1969); Walton, R. A., ibid., 1385 11968'1. (269) Hendra, P. J., Spectrochim. Acta, 24A, 125 (1968). (270) Levin, I. W., Znorg. Chem., 8, 1018 (1969). (271) Avery, J. S., Burbridge, C. D., Goodgame, D. M. L., Spectrochim. Acta, 24A, 1721 (1968). (272) Jones, D., Hyams, I. J., Lippincott, E. R., ibid., 24A, 973 (1968). (273) Chatt, J., Nikolsky, A. B., Richards, R. L., Sanders, J. R., Chem. Commun., 154 (1969). (274) Denning, R. G., and Ware, 51. J., Spectrochim. Acta, 24A, 1785 (1968). (275) Siebert, H., and Siebert, A., 2. Naturforsch, 22B, 674 (1967). (276) Gasner, E. L., and Frlec, B., J . Chem. Phys., 49, 5135 (1968). (277) Fifer, R. A,, and Schiffer, J., ibid., 50, 21 (1969). (278) Avery, J. S., Burbridge, C. D., Goodgame, D. M. L., Spectrochim. Acta, 24A. 1721 (1968). (279) Bottge;, G.' L., ibid., 24A, 1821 '

11968). \ - - - - I -

(280) Loewenschuss, A,, Ron, A., Schnepp, O., J . Chem. Phys., 49, 272 (1968). (281) Davies, J. E. D., and Long, D. A,, J . Chem. SOC.( A ) ,2054, 2564 (1968). (282) Durig, J. R., Lau, K.K., N'agarajan, G., Walker, &Bragin, I., J., J . Chem. Phus.. 50. 2130 (1969). (283rSaraf; J. R., Aggarwal, R. C., Prased, J., J . Znorg. Nucl. Chem., 31, 2123 (1969). MAINGROUPELEMENTS (284) Carpenter, J. H., Jones, W. J., Jotham, R. W., Long, L. H., Chem. Commun., 881 (1968). (285) Mayer, E., Hester, R. E., Spectrochim. Acta, 25A, 237 (1969). (286) Bukalov, S. S., Leites, L. A., Aleksanyan, V. T., Izv. Akad, Nauk, SSSR, Ser. Khim., 929 (1968). (287) Evans, C. A., Taylor, M. J., J . Chem. SOC.( A ) ,1343 (1969). (288) Davies, J. E. D., Long, D. A., ibid., 2050 (1968). (289) Bhnkman, F. J. J., Gerding, H., Rec. Trav. Chim., 88, 275 (1969). (290) McKean, D. C., Spectrochim. Acta, 24A, 1253 (1968). (291) Siebert, H., Eints, J., J . M o l . Struct., 4, 23 (1969). (292) Griffith, W. P., J. Chem. SOC.( A ) , 1372 (1969). (293) Griffiths, J. E., Sturman, I). F., Spectrochim. Acta, 25A, 1415 (1969); Griffiths, J. E., ibid., 25A, 965 (1969). (294) Durig, J. R., Hellams, K. L., Inorg. Chem., 8,944 (1969). (295) Cubois, M. L., Delhaye, RI. B., Wallert, F., Compt. Rend., 269B, 260 (1969). (296) Goubean, J., Haenschke, F., Ruoff, A., 2. Anorg. Chem., 366, 113 (1969). (297) Wharf, I., Shriver, D. F., Inorg. Chem., 8, 914 (1969). (298) Donaldson, J. D., ROSS,S. D., Senior, B. J., Spectrochim. Acta, 24A, 1899 (1968). (299) Reich, P., Wieker, W., 2. Saturforsch., 23B, 739 (1968). (300) Huggins, K. G., Parrett, F. W., Patel, H. A., J . Znorg. Nucl. Chem., 31, 1209 (1969).

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

0

237 R

(301) Mackay, K. M., Sutton, K. J., Stobart, S. R., Drake, J. E., Riddle, C., Spectrochim. Acta, 25A, 925, 941 (1969). (302) Drake, J. E., Riddle, C., Rogers, D. E., J. Chem. SOC.( A ) ,910 (1969). (303) Bayersdorfer, L., Engelhardt, U., Hohne, K., Fischer, J., Jander, J., 2. Natur orsch., 23B, 1602 (1968). (304) S amir, J., Binenboym, J., J. Mol. Structure, 4, 100 (1969). (305) Herzog, T., Schwab, G. M., 2. Phys. Chem. (Frankfurt), 66, 190 (1969). (306) Johns, J. W. C., Shurvell, H. F., Tyler, J. K., Canad. J. Phys., 47, 893 ( 1969 ): (307) Hisatsune, I. C., Spectrochim. Acta, 25A. 301 (1969).

hf

Letters; 2, 621'(1968x' ' (310) Hooper, M. A., James, D. W., Spectrochim. Acta, 25A, 569 (1969). (311) Ahlijah, G. E. B. Y., Goldstein, M., Chem. Commun., 1356 (1968). (312) Savatinova, I., Markov, M., Zh. Prikl. Spektrosk., 7, 599 (1967). (313) Blunt, F. J., Hendra, P. J., Mackenzie, J. R., Chem. Commun.. 278 (1969). (314) Loos, K. R., Goetschel, C. T., Campanile, V. A., ibid., 1633 (1968). (315) Evans, J. C., ibid., 682 (1969). (316) Arnau, J. L., Giguere, P. A,, J. Mol. Structure, 3, 483 (1969). (317) Frankiss, S. G., ibid., 3, 89 (1969). (318) Bradley, E. B., Frenzel, C. A., Mathur, M.S., J . Chem. Phys., 49,2344 (1968). (319) Bragin, J., Evans, M. V., ibid., 51, 268 (1969). (320) Muller, A., Ruoff, A., Krebs, B., Glemser. 0.. Koch. W.. Spectrochim. Acta, 25A, 199 (1969). ' (321) Shurvell, H. F., and Bernstein, H. J., J. Mol. Spectrosc., 30, 153 (1969). (322) King, G. W., Srikameswaran, K., ibid., 29,491 (1969). (323) Clark, E. R., Collett, A. J., J. Chem. SOC.( A ) ,1594 (1969). (324) Christe, K. O., Sawodny, W., Z. Anorg. Allgem. Chem., 357, 125 (1968). (325) Evans, J. C., Lo, G. Y., J . Phys. Chem., 73,448 (1969). (326) Stammreich, H., Kawano, Y., Spectrochim. Acta, 24A, 899 (1968). (327) Claasen, H. H., Gasner, E. L., Selig, H., J . Chem. Phys. 49, 1803 (1968). (328) Klamm, H., Meinert, H., Reich, P., Witke, K., Z . Chem., 8,393,469 (1968). (329) Beaton, S. P., Sharp, D. W. A., Perkins, A. J., Sheft, I., Hyman, H. H., Christe, K., Znorg. Chsm., 7,2174 (1968). (330) Claasen, H. H., Gasner, E. L., Kim, H., Huston, J. L., J . Chem. Phys., 49, 253 (1968). \~.._,.

Organometallic Compounds

(331) Madowsky, E., Nakamoto, K., Znorg. Chem., 8, 1108 (1969). (332) Durig, J. R., Marston, A. L., King, R. B., Houk, L. W., J . Organometallic Chem., 16, 425 (1969). (333) Long, T. V., Huege, F. R., Chem. Commun., 1239 (1968). (334) Willis, Jr., J. N., Ryan, M. T., Hedberg, F. L., Rosenberg, H., Spectrochim. Acta, 24A, 1561 (1968). (335) Bailey, R. T., ibid., 25A, 1127 (1969). (336) Hartley, D., Ware, M. J., J. Chem. SOC.( A ) ,138 (1969). (337) Shevchenko, I. V., Kovalev, I. F., Voronkov, M. G., Lukevits, E. Y., Doklady Akad. Nauk SSSR., 184, 824 (1969). \ - - - - ,

238 R

(338) Burger, H., Organometallic Chem. Reus., 3, 425 (1968). (339) Burger, H., Goetze, U., Sawodny, W., Spectrochim.Acta, 24A, 2003 (1968). (340) Durig, J. R., Sink, C. W., ibid., 24A, 575 (1968); Durig, J. R., Sink, C. W., Turner, J. B., J. Chem. Phys., 49, 3422 (1968). (341) Geissler, H., Radeglia, R., Kriegsmann, H., J. Organometallic Chem., 15, 349 (1968); Kriegsman, H., Peuker, C., Hess, R., Giessler, H., 2. Naturforsch., 24A, 778 (1969). (342) Clark, R. J. H., Davies, A. G., Puddephatt, R. J., J . Am. Chem. SOC., 90, 6923 (1968); Znorg. Chem., 8, 457 (1969). (343) Clark, R. J. H., Davies, A. G., Puddephatt, R. J., McFarlane, W., J . Amer. Chem. SOC.,91, 1334 (1969). (344) Abel, E. W., Hendra, P. J., RlcLean, R. A. N., Qurashi. M. M.. Znora. Chim. Acta, 3, 77-(1969): (345) Hiraishi, J., Spectrochim. Acta, 25A, 749 (1969). ~ . _ _ (346) blegg,'D. E., Hall, J. R., J. Organometallic Chem., 17, 175 (1969). Organic Compounds

(347) McLachlan, R. D., Nyquist, R. A,, Spectrochim. Acta, 24A, 103 (1968). (348) Doge, G., 2. Naturjorsch., 23A, 1405 (1968) \----,.

(349) Miller, F. A,, Kiviat, F. E., Spectrochim. Acta, 25A, 1363 (1969). (350) Park, P. J. D., Wyn-Jones, E., J . Chem. SOC.( A ) ,2944 (1968); 422 (1969). (351) Snyder, R. G., J. Mol. Spectrosc., 28, 273 (1968). (352) Dennen, R. S., Piotrowski, E. A., Cleveland, F. F., J. Chem. Phys., 49, 4385 (1968). (353) Sanyal, N. K., Pandey, A. N., Sinizh. H. S.. J. Quant. Saectrosc. Rad;hiiue Tranifer, 9, 265 (1969). (354) Pathak, C. M., Fletcher, W. H., J . Mol. Spectrosc., 31, 32 (1969); Pathak, C. M.,Diss. Abs., 29B, 144 (1968). (355) Flourie, E. J., Jones, W. D., Spectrochim. Acta, 25A, 653 (1969). (356) Venkateswarlu, K., Mathew, M. P., Devi. V. M.. J . Mol. Structure. 3. 119 11969); Bull. SOC.Roy. Sci., Lfbge',37, 508 (1968). (357) Le Roy, A., Compt. Rend., 268B, 1358 (1969). (358) Durig, J., Karriker, J. M., Wertz, D. W., J . Mol. Spectrosc., 31, 237 (1969); Durig, J., Green, W. H., ibid., 27, 95 (1968); Spectrochim. Acta, 25A, x49 (1969). (359) Hageman, H. J., Havinga, E., Rec. Trav. Chem., 88,43 (1969); Buys, H. R., Altona, C., Havinga, E., zbzd., 87, 53 (1968); Altona, CT, .Hageman; H.. J., Havinga, E., ibid., 87, 353 (1968). (360) Capwell, Jr., R. J., J. Chem. Phys., 49, 1436 (1968). (361) Malewski, G., Pfeiffer, M., Reich, P., J. Mol. Structure, 3,419 (1969). (362) Melnikov, V. V Nelson, I. V., Shokhor, I. N., Tseiikkii, I. V., Zh. Org. Khim., 4,349 (1968). (363) Durig, J. R., Bush, S. F., Baglin, F. G., J. Chem. Phys., 49, 2106 (1968). (364) Clippard, P. H., Taylor, R. C., ibid., 50, 1472 (1969). (365) Suzuki, M., Shimanouchi, T., J . Mol. Spectrosc., 29, 415 (1969). (366) Beldie, R., Craiu, M., Sahini, V. E., Rev. Roumaine Chim., 13, 1271 (1968). (367) Suzuki, XI., Shimanouchi, T., J . Mol. Spectrosc., 28, 394 (1968). (368) Clague, A. D. H., Danti, A., Spectrochim. Acta, 24A, 439 (1968). (369) Suzuki, M., Ito, M., ibid., 25A, 1017 (1969).

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970

(370) Shimauchi, A., Ogawa, K., Science ojLight, 17,25 (1968). (371) Gates, P. N., Radcliffe, K., Steele, D., Spectrochim. Acta, 25A, 507 (1969). (372) Stidham, H. D., J . Chem. Phys., 49, 2041 (1968). (373) Shurvell, H. F., Norris, A. R., Irish, D. E., Canad. J . Chem., 47, 2515 (1969). (374) Bailey, R. T., Hasson, S. G., Spectrochim. Acta, 24A, 1891 (1968); 25A, 467 (1969). (375) Fateley, W. G., Carlson, G. L., Appl. Spectrosc., 22, 650 (1968). (376) Saunders, J. E., Lucier, J. J., Willis, Jr., J. N., Spectrochim.Acta, 24A, 2023 (1968). (377) Owen,". Owe L., Hester, R. E., ibid., 348 (1969). 25A, 343 Bree, A., Kydd, R. A., Chem. Phys. (378) Bree Letters, 3, 367 (1969). (379) Doge, G., 2. Naturjorsch., 23A, 1130 (3: (1968). (380) Green, W. H., Harvey, A. B., Spectrochim. Acta, 25A, 723 (1969). (381) Foglizzo, R., Novak, A., J . Chem. Phys., 50, 5366 (1969). (382) Christensen, D. H., Nielsen, J. T., Nielson, 0. F., J . Mol. Spectrosc., 25, 197 (1968). (383) Bree,' A,, Zwarich, R., J . Chem. Phys., 49, 3334 (1968). (384) Goodgame, D. &I. L., Goodgame, >I., Hayward, P. J., Rayner-Canham, G. W., Inorg. Chem., 7, 2447 (1968). (385) Pershina, E. V., Raskin, S. S., Opt. Spectrosc., 3, 164 (1968). (386) Hendra, P. J., Loader, E. J., Nature, 217,637 (1968). Polymers

(387) Schaufele, R. F., LPlacromol.Rev., 3

Electronic Raman Effect

(404) Koningstein, J. A., Mortensen, 0. S., J . Opt. SOC.Am., 58, 1208 (1968); J. Chem. Phys., 48, 3971 (1968); Phys. Rev., 168, 75 (1968).

(405) Koningstein, J. A,, ibid., 174, 477 (1968); Appl. Spectrosc., 22,438 (1968); Chem. Phys. Letters, 3, 303 (1969). (406) Koningstein, J. A., Toa-Ning, N., Canad. J . Chem., 47, 1395 (1969). (407) Koningstein, J. A., Mace, G., Chem. Phys. Letters, 3, 443 (1969). (408) Kiel, A., Damen, T., Porto, S. P. S., Singh, S., Varsanyi, F., Phys. Rev., 178, 1518 (1969). Stimulated, Hyper and Inverse Roman Effects

(409) Freedhoff, H. S., 47, 2554 (1967).

J. Chem. Phys.,

(410) Philpott, ibid., 49, 3558 (1968). (411) Wang, C. S., Phys. Rev., 182, 482 (1969). (412) Zubov, V. V., Kuzmina, N. P., Opt. Spektrosk., 24,634 (1968). (413) Grun, J. B., McQuillan, A. K., Stoicheff, B. P., Phys. Rev., 180, 6 1 (1969). (414) Johnson, Jr., W. D., Kaminow,

I. P., Bergman, Jr., J. G., Appl. Phys. Letters, 13, 190 (1968). (415) Bortkevich, A. V., Bobovich, Ya. S., Zh. Prikl. Spektrosk., 6 , 728 (1967).

(416) Rivoire, G., Beaudoin, J. L., J . Phvs. (Paris),29, 759 (1969). (417)”Maier, hi.,Kaiser, W., Giordmaine, J. A,, Phys. Rev., 177, 580 (1969). (418) Kurtz, S. K., Giordmaine, J. A,, Phys. Rev. Letters, 22, 192 (1969). (419) Clements, W. R. L., Stoicheff, B. P., Appl. Phys. Letters, 12, 246 (1968). (420) Decius, J., report to 1st International

Conference on Raman Spectroscopy, Ottawa, August, 1969. (421) Maker, P., ibid. (422) Stoicheff, B. P., ibid.

UIt raviolet Spectrometry Warren Crummett and Richard Hummel, Analytical laboratories, The Dow Chemical Co., Midland, Mich. 48640

T

HIS REVIEW summarizes the material which has come to the authors’ attention since the previous review (77) and covers the period from December 1967 to December 1969. Papers are selected for their application t o the practice of analytical chemistry. The criteria for this selection are cited under the appropriate headings.

regions, Kovner and Potapov (228) the electronic spectra of aromatic six-membered azacyclic compounds, Nurmukhametov (293) the electronic spectra of N-heteroaromatic compounds and their derivatives, and Eisdorfer, Warren, and Zarembo (107) amines of pharmaceutical interest. COLLECTIONS OF SPECTRA AND INDICES

BOOKS AND REVIEWS

I n their book entitled “Organic Structure Determination,” Pasto and Johnson (304) present a short introduction to ultraviolet spectrometry which is adequate for course work on the subject, Stearns (358) deals with the interpretation and use of spectral data in his book, “The Practice of Absorption Spectrophotometry.” The use and care of spectrophotometers and cells are considered in detail b y Edisbury (103) in “Practical Hints on Absorption Spectrometry.” A chapter by Duncan, Matsen, and Scott (99) in “Technique of Organic Chemistry,” Vol. IX, surveys the field of molecular spectra, the theory of electronic spectra, and the interpretation of electronic absorption spectra. I n a chapter in “Visible and Ultraviolet Spectroscopy,” Hare (267) discusses the theory and applications of this approach to the structure of chelates emphasizing crystal field theory and its extensionligand field theory. Flammang (127) reviewed the applications of ultraviolet and visible spectrophotometry, Clementi (68) the electronic structure in aromatic compounds, RIerer and RIulliken (269) the ultraviolet spectra of ethylene and its alkyl derivatives, Milazzo and Cecchetti (274) optics and instruments used in vacuum ultraviolet spectroscopy, -4gashkin and Lyuts (2) the spectra of organic molecules in the far and vacuum ultraviolet

The Sadtler collection of ultraviolet spectra now numbers 28,000 spectra (335), u p 6000 since the last review. A 300 spectra collection of commonly used agricultural chemicals is also available. The publication of Volume V of “Organic Electronic Spectral Data” (309) brings this collection to more than

100,000. Four more volumes of “Absorption Spectra in the Ultraviolet and Visible Region” (236-239) have appeared. This makes a total of 2065 spectral curves and data published by Lang in eleven volumes. An index ($40)for the first 10 volumes has also been published. APPARATUS

The number of commercially available ultraviolet-visible spectrophotometers has increased dramatically. An excellent list has been compiled by Industrial Research (188), Specifications are listed, but some of the most important ones such as photometric accuracy and photometric reproducibility are ignored. Considerable interest exists in the use of ultraviolet absorbance detectors for monitoring the effluent from liquid chromatography columns. Kirkland (217) described a detector consisting of a photometric analyzer fitted with a 1-cm flow through cell with a 7 . 5 ~ 1volume with a sensitivity of 0.01 absorbance

unit full scale a t 254 mp and a noise less than *0.0002 absorbance unit. Uziel and coworkers (380) devised a cation exchange chromatography-ultraviolet spectrophotometric monitoring device which separates nucleosides and related bases and assays the separated materials. Several special types of spectrophotometers were developed. Pimentel (311) reviewed rapid scan spectroscopy and lists instrument performance data. Wolken and coworkers (405) describe a recording microspectrophotometerwhich can obtain the absorption spectra of particles as small as 0.5-micron diameter, whereas a similar one described by Wetzel and coworkers (400) can measure the absorbance of particles with 1micron diameters. Klein and Ilratz (222) discuss derivative spectroscopy with recording spectrophotometers. Nihei and coworkers (286) describe a ratio-recording vacuum ultraviolet spectrometer in which rotating cells are used instead of beam splitting. Whittick and coworkers (402) summarize work on ultraviolet spectroscopy emphasizing instruments and techniques developed for the space program with special emphasis on life-detection techniques. Reule (326) used a supplementary light method to test the nonlinearity of the photometric scale of spectrophotometers. Considerable work was reported on the temperature control of cells and cell compartments. Feil and coworkers (121) describe a jacketed cell holder. Aurich (17) describes a low temperature cell for Cary Model 14 and 15 spectrophotometers, while Coe and Slaney (69) present a similar one for the Unicam SP500. Root (329) describes a high temperature cell for the Cary Model 14R spectrophotometer, as do Boston and Smith (41).

ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970

239R