Raman spectroscopy - ACS Publications - American Chemical Society

Jun 15, 1988 - ... index using near-infrared Fourier-transform Raman spectroscopy. Kenneth P. J. Williams , Rupert E. Aries , David J. Cutler , David ...
0 downloads 0 Views 3MB Size
Anal. Chem. 1988. 60.368R-377R (E2081 Selby, M.; Rezaaiyaan, R.; Hieftje, G. M. Appl. Spectrosc. 1987, 4 7 , 749-761. (E209) Patel, B. M.; Heithmar, E.; Wlnefordner, J. D. Anal. Chem. 1987, 59, 2374-2377. (E210) Vermaak, K.; Kujirai, 0.; Hanamura, S.;Winefordner, J. D. Can. J. Spectrosc . 1987, 3 I, 95-99. (E211) Urh, J. J.; Carnahan. J. W. Appl. Spectrosc. 1986. 4 0 , 877-883. (E212) Michlewicz, K. G.; Carnahan, J. W. Anal. Chem. 1988, 58, 3 122-3 125. (E213) Michlewicz, K. G.; Carnahan. J. W. Anal. Lett. 1987. 2 0 , 1193-1205. (E214) Uden, P. C.; Slatkavitz, K. J.; Barnes, R. M.; Deming, R. L. Anal. Chim. Acta 1986, 180. 401-416. (E215) TaKigawa, Y.; Hanai, T.; Hubert, J. J. High Resol. Chromatog. Commun . 1986, 9 , 698-702. (E216) McKenna, M.; Marr, I. L.; Cresser, M. S.; Lam, G. Spectrochim. Acta, Part B 1986, 4 1, 669-676. (E217) Timmins, K. J. J. Anal. At. Spectrom. 1987, 2,251-252. (E218) Stahl, R. G.; Timmins, K. J. J. Anal. At. Spectrom. 1987, 2 , 557-559, (E219) Hubert, J.; Moisan, M.; Zakrzewski, 2. Spectrochim, Acta, Part B 1966, 47, 205-215. (E220) Seltzer, M. D.; Green, R. 8. Spectrosc. Lett. 1987, 20, 601-617. (E221) Yukihiro, N.; Otsukl, A,; Fuwa, K. Anal. Chem. 1988, 58, 544-547. (E222) Nakahara, T.; Nakanishi, K.; Wasa, T. Chem. Express 1987, 1 , 149-152 . .- .- - . (E223) Matousek, J. P.; Orro, B. J.; Seiby, M. Talanta 1986, 33, 675-882. 23-25. (E2241 Ng, K. C.; Brechmann, M. J. Spectrosc. 1987, .?(I), (E2251 Haas, D. L.: Jamerson, J. D. Spectrochlm. Acta, Part B 1987, 42, 299-307. (E226) Outred, M.: Surrey, E. J. Phys. B : At. Mol. Phys. 1987, 2 0 , 5241-5253. (E227) Walther. S.R.; Leung, K. N. Vacuum 1986, 36, 869-871. (E228) Asmussen, J.; Dahlmene, M. J. Vac. Sci. Techno/., 8 1987, 5 , 328-331. (E229) Hogan, M. J.; Ong, P. P. J. Phys. E: Sci. Instrum. 1986, 19, 726-731. (E230) Haugsjaa, P. 0. Rev. Sci. Instrum. 1986, 57, 167-169. Spark Dlscharges (E231) Zoellner. M. J.; Scheeline, A. Appl. Spectrosc. 1987, 4 1 , 943-954. (E232) Cousins, J. C.; Scheeline, A.; Coleman, D. M. Appl. Spectrosc. 1987, 4 1 , 954-962. (E233) Mork, B. J.; Scheeline, A. Spectrochim. Acta, Part B 1987, 42. 1063-1076. (E234 Ma)idl, V.; Coleman, D. M. Appl. Spectrosc. 1987, 4 1 , 200-207. (E235) Majidl, V.; Coleman, D. M. Appl. Spectrosc. 1987, 4 1 , 936-942. (E236) Hsu. W. H.; Majidi, V.; Coleman, D. M. Appl. Spectrosc. 1987, 41, 739-748. (E2371 Beckwith. P. M.: Mulllns, R. L.; Coleman, D. M. Anal. Chem. 1987, ' 59; 163-167. (E2381 Slickers, K.; Iten, J. Spectrochim. Acta, Part8 1987, 42, 791-805. (E239) Buteikis, R.; Naslenas. E.; Oberauskas, J.; Serapinas, P. J. Quant. Spectrosc. Radiat. Transfer 1987, 3 7 , 391-395. (E240) Larigaldie, S.J. Appl. Phys. 1967, 61,90-101. (E241) Gorevaya, A. E.; Spirina, S.V.; Gritsenko, N. N.; Longus, L. D. Zh. Prikl. Spektrosk. 1986, 4 5 , 845-847. (E242) Jiang, Y.; Huang, 0.; Wang. L. Guangpuxue Yo Guangpu Fenxi 1987, 7(2), 66-69. Other Excltatlon Papers (E243) Johnson, E. T.; Sacks, R. D. Anal. Chem. 1987, 59, 2170-2176. (E244) Johnson, E. T.; Sacks, R. D. Anal. Chem. 1987, 59, 2176-2180.

(E245) Albers, D.; Tisack, M.; Sacks, R. Appl. Spectrosc. 1987, 4 1 , 131-139. (E246) Albers, D.; Johnson, E.; Tisack, M.; Sacks, R. Appl. Spectrosc. 1988. 4 0 . 60-70. (E247) Albers, D.: Sacks, R. Anal. Chem. 1987, 59, 593-597. (E248) Kamla. G. J.; Scheeline, A. Anal. Chern. 1986, 58, 923-932. (E2491 Kamla, G. J.; Scheeline, A. Anal. Chem. 1986. 58, 932-939. (E2501 White, J. S.;Scheeline, A. Anal. Chem. 1987, 59, 305-309. (E251) Falk, H.; Hoffmann, E.; Ludke, Ch.; Schmidt, K. P. Spectrochim. Acta, Part B 1986, 4 1 853-857. (E252) Mason, K. J.; Goidberg, J. M. Anal. Chem. 1987, 59, 1250-1255. (E253) Carney, K. P.: Goldberg, J. M. Anal. Chem. 1988. 58, 3108-3115. (E254) Hood, W. H.; Niemczyk, T. M. Appl. Spectrosc. 1987, 4 1 , 674-678. (E255) Dakin. J. T.; Gilliard, R. P. J. Appl. Phys. 1987, 62,79-87. (E256) Belz, H. H.; Gutberlet, H.; Schaliert, B.; Schrader, B. Appl. Spectrosc. 1987, 4 1 , 1009-1019. (E257) Cremers. D. A.; Romero, D. J. Proc. SPIE-Int. SOC. Oot. €no. 1988, 644,7-12. (E258) Burguera, J. L.; Burguera, M. Anal. Chim. Acta 1986, 179, 497-502.(E259) Shakir, I.M. Anal. Chim. Acta 1986, 184, 295-297. (E260) Nakajima, K.; Takada, T. Bunsekl 1987. 3, 179-185. ~

Selected Applications

(F1) Weers, C. A. Kema Sci. Tech. Rep. 1987, 5 , 93-100. (F2) Brenner, I. B.; Lang, Y.; LeMarchand, A.; Grosdaillon, P. Am. Lab. 1987. 191101. 17-32. (F3) Lo, F.'B.'; Arai, D. K.; Nazar, M. A. J. Anal. Toxicol. 1987, 1 1 , 242-246. (F4) Mitchell, P. G.; Sneddon, J. Talanta 1967, 34,849-856. (F5) Xu, L.; Rao, 2. Guangpuxue Yu Guangpu Fenxi 1987, 7, 43-47. (F6) Koyama, T.; Sutoh. M. Nippon Dojo Hif'yogaku Zasshi 1987, 58. 578-585. (F7) Harada. Y.; Kurata, N.; Furuno, G. BunsekiKagaku 1987, 36,526-531. (F8) Barnett, N. W. Anal. Chim. Acta 1987, 198, 309-314. (F9) Igarashi. Y.; Yamakawa, A,; Ikeda, N. Radioisotopes 1967, 36, 563-567. (FIO) Hara, Y.; Kurata, N. Bunseki Kagaku 1966, 35,641-645. (F11) Chaudhri, M. A.; Hannaker, P. Biol. Trace Elem. Res. 1987, 13, 417-421. (F12) Kim, H.; Hill, M. K.; Frlcke, A. L. Tappi J. 1987, 70, 112-116. (F13) Tadani, I.; Watanabe, H. Hlroshirna-kenrkw Selbu Kogyo Gyutsu Senta Hokoku 1987, 30,62-64. (F14) Etoh, M. Bunseki Kagaku 1987, 36,T95-T99. (F15) Lee, C. K.; Low, K. S.Perfanika 1987, IO, 69-73. (F16) Jones, A. C.; Wales, G.; Wright, P. J.; Oliver, P. E. Chemtronics 1967, 2,83-88. (F17) Hall, G. E. M.; Peichat, J. C. Pa. - Geol. Surv. Can. 1986, 86-1A, 89-94. (F18) Hara, H.; Hashimoto, T.; Fujie, S.;Gohshi, Y. Bunseki Kagaku 1986, 35,T76-T79. (F19) Ito, K.; Matsubara, M.; Eto, T.; Tenman, M.; Akiba. K. Tohuku Daigaku Senko Seiren Kenkyusho Iho 1986, 42, 120-126. (F20) Akagi, T.; Haraguchi, H. Bunseki Kagaku 1987, 36,688-692. (F21) Rouchaud, J. C.; Debove, L.; Fedoroff, M.; Amouroux, J.; Slootman, F.; MONan, D. Analusls 1987, 15, 275-285. (F22) Freiburg, C.; Molepo. J. M.; Sansoni, B. Fresenius' Z . Anal. Chem. 1987, 327,304-308. (F23) Gestring. W. D.; Soltanpour, P. N. Soil Sci. SOC. Am. J. 1987, 51. 1214- 1219. (F24) Van Loon, J. C.; Haraguchi, H.; Fuwa, K. Chem. Anal. (N.Y.) 1987, 90. 387-420. (F25) Watanabe, H.; Marushita, K.; Hlro, K. Hlroshlma -kenritsu Seibu Kogyo Gijutsu Senta Hokoku 1987, 30,65-67.

Raman Spectroscopy D. L. Gerrard* and H. J. Bowley T h e British Petroleum Company Limited, B P Research Centre, Chertsey Road, Sunbury-on-Thanes, Middlesex, England The period of this review is from late 1985 to late 1987. During this time over 6000 papers have been published in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to new areas of study. This article covers only those papers that are relevant to the analytical chemist and this necessitates a highly selective approach. There are some areas that have been the subject of many papers with relatively few being of analytical interest. In such cases the reader is referred to appropriate reviews which are detailed in this section. Many reports on the general applicability of Raman spectroscopy (1-4) and Raman microscopy (5)have appeared and they illustrate how the use of the technique in industry is gradually becoming more widespread. Other reviews have also 368 R

0003-2700/88/0360-368R$06.50/0

appeared on structural analysis (6), energy chemistry (7), superconductors (8), nonlinear effects (9,1a), resonance Raman spectroscopy (11, 12), and ceramics (13, 1 4 ) . This report is divided into 11 categories and, as with the P view in this series (1.9, most of the applications rtolids are covered in one or other of these categories. However, it is worth noting that several articles have been published relating to surfaces (16-18) covering applications such as adsorption on metal surfaces (17) and corrosion studies (18). Reviews have also appeared on photoacoustic Raman spectroscopy of gases (19) and Fourier transform Raman spectroscopy (20,21). The latter technique promises to open up a new range of samples that are now amenable to Raman spectroscopic study. The reason for this is that the use of a

0 1988 American Chemical Society

RAMAN SPECTROSCOPY

traeUm Research Centre at SYnbUrpocThsmss. England Hs was born In Cvham and r e d w c nb 0 % dweetmm he c h Uniuasty. London. In 1967 Then 8s a reMBrCh student he worked a, c h a r p l r a n r tar cmplexes. ieceiulng hs ph D degree In 1970 He then joined BrWsh Penoleurn where he worked m the sbsorptoon 8~sCtrmcopyraroup. and In 1972 he began to develop nos Interest in i am an specnorco~y Sinm mat tlms the BP Raman group MI e x p l l m imo many areas 01 Bppilcatb". and Dr. Genard's curent Interests include resomnce Raman speclroswpy 01 cmn~uga~ea piyenes ana polyCyCllC a r m t i c hydrocarbonsand the lndu~trialappllcatlon of the tech+ que.

H*.Hm J. B o d q tonns pan ol the -man specbosmpy ~ m v a p1 the Bmlsh Pewd-surn Research Centre a1 Sunbury-an-Thsmes. Enghand. She was born in BlrminQhamand remived her B.Rarrn. W r e e from the Schml of Pharmacy. Univerrny 01 London. in 1982. W e she spscbllzed in amlvtlcal chernlsw. She men loined Brnish Petroleurn. inntally working In the molecular spectrosc~pyp u p and subsequently sp+ctailzIng In Raman spcUoscopy. MISSBowiey's pfesent I"1erBSts Include Ranla" mtcrosco. py. resonance Raman spctroseopy of conjugsted polyenes. the use 01 Raman speclroscopy to obtain klnenc data. and IndUSmal appllcatbns of munlchannei detectors in Ra

near-infrared Laser in this trpe of work meliminate or redue the fluorescence exhibited by many materials when visible excitation is used. Raman studies of aqueous systems (22) and of pollutants in sediments have also been reported (23). Another area that is attracting considerable attention is glasses. Articles have appeared on the analysis of glasses (24) and of defects therein (25,26) and a comprehensive review article has also been published (27). Causan is a material that is the subject of many Raman studies which include work on diamond a t high pressure (28)or under stress (29). Coal (30) and coal shales (31) can be characterized by using Raman spectroscopy as can the cokes formed on reforming catalysts (32). Organic molecules on graphite surfaces have been detected (33) and the surfaces and interfaces of carbon fibers studied (34). Raman s p e c t r m p y has also heen applied to such diverae systems as liquid crystals (3.9, zeolites (36), ceramie (37.38). and cubic zirconia (39, 40). I N S T R U M E N T A T I O N AND SAMPLING The instrumentation and sample h a n d l i i techniques luKd in Raman spectroscopy are continually being developed and improved upon. This is shown by the large number of articles that have been published on this subject over the past two years (-150 papers/patents). The new developments in the field have been reviewed (41). Several new spectrometershave been designed (and patented) (42-45) and new techniques such as Fourier transform Raman spectroscopy (FT-Raman) (46-48), waveguide spectroscopy (49). and attenuated total reflection Raman spectroscopy (50) have been reported. FT-Raman uses an almost conventional FT-IR spectrometer with a Nd-YAG laser and has potential for looking a t samples that fluorescence strongly with visible excitation. Waveguide spectroscopy allows very thin films on substrates to be examined with comparative ease. Charge coupled devices are also being evaluated as detectors for Raman systems (51). These will allow two-dimensional imaging on a short time scale. Fluorescence rejection continues to be a subject addressed by many workers (52-59). Many methods of overcoming this phenomenon have been reported, including the use of the far red lines of a krypton ion laser ( 5 9 , anti-Stokes Raman spectroscopy (56).gated diode array detectors (51),and s~ chronously pumped cavity dumped dye laser excitation m t h

gated photon counting (58,591. These methods have all met with some degree of succes~,although sample fluorescencestill remains a problem for the analyst in many cases. The use of compacted metal disks (60) or a rotating mirror device (61) to facilitate the measurement of Raman spectra has been reported. The use of a dye laser tunable in the region of 217-310 nm (62) for Raman spectroscopy has been demonstrated as has that of air-cooled lasers (63). Variahle-temperature (64) and constant-temperature (65)cells have been utilized in Raman spectrosmpic studies. The use of fibre-optic probes for obtaining Raman spectra remotely from samples possibly in hostile environments has continued to expand (66-58). LIDAR bas been reviewed (69) and new measurements have been made (70). Developments in Raman microscopes have also been the subject of several papers. T h e use of high-numerical-apertureobjectives has been evaluated (71). The handling of minute samples for Raman spectroscopy has been the subject of a new patent (721, and a new generation of instruments (73),particularly with respect to mapping (74), has been reported. Data handling techniques have also been expanding over the past two years. Data acquisition with an Apple microcomputer (75) has been detailed and the use of deconvolution (76)methods, notably Fourier self-deconvolution (77),reported.

LIQUIDS AND S O L U T I O N S Liquid-phase studies account for many of the papers published on Raman spectroscopy, but this section is restricted to those studies which do not tit into subsequent categories. Reviews have been published in the area (78) and many studies have been carried out on conformationaleffects in the liquid phase (79,SO). Techniques have been developed to aid micmdroplet mixing for the study of rapid reactions (81)where Raman spectroscopy can be used to determine mixing times and concentrations (82). Surfactants have been investigated in some depth (83-85) where solubilization has been monitored. Raman spectroscopic results have also proved useful in the study of corrosion inhibition (888). The technique has been used to monitor corrosion and passivation of metal surfaces (88).Many of these studies have been carried out by using spectroelectrochemistry which continues to increase in popularity for studying many systems (89, 90). The effect of electrolyte concentration on the Raman spectrum of water in aqueous solutions has been reported (91)as has the effect of salts on this mode (92). Raman spectroscopy has been used to provide an insight into the structure of water (93, 94) particularly a t the ice-water transition (95). It has also been used to determine isosbestic points for water (96). Solvation effects have been documented (97-99) as have the effects of pH (100) and hydrogen bonding (101) on the Raman spectra of aqueous solutions. Qualitative (102) and quantitative (103) studies of thiourea solutions have been reported and Raman spectroscopy has been used to look a t equilibria in aqueous solutions (104). The technique has also been used to analyze for trace amounts of phenols in aqueous solutions (105) and to characterize films grown in sulfuric acid solutions (106). silicate and borate solutions (107),and aqueous tetramethylammonium silicate (108). It has also been used to study nitric acid solutions and rotational isomerization in the liquid phase (110).

GASES AND MATRIX ISOLATION The technique of matrix isolation continues to be of considerable value in aiding spectral interpretation. Once again papers have been published in this area showing how the technique can be used to advantage with systems such as aluminum/aluminum oxide ( I l l ) ,silver clusters (112), germanium (113), sulfur halides (114). and carbon disulfide (115). It is apparent, however, that the diversity of systems reported in the literature over the past two years is not as great as in the previous review in this series. The use of Raman spectroscopy to study gaseous systems has once again been reviewed (116, 117) and the use of pbotoacoustic Raman spectroscopy to study gases has been reported (118,119). A Raman spectroscopic method has been developed to measure the concentrationof oxygen in air (120). A second method, which has been demonstrated, allows the temperature and concentration of the species to be calculated ANALYTICAL CHEMISTRY, VOL.

BO. NO. 12. JUNE 15. IS88 369 R

RAMAN SPECTROSCOPY

from the equilibrium position of the reaction N2O4 = 2N02 = 2N0 + O2 (121). Gases have also been studied by using a Fourier transform spectrometer (122) and Raman spectroscopy has been used to measure gas densities in a swirling flow combustor (123). The technique has been used to detect and identify the gases given off when polymers are irradiated with y rays (124). Conformational information has also been reported for n-alkanes (125, 126). A considerable amount of work has also been reported relating to the gases found in flames. For instance nitric oxide formation in nonpremixed syngas flames has been reported (127) and much work has been carried out on methanenitrous oxide laminar flames (128)and hydrogen-nitrous oxide flames (129). The kinetics of nitric oxide formation in laminar and turbulent methane combustion have been followed (130) and the products of this process have been identified (131). The subject of engine-knock has also been explored by using Raman spectroscopy (132) and the overtone region of ethyne has been reported upon (133).

BIOLOGICAL MOLECULES The use of Raman spectroscopy, including resonance-enhanced and surface-enhanced Raman spectroscopies, to study biological systems continues to grow very rapidly and still represents, in terms of the number of publications (over 600 papers in the period under review) the major application of the technique. In an article of this size it is only possible to review in a cursory manner the areas that have been studied using Raman spectroscopy. Several general reviews have been published (134-137) as have some more specific articles reviewing the current status of Raman spectroscopy with respect to heme protein structure (138),chemical agents and stimulants (139),vision research (140),degenerative neurological diseases (141), fast processes in biology (142), metalloporphyrins (143), and microscopy in biology, SERS in the study of biomolecules (145) and nonlinear techniques (146). Resonance-enhanced Raman spectroscopy can be used to probe haemoglobin (147),bacteriorhodopsins (I#), shells and corals (149), proteins (150),and biopolymers in general. The use of ultraviolet excitation for Raman studies has been of great value in the area of biology biochemistry (151). Resonance-enhanced signals can be o tained from a much wider range of biological systems (152)using ultraviolet wavelengths. These inc!ude peptides (153), cytochrome c (154),flavenoids (155), acyl-papain complexes (156, 157), and artificial sweeteners (158). SERS has been used in the study of biomolecules (159-162) and in particular membrane proteins (163), chromosomes (164),and DNA (165). Raman spectroscopy has also been used to probe drug action, e.g. amphetamines (166), pharmaceuticals containing theophylline (167), lenses and anticataract drugs (168) local anaesthetics (169), and anticancer drugs (170). Raman spectroscopic methods have also been developed to detect antigens/antibodies (171),the components of plant cell walls (172), and globular proteins (173) and to analyze the headspace in sealed drug vials (174). The technique has been used to study metalloproteins (175), disulfide bridges in proteins (176),urinary calculi (177), pigments in vivo (178), longitudinal acoustic modes in fatty acids (179), the isomers of retinal (180),and viruses (181). Another process that has been probed extensively is photosynthesis (182-184) Raman spectroscopy has also been used to analyze gallstones (185), cytochrome c (186),octopus rhodopsin (187),and fervocenes (188). Fermentation processes have been examined (189) and contact lenses have been analyzed (190).

6

POLYMERS

Raman spectroscopy has,in the past, been shown to provide valuable information for the polymer chemist and this continues to be the case. The technique can provide an insight into the structure and composition of polymers. Many reviews (191,192) and general papers (193, 194) describing the wide applicability of the technique to polymer analysis have been published as well as reviews on more specific areas such as polymer wear (195), polyacetylene (196), and conjugated polymers (197) which consider in more detail the work that has been carried out on these subjects. Raman studies have also been carried out on strained Kevlar 49 fibers (198), weathered paints (199),poly(viny1 chloride) gels (200),stressed 370R

ANALYTICAL CHEMISTRY, VOL. 60,

NO. 12, JUNE

15, 1988

polyethylene (201) and the dehydrochlorination of stretched poly(viny1 chloride) (202). Stressed polyester fibres have also been the subject of Raman spectroscopic study (203). Orientation and crystallinity of polymers such as poly(ethy1ene terephthalate) (204, 205) and polyethylene (206,207) have been probed by using Raman spectroscopy. The technique has also been used to monitor crystallization kinetics in poly(ethy1ene terephthalate) (208) and poly(propy1ene terephthalate) (209). The modification of polyester fibers has also been studied (210). Polyethylene crystallinity and structure continue to attract a considerable amount of attention and subjects such as crystallite size determination (211),single-crystal-texture (212), the liquidlike components in the crystalline phase (213) and the structure of crystals formed in dilute solution (214) have been addressed. Other polymers that have been studied include polymeric surfactants (215),polymethylene (216),and poly(oxyethy1ene) (217). The technique has also been used to monitor polymerization processes (218-222). Once again the class of polymers that have attracted the most attention axe those exhibiting electroactivity (223). Many papers have been published on polyacetylene (224-236). The effects of temperature on the Raman spectrum of this polymer have been reported (226). Studies relating to highly (227) or fully (228) oriented polyacetylene films have been made as have those on stretched polyacetylene (229). Chain defects in polyacetylene (230,231) and conjugated polymers (232) can be detected as can disorder in both the cis and the trans polymers (233). Cis and trans polyacetylenes continue to be of interest in terms of Raman spectroscopic studies (234). Soluble polyacetylene has also been characterized by using vibrational spectroscopy techniques (235) as has the doped polymer (236). Other conducting polymers that have been studied include polydiacetylenes (2371, poly(ppheny1ene) (238),and polythiophene (239).

SEMICONDUCTING MATERIALS

Raman spectroscopy is being applied more and more to the study of semiconducting materials. The analysis of semiconductor thin fiis that we this technique has been reviewed (240,241) as has its application to the study of semiconductor superlattices and quantum wells (242). The characterization of such materials is considerably aided by the use of Raman spectroscopy and this is reflected by the number of publications in this area. Silicon and germanium films have been studied (243-245) as have amorphous-silicon/germaniuminterfaces (246). The surface nature of the Raman effect also allows the surface layers of films to be studied (247). Laser-Raman results have also been reported for hydrogenated amorphous silicon/tin alloys (248), silicon carbide (249), disorder effects in gallium aluminum arsenide (250), oxide layers on gallium arsenide (251), and ultrathin germaniumsilicon superlattices (252). Raman spectroscopic results have also yielded information about the effects of laser annealing (253, 254) and thermal annealing (255). The effects of stress in silicon (256) and of strain in semiconductor surfaces (257) have also been investigated. The technique has also been used to characterize silicon for solar cells (258) and to study local segregation in semiconductors (259). Raman spectroscopy has also been used to probe chemical reactions at the aluminum-gallium antimonide interface (260), dopant homogeneity in gallium phosphide and gallium arsenide (261),and the temperature in laser-heated silicon (262).

HIGH TEMPERATURE AND HIGH PRESSURE STUDIES The value of Raman spectroscopy to analyze, noninvasively, systems that are not amenable to other methods of study, e.g. under conditions of temperature and f or pressure, has been recognized and is being exploited increasingly. This is reflected by the number of publications in this area. A comprehensive review has been published on molecular solids under high pressure (263). Carbon disulfide has been studied extensively under pressure in the solid phase (264,265) as has benzene (266,267). Conformational populations as a result of pressure have also been studied by using Raman spectroscopy (268,269). Diamond has been examined at pressures up to 38 GPa (270) and the irreversible changes that occur

RAMAN SPECTROSCOPY

in the spectrum of amorphous silica at pressures >9 GPa have been reported (271). The phase transitions of molecules such as carbon tetrabromide (272),silver niobate (273),phenanthrene (274),thin film dielectrics (275),and crystals (276)have been monitored with Raman spectroscopy. The technique has also been used to characterize the different forms of ice (277,278),to look at the order in the linear chains of terephthalic acid (279)and premelting in fatty acids (280),and to evaluate the temperature dependence of hydrogen bonding in liquids (281). Other studies have related to dynamic systems under conditions of temperature including the oxidation of iron chromium/molybdenum alloys (282),the kinetics of anne ing of structural defects in vitreous silica (283),and reactions occurring on metal and ceramic surfaces (284). Damage accumulation in ceramics has also been investigated (285). The temperature dependence of the Raman spectra of many materials has been studied including carbon (286),nitric acid solutions (287), quartz (288),urea (289),hydrogen and methane in zeolites (290),calcium oxalate (291),and sodium and potassium nitrite mixtures (292). Polycrystalline barium and cadmium nitrates have been examined at temperatures close to their melting point (293) and the temperature dependence of solvation effects has been investigated (294). Raman spectroscopic studies have also proved useful in the estimation of the thermal history of char samples (295).

d

RAMAN MICROSCOPY Since the last review in this series Raman microscopy has been applied to an even wider range of systems and the instrumentation/sample handling techniques have been further developed (71-74). Several general papers have been published in this area reviewing the basic applicability of the technique for nondestructive chemical analysis of microscopic samples (296-298). Review articles have covered subjects as diverse as paint analysis (299),drug analysis (300),and the characterization of wood and wood pulp (301). Raman microscopy ahs also been used to characterize explosives (302) and zirconium oxide originating from fuel rod cladding in nuclear incidents (303) and to differentiate between natural and synthetic gases (304). Mineralogical studies have continued to be aided by Raman microscopy techniques when considering ore deposits (305) and many studies have been carried out to characterize fluid inclusions in minerals (306-310). This work has yielded information about the composition of such inclusions (306309) and quantitative analyses for COP,CHI, C2Hs,H P ,and H2S (310). Fluid inclusions in a hopper crystal in halite have also been studied (311). The limitations of Raman microscopy in the context of fluid inclusions in minerals have also been discussed (312). Gaseous inclusions in minerals (313) and glasses (314) have also been examined. Another material that has received a considerable amount of attention is carbon. Graphitic and nongraphitic carbon has been characterized by Raman microprobe analysis (315) and intercalation compounds have been studied (316). The technique has been used to demonstrate the graphitic nature of the surface of glassy carbons (317). Other studies relating to carbon include the characterization of carbon-carbon composites (318)and the measurement of carbon in meteorites (319). Raman microprobe studies have also been used to characterize uranium oxides (320),to identify fibers (321,322), and to study polymer spherulite structure (323). Corrosion studies have also involved the use of Raman microprobe in order to determine the mode of action of corrosion inhibitors (324)and to characterize corrosion products formed on iron-chromium alloys (325,326). The technique has also been used in a quality control context (327),in many cases determining the cause of failure in systems such as oil field drill pipes (328)and circuit boards (329). Other systems that have benefitted from Raman microprobe studies include titanium(II1)-dopedalumina fiims containing inclusions (330), colloid aggregates (331),carbonate minerals (332),and semiconductors (333). Coal fly ash has been analyzed (334,335), and laser-induced changes in solid surfaces have been characterized (336,337). The stress induced phase transformation in yttrium oxide-PSZ has been observed (338) and data yielding conformation, orientation, and crystallinity information for poly(ethy1eneterephthalate) have been obtained (339, 340).

THIN FILMS AND SURFACES Raman spectroscopy is increasingly being used to study surfaces and thin films and this is reflected by the amount of work reported in this area. Many reviews have been published on subjects as diverse as semiconductor surfaces (341),organic coatings (342,343),and passivated metal surfaces (344). The area that has once again attracted the most interest is that of catalysis. The information available on transition-metal oxides and catalysts has been reviewed (345) as have Raman studies of catalysts in general (346,347). The system that has attracted more interest than any other is supported molybdenum oxide. Molybdenum oxide supported on alumina catalysts has been characterized (348, 349) and a similar study has been carried out for a zirconia support (350) and the effects of calcination and water exposure on such systems have been studied (351, 352). Another group of catalysts that has been widely studied is that based on iron. Ammonia/iron catalytic systems have been characterized (353) and the activation of the iron catalyst and in situ hydrogenation of acetophenone has been observed by using Raman spectroscopy (354). A catalyst used for Fischer-Tropsch synthesis has been studied extensively (355, 356). Other systems that have been examined include vanadium pentoxide/titania (357), nickel-tungsten alumina (358),titania/ silica and titania alumina (359),tin-antimony oxide catalysts (360),and nicke oxidely alumina (361). The metal-support interactions of palladium catalysts have been probed by using Raman spectroscopy (362) as have electrocatalysts involving transition-metal macrocycles (363). Corrosive processes have also been the subject of a large number of Raman studies. Raman spectroscopyhas been used to characterize oxide scales formed on stabilized stainless steel (364) and the thin corrosion films formed on iron at 100-150 OC in air (365,366). The technique has also been used to study the composition of anodic corrosion films (367) and iron passivity (368). Adsorbates on metal surfaces have also been examined (369-371). Characterization of optical coatings continues to be an active area of study (372) and this was extended into the characterization of laser-induced damage on optical coatings (373, 374). Workers continue to study zeolites (375-377) with Raman data providing useful information with respect to their catalytic activity. Spectroelectrochemistry also continues to be of interest with studies including the electrochemicalreduction of nitrobenzene (378),iron oxides (379),and high temperature aqueous solutions (380). Surface layers of crystals and films have also been the subject of Raman investigation (381),as has the characterizationof siliconzincsulfur alloy films (382), polypyrrole filsm (383),and Langmuir-Blodgett films using a charge-coupled device as detector (384). Studies on interfacial molecular membranes have also been carried out (385).

1

RESONANCE-ENHANCED AND SURFACE-ENHANCED RAMAN SPECTROSCOPY Because of the weak nature of the Raman effect, it is a relatively insensitive technique. However in some instances the sensitivity and specificity can be greatly increased by using resonance-enhancement or surface-enhancement effects. Reviews have been published in both of these areas (386),and of particular note in the case of the resonance effect is the use of ultraviolet excitation (387). The application of surface-enhanced Raman spectroscopy (SERS) has also continued to grow in terms of both the number of workers applying the technique and also the diversity of the systems studied. Reviews have been published recounting the work carried out on liquid-solid interfaces (388) and adsorbate characterization (389). The nature of the SERS effect is still being reviewed (390-392) with particular emphasis on how an understanding of the effect itself can help in the understanding of specific systems, e.g. colloids (393). Reviews relating to the mechanisms involved in the surface enhancement are also pointing to the future uses of this technique (394, 395). Once again the resonance Raman effect is being applied to a very wide range of systems from determination of the core size in hemoglobin molecules (396) to the microanalysis of carcinogenic polycyclic aromatic compounds (397). Resonance Raman spectroscopic studies of dye molecules have continued (398,399)as have time-resolved resonance studies where the ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

371 R

RAMAN SPECTROSCOPY

techniques and their applicability are discussed (400). The application of ultraviolet excitation for resonance Raman spectroscopic studies has continued to increase in popularity and usefulness. Benzene vapor has been studied with excitation in the region 184-220 nm (401). Other compounds that have been studied by UV-resonance Raman include titanium alkoxides (402),proteins and protein components (403),N methylacetamide (404), and photochemical transients of henol tyrosine and tryptophan (405). The technique has also een used to determine the aromatic species present in complex matrices, e.g. fossil fuels (406). Resonance Raman spectroscopy has also been used to study adsorbates on metals (407),nonmetals (408),and semiconductors (409). Work has contlnued by using resonance Raman spectroscopy to further elucidate structure in polyacetylenes, both doped (410) and undoped (411,412). Resonance Raman spectroscopy is now being used as a detector for high-performance liquid chromatography for separation of aliphatic aldehydes (413) and aliphatic amines (414)and the resonance effect is also yielding useful information on defects in gallium arsenide matrices (415,416)and semiconductors in general (417), photoreactions (4181, azulene (4191, and nucleic acids (420) and their chromophores (421). The application of resonance Raman spectroscopy in environmental analysis is also being explored (422). Surface-enhancedRaman spectroscopy is increasinglybeing used for characterization purposes, e.g. catalysts (423),air pollutants (424), and carbonaceous materials (425). The surface chemistry of chromia films has been investigated (426, 427) as have the adsorbates on semiconductor surfaces (428). Dynamic systems have also been the subject of SEW studies, e.g. electroorganic reactions (429, 430), the detection of reaction intermediates (431))polymerization of acrylic acid (432), and the kinetics of surface graphitization (433). The mechanism of action of corrosion inhibitors has been probed (434) and Langmuir-Blodgett films have been examined (435). SERS has also been extended to spatially resolved studies (436,437)and to detect very small amounts of material (438). Studies have continued on dye molecules (439) and the combination of resonance enhancement with surface enhancement has been the subject of continuing studies (440).

E

NONLINEAR RAMAN SPECTROSCOPY The techniques of coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS) continue to be exploited and applied to systems of interest to the analyst. Reviews have been published that deal with nonlinear techniques in general (441,442),CARS (443,444),and SRS (445-447). In the case of the latter effect several articles have also considered the implications in terms of optical fibers (448, 449). This is of obvious importance as optical fibers are used increasingly for sampling in hostile environments. CARS remains the most widely used and applied of the nonlinear techniques and this is demonstrated by the diversity of the systems studied and reported. Once again combustion diagnostics dominate the applications of the method (450,451) although plasma diagnostics (452)and combined plasma diagnostics and combustion diagnostics studies (453) are also reported. CARS is being used to measure concentrations and temperatures of species in flames (454,455)and as well as for the more conventional acetylene flame temperature measurements (456,457). Temperature can also be determined for sooting flames (458,459)using this experimental method. It has been demonstrated that the temperature distribution around a linear incandescent filament can be measured by using CARS (460). Real-time measurements in industrial and semiindustrial furnaces have continued (461, 462) yielding information about the concentration and temperature of the gases present. The technique has also been applied to catalytic reactors where axial methane concentrations have been measured in the catalytic tube-wall reactor (463). New methods for making simultaneous multiple species measurements have also been reported (464). The technique has also been used to study van der Waals complexes, eg. carbon dioxide dimer (465) and to make quantitative measurements of individual polycyclic aromatic hydrocarbons in mixtures (466).

ACKNOWLEDGMENT Permission to publish this paper has been given by the 372R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

British Petroleum Company plc. LITERATURE CITED (1) Grasselli, J. 0.; Mehicic, M.; Mooney, J. R. frensenius' 2.Anal. Chem. 1986, 324(6), 537-543. (2) Suetaka, W. Hyomen Kagakuk 1986, 7(3). 243-248; Chem. Absfr. 1987, 706, 1126q. (3) Shibata, S. 6unseki 1986, 9 , 608-617; Chem. Abstr. 1987, 706, 94989m. (4) Baranska, H. S e r . Chem. (Uniw. im. Adama MicKlewicza Poznaniu) 1984, 44, 151-163; Chem. AbSh. 1985, 703, 97939~. ( 5 ) Mehicic, M.; Hazle, M. A.; Barbour, R. L.; Grasselli, J. G. Microbeam Anal. 1985, ZOfh, 68-70. (6) Reich, P.; Brzezinka, W.; Buge, H. G.; Pilz, W.; Splett, C.; Steiger, T.; WZke, K. 2. Chem. 1985, 25(7) 233-240; Chem. Absfr. 1985, 103, 149688h. (7) Cooney, R. P. Vib. Spectra Sfrucf. 1986, 75, 111-156. (8) Klein M. V. festkoerperprobleme 1985, 25, 637-642. (9) Tanagahara, T. Semicond. Robed Ultrafast Laser Spectrosc. 1984, 2, 331-389. (10) Sakaguchi, T. Kelryo Kenkyusho Hokoku 1984, 33(3), 229-240. (11) Clark, R. J. H.; Dines, T. J. Angew. Chem. 1986, 98(2), 131-160; Chem. Absfr. 1986, 704, 215322h. (12) Hudson, B. S. Springer Roc. Phys. 1985, 4 , 170-174. (13) Iwamoto, N. Nlppon Klnzoku Gakkai Kaiho 1985, 24(6), 503-505; Chem. Abstr. 1986, 104, 191388f. (14) Honsono, H.; Abe, Y.; Ikeda, T.; Imagawa, H. Seramikkusu 1985, 20(8), 700-712; Chem. Absfr. 1986, 704, 172911e. (15) Gerrard, D. L; Bowley, H. J. Anal. Chem. 1986, 58, 6R-13R. (16) Watanabe, T. Denkl Kagaku oyobi Kogyo Butsuri Kagaku 1985, 53(6), 358-361; Chem. Abstr. 1985, 703, 95162m. (17) Suetaka, W. Junkafsu 1985, 30(5), 317-322; Chem. Abstr. 1985, 703, 166570f. (18) Ohtsuka, T. 6oshoku Gvufsu 1966, 35(6), 352-358; Chem. Absfr. 1987, 106, 88601n. (19) Barrett, J. J. Appl. Spectrosc. Rev. 1985, 21(3), 419-464. (20) Buijs, H. Spectroscopy (Eugene, Oreg.) 1986, 7(8), 14, 18. (21) Chase, B. Anal. Chem. 1987, 59, 881A, 882A, 884A, 886A, 888A, 889A. (22) Luch, W. A. P. Ser. Chem. (Uniw. im. Adama MicKiewicza Poznaniu) 1984, 44, 203-231. (23) Soba, Y.; Soba, M.; Harata, K. Kokurlfsu Kogai Kenkyusho Kenkyu Hokoku 1984, 58, 91-94; Chem. Absfr. 1986, 704, 61155s. (24) Masui, A.; Noshiro. M. Seramikkusu 1986, 27(5), 440-447; Chem. Abstr. 1986, 705, 213000~. (25) Brinker, C. J.; Tallant, D. R.; Roth, E. P.; Ashley, C. S. Mater. Res. SOC. Symp. Proc. 1986, 67, 387-411. (26) Ashimov, U. B.; Aymbaer, 0. Z.; Zaretskaya, N. P. Int. Wiss. Kolloq.Tech. Hochsch. Iimenau 1986, 37(4), 79-81; Chem. Abstr. 1987, 706, 1648 . - lox. . .... (27) Koudelka. L.; Pisarcik. M. Sillkaty (Prague) 1987, 37(1), 63-82; Chem. Abstr. 1987. 706. 9 2 5 7 2 ~ . (28) Sherman,'W. F.' J-Phys. C . 1985, 78(30), L973-L978. (29) Sharma, S.K.; Mao, H. K.; Beii, P. M.; Xu, J. A. J . Raman Specfrosc. 1985, 76(5), 350-352. (30) Nakamizo, M. Nenfyo Kyokaishi 1985, 64(1 l ) , 929-940, Chem. Abstr. 1986, 705, 155633~. (31) Johnson, C . A.; Patrick, J. W.; Thomas, K. M. fuel 1986, 65(9), 1284-1290. (32) Espinat, D.; Dexpert, H.; Freund, E.; Martino, G.; Couzi, M.; Lespade. P.; Cruege, F. Appl. Cafai. 1965, 76(3), 343-354. (33) Clarke, R. H. Report ARO-19141.3-CH. 186; Order No. ADA165431/ 8/GAR (5 pp). Available NTIS from: Gov. Rep. Announce. Index(U.S.) 1986. (13). Abstr. No. 628.523. (34) Ish&nl,' A.; Ishida, H.; Katagiri, G.; Tomlta, S. Coupos Interfaces Proc. Int. Conf. 7st 1986, 195-202. (35) Zhu, Z.; He, D.; Liu, C.; Uang, X. Wuli 1985, 74(6), 370-375; Chem. Absfr. 1986, 704, 1 3 3 2 1 ~ . (36) Dutta, P. K.; Shieh, D. C.; Puri, M. J . Phys. Chem. 1987, 97, 2332-2336. (37) Marhsall, G. L. Mater. Sci. Monogr. 1987, 386, 1065-1072. (38) Exarhos, G. J.; Donley, M. S. Mlcrofmam Anal. 1987, ZZnd, 125-127. (39) Ishigame, M.; Yoshida, E. Solid State Ionics, 1987, 23(3), 211-218. (40) Liu, D. W.; Perry, C. H.; Wang, W.; Ingel, R. P. J . Appi. Phys. 1987, 62(1), 250-253. (41) Kiefer, W. Fresenius' 2.Anal. Chem. 1986, 324(7), 642-648. (42) Agency of Industrial Sclences and Technology Jpn. Kokai Tokyo Koho JP 60,113, 132 (85, 113, 132) (CI. GOlN21/65), 19 June 1985, Appl. 83/221,805, 25 Nov 1963. (43) J E M Ltd. Jpn. Kokai Tokyo Koho JP 60,100,728 (85,100, 728) (CI. GOlJ3/44), 04 June 1985, Appl. 83l209.679, 08 Nov 1983. (44) Nguyen, Q. D.; Jouan, M.; Plaza, P.; Robieux, J. Fr. Demande FR 2,571,144 (Cl. GOlN21/65), 04 April 1986, Appl. 84/15,047, 01 Oct 1984. (45) Hitachi Ltd. Kokai Tokyo Koho JP 6053,834 (8553; 834) (Cl. G01N21/ 6% 27 March 1985, Appl. 83/160,390, 02 Sept 1983. (46) Graener, H.; Laubereau, A. Sprlnger R o c . Phys. 1985, 4, 11-14. (47) Hlrschfeid, T.; Chase, B. Appi. Spectrosc. 1986, 40(2), 133-137. (48) Chase, D. B. J . Am. Chem. SOC. 1986, 708, 7485-7488. (49) Barbaczy, E.; Dodge, F.; Raboid, J. F. Appi. Specfrosc. 1987, 47(2), 176-179 .. (50) Reed, C. E. Report, available from University Microfilms Int., Order No. DA 8617 970, 1986 (337 pp). From: Diss. Abstr. I n f . , 6 1986, 47(5), 2049. (51) Murray, C. A.; Dierker, S. B. J . Opt. SOC. Am. A 1966. 3(12). 2151-2159.

RAMAN SPECTROSCOPY

(52) Delhaye, M.; Deffontalne, A.; Chapput, A.; Bridoux, M.; DaSllva, E. Ger DE 3,434.035(CI. G01N21/65)09 May 1985, FR Appl. 63/15,939,30 Sept 1983. (53) Everall, N.; Jackson, R. W.; Howard, J.; Hutchinson, K. Sprlnger Proc. Phys. 1985, 4,25-29. (54) Bright, F. V.; Hieftje, G. M. Appl. Spectrosc. 1988. 40(5),563-587. (55) Williams, K. P. J.; Gerrard, D. L. Opt. Laser Technol. 1985, 17(5), 245-248. (56) Bowiey, H. J.; Gerrard, D. L. Opt. Laser Technol. 1968, 78(1),33-35. (57)Everall, N.; Jackson, R. W.; Howard, J.; Hutchinson, K. J. Raman SpechOSC. 1988, 17(5),415-423. (58) Howard, J.; Everall, N. J.; Jackson, R. W.; Hutchinson, K. J. Phys. E 1988. . 79(11\. , .934-943. -- (59) Watanabe, J.; Kinoshita, S.;Kushida, T. Bunko Kenkyu 1988, 35(1), 57-62: Chem. Abstr. 1987. 106. 75278n. (60) Nimmo, J . A.; Bovill, A. J.; McConnell, A. A.; Smith, W. E. J. Raman Spectrosc. 1985, 16(4),245-250. (61) Martin, J. C. Rev. Scl. Instrum. 1985, 56(12),2217-2221. (62) Zhiltsar, V. I.; Klimashlna, A. G.; Mnuskln, V. E.; Nikiferar, V. G.; Tokareva, A. N.; Trinchuk, B. F. Z h . Prlkl. Spektrosk. 1985, 43(3),400-404; Chem. Abstr. 1988, 104,78610j. (63) Gerrard, D. L.; Bowley, H. J. Opt. Laser Technol. 1986, 18(2),93-94. (64) Martin, J. J.; Cavagnat, R.; Carnut, J. C.; Couzi, M.; Daleau, G.; Devaure, J.; Maissara, M.; Mokhllsse, R. Appl. Spectrosc. 1988, 40(2), 217-223. (65) McMahon, P. M.; Cerreta, M. K.; Berglund, K. A,; Larson, M. A. Appl. SpeCtrOSC. 1988, 40(2),262-283. (66) McLachlan, R. D.; Jewett, G. L.; Evans, J. C. US 4,573,761(CI. 35096.24;902B5/16),04 March 1986,Appl. 531,877,14 Sept 1983. (67) Nguyen, Q. D.; Prud’homme, M.; Plaza, P.; Joyeux, M. C. R . Acad. Sci., Ser. 2 1988, 302(6),313-318;Chem. Absh. 1986, 104,210848~. (68) Nguyen, Q.D.; Plaza, P. Analysis 1988, 14(3),119-124 Chem. Abstr. 1986, 104,236288s. (69)Sreckovic, M.; Vujkovic, C. P. Tehnlka (Belgrade) 1968, 41(2),E3-El0; Chem. Abstr. 1966, 105, 142180~. (70) Houston, J. D.; Sizgorie, S.;Ulltsky, A,; Banic, J. Appl. Opt. 1988, 25(B), 2115-2121. (71) Bremard, C.; Dhameiincourt, P.; Laureyns, J.; Turrell, G. Appl. SpectfOSC. 1985,39(6),1036-1039. (72) Hitachi Ltd. Jpn Kokai Tokyo Koho JP 60 86,450 (85 86, 450) (CI. GOlN21/65),16 May 1965,Appl. 83/194,320,19 Oct 1963. (73) Barbillat, J.; Dhamellncourt, P.; Deihaye, M.; DaSllva, E.; Roussel, B. Microbeam Anal. 1985, ZOth, 15-18. (74) Fauchet, P. M. Scanning Electron Mlcrosc. 1986, 2 , 425-435. (75) DeBellls, A. D.; Low, M. J. D. Anal. Instrum. ( N . Y . ) 1985, 13(3-4), 257-267. (76) Dodd, J. G.; DeNayer, L. K. Microbeam Anal. 1985, ZOth, 7-14. (77) Bowley, H. J.; Collin, S.M. M.; Gerrard, D. L.; James, D. I.; Maddams, W. F.; Tooke, P. 8.; Wyatt, I.D. Appl. Spectrosc. 1985, 39(6), 1004-1009. (78) Abramczyk, H.; Reimschussel, W. Ser. Chem. (Uniw. im. Adama MlcKiew;cza Posnanlu) 1984, 44, 63-75; Chem. Abstr. 1985, 103, 112297d. (79) Barker, D. J.; Summers, L. A.; Cooney, R. P. J. Mol. Struct. 1987, 159(3-4),249-254. (80) Bribes, J. L.; Malilols, J.; Spartouchs, S.;Gaufres, R. C . R . Acad. Scl., Ser. 2 1985, 300(16),787-790; Chem. Abstr. 1985, 103, 122628b. (81) Simpson, S.F.; Klncaid, J. R.; Holler, F. J. Anal. Ch8m. 1986, 58(14), 3163-3166. (82)Cook, B. W.; Louden, J. D.; Lorriauk-Rubbens, A,; Novel de Kerangue, L.; Brldoux, M.; Wallart, F. J. Raman Spectrosc. 1987, 18(3),163-169. (83) Picquart, M. J. Phys. Chem. 1988, 90,243-250. (84) Shlh, L. B.; Wllliams, R. W. J. Phys. Chem. 1988, 90, 1615-1620. (85) Schoen, P. E.; Yager, P.; Priest, R. G. NATO AS1 Ser., Ser. E 1985, NO. 702, 223-232. (86) Jezlorowski, H.; Moser, 6. Chem. Phys. Lett. 1985, 120(1),41-44. (87) Thanos, I.C. G. J. Electroanal. Chem. Interfacial Electrochem. 1988, 210(2), 259-264. (88) Ruther, W. E.; McMahon, J. J.; Melendees, C. A. Proc.-Electrochem. SOC. 1986, 86-87,585-590. (89) Iwasakl, N.; Sasaki, Y.; Nlshlna, Y. Surf. Scl. 1985, 158(1-3), 352-358. . . ~ .. - I

(90) Hamilton, J. C.; Farmer, J. C.; Anderson, R. J. J. Electrochem. SOC. 1986, 733(4),739-745. (91) Rull, F.; De Saja, J. A. J. Raman Spectrosc. 1988, 17(2),167-172. (92) Gogolinskaya, T. A.; Patsaeva, S.V.; Fadeer, V. V. Dokl. Akad. Nauk SSSR 1988, 290(5), 1099-1103; Chem. Absh. 1988, 106,40622t. (93) Klose, M.; Naberukhln, Yu. I.2.Phys. Chem. (Leipzig) 1985, 266(6),

1084-1108. (94) Madden, P. A.; Impey, R. W. Chem. Phys. Lett. 1986, 123(6), 502-506.

(95) Glushkar, S. M.; Panchlshin, 1. M.; Fadeer, V. V. Dokl. Akad. Nauk SSSR 1986, 291(4),836-839;Chem. Abstr. 1987, 106,1851578. (96) Walfrafen. 0. E.; Hokmabadl, M. S.;Yang, W. H. J. Chem. Phys. 1988,

85(12).6964-6969. (97) Salama, S. B.; Wasif, S. Arab Gulf J . Scl. Res. 1985, 3(1), 121-131. (98) SYmOns, M. C. R.; Rena-Nunez, A. S.J. Chem. Soc., Faraday Trans. 7 1985, 81(10),2421-2425. (99) Leheny, A. R.; Rossetti, R.; Brus, L. E. J. Phys. Chem. 1985, 89, 4091-4093. (100) Bllles, F.; Gal, M. J. Mol. Struct. 1966, 142,59-62. (101) D’Aprano, A.; Donato, D. I.; Mlghardo, P.; Aliotta, F.; Vasi, C. Mol. Phys. 1988, 58(1),213-217. (102) Freeman, D. W.; Baglln, F. 0.; Wllkes, L. M.; MacDougall, J. J. Spectroscopy (Eugene Oreg.) 1988, 1(7),32-35.

(103) Bowley, H. J.; Crathorne, E. A.; Gerrard, D. L. Analyst (London) 1986, 1 1 1(5), 539-542. (104) Benthan, P. B.; Ranak, C. G.; Shurveii, H. F. Can. J. Chem. 1985, 63(8),2303-2307. (105) Merley, N. A.; Mann, C. K.; Vickers, T. J. Appl. Spectrosc. 1985, 39(4),628-633. (106) Delichere, P.; Hugot-Le Golt, A.; Yu, N. J. Electrochem. SOC. 1986, 733(lo),2106-2107. (107) Bunker, B. C. Mater. Res. SOC.Symp. Proc. 1986, 73,49-55. (108)Dutta, P. K.; Shieh, D. C. J. Raman Spectrosc. 1985, 16(5),312-314. (109) Aksenenko, V. M.; Muraveer, N. S.;Taranenko, G. S . Zh. Prikl. Spektrosk. 1988, 44(1),87-91; Chem. Abstr. 1986, 104,98468~. (110) Taka, K.; Okabayashi, H.; Ohno, K.; Matsuura, H. J. Mol. Struct. 1985, 127(3-4),257-265. (111) Ovchinnikar, I.V.; Serebrennlkar, L. V.; Maitsev, A. A. Z h . Flz. Khim. 1965, 59(6), 1558-1560 Chem. Absh. 1985, 103,78600k. (112) Kettler, U.; Bechthoid, P. S.; Krasser, W. Surf. Scl. 1985, 156(2), 867-874. (113) Froben, F. W.; Schuize, W. Surf. Sci. 1985, 156(2),765-769. (114) Minkwitz, K.; Nass, U.: Sawatzki, J. J. Fluorine Chem. 1986, 31(2), 175-182. (115) Givan, A.; Loewenschuss, A.; Bier, K. D.; Jode, H. J. Chem. Phys. 1988, 106(1),151-159. (116) Gerardo, J. B. Proc. SPIE-Int. SOC. Opt. Eng. 1985, 540, 609-6 16. (117)Leipettz. A. Chem. Ind. (Dusseldorf) 1985, 37(11),802-805;Chem. Abstr. 1985. 103. 223310~. (116)Brodnikovskii, A. M.; Zharov, V. P.; Koroteev, N. I. Kvantovaya Elektron (Moscow) 1985, 12(12), 2422-2430; Chem. Abstr. 1986, 104, 76039e. (119) Barrett, J. J. Appl. Spectrosc. Rev. 1985, 21(4),419-464. (120) Tans, P. P. Lashof, D. A. Report LBL-19977,1985; Order No. DE 86005872 (115 pp). Available NTIS from: Energy Res. Abstr. 1988, 71(7),Abstr. No. 14327. (121) Pashkov, V. A.; Kurganova, F. I.; Grishchuk, M. Kh. VestiAkad. Na-

vuk BSSR Ser. Fir-Energ Navuk 1987, 7, 60-65; Chem. Abstr. 1987, 106, 184532m. (122) Jennlngs, D. E., Weber, A.; Brault, J. W. Appl. Opt. 1986, 28(2),

284-290. (123) Halthore, R. N.; Gouldin, F. C. AIAA J. 1988, 24(7),1129-1136. (124) Zhao, Y.; Chen, X.; Zhang, L.; Ll, S.; Zhang, Z. Fushe Yanjiu Yu Fushe Gongyi Xuebao 1988, 4 ( 2 ) , 42-40; Chem. Abstr. 1987, 107, 97244~. (125) Malssara, M.; Devaure, J. Fluid Phase Equllib. 1985, 22(2),231-239. (126)Shyder, R. G.; Aljibury, A. L.; Strauss, H. L.; Casal, H. L.; Gough, K. M.; Murphy, W. F. J. Chem. Phys. 1984, 81(12),5352-5361. (127)Drake, M. C.; Pitz, R. W.; Correa, S.M.; Lapp, M. Symp. ( l n t . )Combust., [Proc] 1985, ZOth, 1983-1990. (128)Vanderholt, J. A.; Anderson, W. R.; Kotlar, A. J.; Beyer, R. A. Symp. ( I n t . ) Combust., [Proc.] 1985, zoth, 1299-1306. (129) Vanderholt, J. A.; Burke, S.W.; Kotlar, A. J.; Beyer. R. A. Combust. Flame 1988, 65(1),45-51. (130)Drake, M. C. Report REPT-86-SRD-004 GRI-85/0271, 1985;Order No. PB 86-179009/GAR(123 pp). available NTIS from: Gov. Rep. Announce. Index ( U S . ) 1988, 86(13),Abstr. No. 628,586. (131)Dibble, R. W.; Masri, A. R.; Bllger, R. W. Combust. Flame 1987, 67(3), 189-206. (132) Smith, J. R.; Green, R. M.; Westbrook, C. K.; Pitz, W. J. Symp. ( l n t . ) Combust. [Proc.] 1985, ZOth, 91-100. (133) Knippers, W.; Van Helvoort, K.; StoRe, S.;Reuss, J. J. Chem. Phys. 1985. 98111. 1-6. (134) Hochstrasser, R. M.; Johnson, C. K. Laser focus Electro-Opt. Mag. 1985, 21(5),100, 102, 104. 106, 108. 110. 112, 114, 116, 118. (135)Doglia, S.; Del Guldlce, E.; Mllani, M. Spectrosc. Biol. Mol., Proc. Eur. Conf.. 1st 1965. 415-420. (136) Hester, R. E.’Spectrosc. BlOl. Mol., Proc. Eur. Conf., 1st 1985, 3-6. (137) Samollenko, S. A.; Zheltovskii, N. V. Metody Mol. Biol. 1988, 5-18; Chem. Abstr. 1987, 107,3470s. (138) Spiro, T. G. Adv. Protein ch8m. 1985, 37, 111-159. (139) Hoffland, L. D.; Piffath, R. J.; Bouch, J. B. Opt. Eng. 1985, 24(6), 962-984. (140) Yu, N. T.; Barron, B. C. Supramol. Struct. Funct ., Lect . Int. Summer Soh. Blophys] (1984)1986, 104-128. (141) Butterfield, D. A. CRC Crit. Rev. Clin. Neurobiol. 1986, 2(2), 169-240. (142)Johnson, C. K.; Hochstrasser, R. M. AIP Conf. Proc. 1986, N o . 746, 666-689. (143)Ozaki, Y. Bunko Kenkyu 1986, 35(1),3-23;Chem. Abstr. 1987, 106, 115843b. (144) Dhamellncourt, P. Spectrosc. Biol. Mol., Proc. Eur. Conf., 7st 1985 16-22. (145)Koglln, E.; Sequaris, J. M. Spectrosc. Biol. Mol., Proc. Eur. Conf., 1st 1985,221-225. (146) Ivanara, T. M. Zh. F k . Khlm., 1986, 60(11), 2641-2657;Chem. Abstr. 1987, 106, 146075g. (147)Flndsen, E. W.; Friedman, J. M.; Ondrias, M. R.; Simion, S. R. Sclence (Washington D.C.) 1985. 229(4714),661-665. (148) Masslg, G.; Stockburger, M.; Aishuth, T. Can. J. Chem. 1985, 63(7), 2012-201 7. (149) Merlin, J. C.;Dele-Dubois, M. L. Comp. Biochem. Physiol. 6:Comp. Biochem. 1986, 848(1),97-103. (150) Casweli, D. S.; Spiro, T. a. J . A m . Chem. SOC. 1986, 108, 6470-6477. (151) Hudson, B. AIPConf. Proc. 1988, N o . 146,690-693. (152) Hudson, 6.; Mayne, L. Methods Enzymol. 1966, 130,331-350. ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

373R

RAMAN SPECTROSCOPY

(153)Dudik, J. M.; Johnson, C. R.; Asher, S. A. J. Phys. Chem. 1985, 89, 3805-3814. (154) Copeland. R. A.; Spiro, T. 0. Biochemistry 1985, 24, 4960-4968. (155)Copeland, R . A.; Spiro, T. G. J. Phys. Chem. 1986, 90,6648-6954. (156)Tonge, P. J.; Wharten, C. W.; Szawelskl, R. J.; Kiiiaugh, P. M.; Hester, R. E. Biochem. SOC. Trans. 1985, 13(5),930-931. (157) Tonge, P. J.; Wharten, C. W.; Szawelskl, R . J.; Killough, P. M.; Hester, R. E. Spectrosc. Biol. Mol., Proc. Eur. Conf., 1st 1985, 410-412. (158) Ludwig, M.; Asher, S. A. Appl. Spectrosc. 1987, 47(2),331-332. (159) Kogiln, E.; Sequaris, J. M. Top. Cum. Chem. 1986, 134, 1-57. (160) Nabiev, I.R.; Chumanov, G. D. Biofizika 1988, 31(2), 183-190; Chem. Abstr. 1986, 704, 221561b. (161) Naniot, V. A. Biofizika 1985, 30(4),602-604;Chem. Abstr. 1985, 103, 158700j. (162) Smulevieh, G.; Spiro, T. G. J. Phys. Chem. 1985, 89,5168-5173. (163)Nabiev. I.R.; Efremov, R. G.; Chumanov, G. D. Biofizika, 1988, 31(4), 724-734 Chem. Abstr. 1986, 105, 149152~. (164)De Mul. F. F. M.; Otto, C.; Greve, J. Proc. SPIE-Int. Soc. Opt. Eng. 1985,492;Eur. Conf. Opt. Opt. Sys. Appl. 1984; 482-485. (165) Sequaris, J. M.; Fritz. J.; Lewinsky, H.; Kogiin, E. J. Colloid Interface Sci. 1985. 105(2),417-425. 168) Rasmussen, K. E.; Knutsen, P. Bull. Narc. 1985, 37(1),95-112. 167) Duru. C.: Jacob, M.; Joachim, J.; Gaudy, D.; Puech, A,; Parent, P. Bull. SOC.Pharm. Bordeaux 1984, 123,149-160;Chem. Abstr. 1985, 103. 200766m. 168) Bertoiuzza, A,; Fagnano, C.; Monti, P.; Caramazza, R.; Ceilini, M. J . Raman Spectrosc. 1986, 17(1),133-137. 169) Alcolea, M.; Siguenza, C.; Santos, M.; Gonzaiez-Diaz, P. F. J. Mol. Struct. 1986, 743,415-418. 170) Manfait, M.; Jeannssan, P. Spectrosc. Biol. Mol., Proc. Eur. Conf., 7st 1985, 421-426. 171) Bennion, I.; Stewart, W. J. Brit. U.K. Pat. Appi. GB 2,156,970, 16 Oct 1985,Appl. 84129706,Jan 1964,5 pp. 172) Atalla, R. M.; Agarwal, U. P. J. Raman Spectrosc. 1988, 17(2), 229-231. (173)Pirogar, V. G.; Sokolina, V. A.; Fedorov, M. V.; Khurgin, Y. I.; Tserevitinare, N. G.; Chlkishev, A. Y. Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 1986 27(2),56-58;Chem. Abstr. 1986, 105, 36417r. (174) Powell, L. P.; Campion, A. Anal. Chem. 1988, 58, 2350-2352. (175) Agnew. S. F.; Schoonover, J. R.; Swanson, B. I.; Woodruff, W. H. J. Am. Chem. SOC. 1985, 707, 6718-6718. (176) Kuptsar. A. Kh.; Trofimar, V. I.J. Biomol. Struct. Dyn. 1985. 3(1), 185-196. (177) Santos, M.;Carcia-Ramos, J. V.; Beilanato, J.; Carmona, P.; Cifuentes-Delatte, L. Forschr. Urol. Nephrol. 1984, 22,405-414. (178) Wagner, W. D. J. Raman Spectrosc. 1968, 17(1),51-53. (179) Vogel, C.; Romain, F.; Sagan, G.; Carset, J. J. Mol. Struct. 1988, 143,407-410. (180) Curry, B.; Palings, I.; Broek, A. D.; Pardoen, J. A,; Lugtenburg, J.; Mathies. R. Adv. Infrared Raman Spectrosc. 1985, 12,115-178. (181) Thomas, G. E., Jr. J. Mol. Struct. 1966, 141, 261-268. (182) Iwata, K.; Hayashi, H.; Tasumi, M. Spechosc. Blol. Mol., Proc. Eur. Conf., 1st 1985, 351-353. (163) Lutz, M.; Robert, B. Spectrosc. Biol. Mol., Proc. Eur. Conf., Ist 1985, 310-318. (184)Bocian, D. F.; Boidt, N. J.; Chadwich, B. W.: Frank, M. A. FEBS Lett. 1987, 274(1),92-96. (185) IshMa, H.; Kamoto, R.; Uchiia. S.;Ishitani, A.; Ozakl, Y.; Irlyama, K.; Tsukie, E.; Shibata, K.; Ishihari, F.; Kameda, H. Appl. Spectrosc. 1987,

41(3),407-412. (188) Yoshimura, T.; Suzuki, S.;Nakahara, A,; Iwasaki, H.; Masuko, M.; Matsubara, T. Biochlm. Biophys. Acta 1985, 831 (3),267-274. (187) Paude, C.; Paude, A.; Yue, K. T.; Cailender, R.; Ebrey, T. G.; Tsuda, M. Biochemistry 1987, 26,4941-4947. (188) Dutta, P. K.; Thompson, M. A. Chem. Phys. Lett. 1986, 131, 435-437. (189) Shope, T. B.; Vickers, T. J.; Mann, C. K. Appl. Spectrosc. 1987, 4 1 ( 5 ) , 908-912. (190) Bertoluzza, A.; Marti, P.; Garcia-Ramos, J. V.; Simanl, R.; Caramazza, R.; Calzavara, A. J. Mol. Struct. 1986, 743,469-472. (191)Maddams, W. F. Am. Lab. (FairfieM, Conn. 1986, 78(3),59,60-62. (192) Gerrard. D. L.; Maddams, W. F. Appl. Spectrosc. Rev. 1986, 22, 251-334. (193) Schroeter, 0.Potsdamer Forsch Paedagcg Hochsch 'Karl Llebknecht' Postdam Naturwiss Relhe 1988, 47, 109-110;Chem. Abstr. 1987, 107, 7926t. (194) Fulea, A. 0.Rev. Roum. Chim. 1985, 30(4),357-364. (195) Buckiey, D. H.: Aron. P. R. ACS Symp. Ser. 1985, No. 287,

- --

7117-3n7 - . -.

(196) Leising, G.; Kahlert, H.; Leither, 0. Springer Ser. Solid-state Sci. 1985. 63.56-62. (197) Bioor,'D. Spinger Ser. Solid-State Sci. 1985, 63,234-235. (198)Galiotis, C.; Robinson, I.M.: Young, R. J.; Smith, B. J. E.; Batcheider, D. N. Polym. Commun. 1985, 26(12),354-355. (199)Jenden, C. M. Polymer 1986, 27(2),217-224. (200)Bowley, H. J.; Gerrard, D. L.; Maddams, W. F. Polym. Commun. 1988, 27(2),43-44. (201) Wood, R. P.; Bretzlaff, R. S.;Li, B. Y.; Wang, C. H.; Boyd, R. H. J. Polym. Sci., Polym. Phys. Ed. 1988, 24(5),1039-1086. (202) Bowiey. H. J.; Gerrard, D. L.; Maddams, W. F. Makromol. Chem. 1987, 188(4),899-906. (203)Buikin, 8. J.; DeBiase, F.; Lewin. M. Proc. SPIE-lnt. Soc. Opt. Eng. 1986, 665,234-242. (204) Buikin, B. J.; Lewin, M.; DeBlase, P. J. Macromolecules 1985, 18, 2587-2594. 374R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

(205) Bower, D. I.; Jarvis, D. A.; Ward, I.M. J. Polym. Sci., Polym. Phys. Ed. 1988. 24(7). 1459-1479. (206) Chmell, A.'E.; Savitskii, A. V.; Gorshkava, I. A,; Baptizmanskii, V. V. Vysokomol. Soedin., Ser. B 1987, 29(1),39-42; Chem. Abstr. 1987, 106, 139686d. (207) Chang, C.; Kruin, S. J. Polym. Sci., Polym. Phys. Ed. 1986, 24(7), 1373-1381. (208) Buikin, B. J.; Lewin, M.; DeBlase, F. J.; Kim, J. Polym. Mater. Sci. Eng. 1988, 5 4 , 397-403. (209) Bulin, B. J.; Lewin, M.; Kim, J. Macromolecules 1987, 20,830-835. (210) Zu, 2 . ; Chen, Y.; Gong, J.; Yang, X.; Cheng, Q.; Tang, Y. Huadong Fangzhi Gongxueyuan Xuebao 1985, 11(2),29-36; Chem. Abstr. 1988, 104, 7095). (211)Tkenkov, L. S.;Vettergren, V. I.; Kusav, A. A,; Zelenev, Yu. V. Vysokamol. Soedin., Ser. A 1985, 27(6),1274-1279;Chem. Abstr. 1985, 703, 124159~. (212) Phillips, P. J.; Jang, Y. T.; Liu, Q. L.; Wang, C. H.; Rabolt, J. F. Macromolecules 1985, 18, 1571-1576. (213) Snyder, R. G.; Schlotter, N. E.; Alamo, R.: Mandelkern, L. Macromolecules 1986, 79,621-626. (214) Mandeikern, L.; Peacock, A. J. Polym. Bull. (Berlin) 1988, 16(6), 329-336. (215) Schwn, P. E.; Yager, P. J . Polym. Soc., Polym. Phys. Ed. 1985, 23(10),2203-2216. (216) Cho, Y.; Kobayashl, M.; Tadokoro, H. J. Chem. Phys. 1986, 84(8). 4636-4642. (217) Matsmura, H.: Fukuhara, K. J. Polym. Sci., Polym. Phys. Ed. 1988, 24(7),1383-1400. (218) Bowley, H. J.; Biggin, I.S.;Gerrard, D. L. Springer Proc. Phys. 1985, 4 , 194-195. (219) Chu, B. Report 5010D, ARO-18675.8-CH. 1965; Order No. ADA153407 (27 pp) Available NTIS from: Gov. Rep. Announce. Index (U.S.) 1985, 85(16),Abstr No. 535,802. (220) Chu, 8.; Lee, D. C. Mecromolecules 1986, 19, 1592-1603. (221) Lee, D. C.; Ford, J. R.; Fytas, G.; Chu, B.; Hagnauer, G. L. Macromolecules 1988, 19,1586-1592. (222) Zerda, T. W.; Artaki, I.; Jonas, J. J. Non-Cryst. Solids 1986, 87(3), 365-379. (223)Lefrant, S. Wiss. Ber .-Akad. Wiss. D . D . R . , Zentralinst. Festkoerperphys . Werkstoffarsch. 1984, No. 29,30-42. (224) Mulazzi, E.; Brivie, G. P. Synth. Met. 1988, 16(3),381-384. (225) Berrehar, J.; Fave, J. L.; Lapersonne, C.; Schott, M.; Eckhardt, H.; Steinhauser, S.;Chance, R. R.; Silbey, R. Mater. Sci. 1984, 10(4), 449-453. (228)Coter, F.; Vardeny, V. Z.; Ehrenfreund, E. A.; Brafman, 0. Synth. Met. 1987, 17(1-3),331-336. (227)Masetti, G.; Campani, E.; Gorini, G.; Piseri, L.; Tubino, R.; Piaggio, P.; Dellepiane, G. SolM State Commun. 1985, 55(6),737-742. (228) Leising, G.; Fauiques, E.; Lefrant, S. Synth. Met. 1985, 71(3), 123-128. (229) Millazzi, E. Solid State Commun. 1985, 55(9),807-810. (230)Freind, R. H.; Bradley, D. D. C.; Pereira, C. M.; Townsend, P. D.; Bott. D. C.: Williams. K. P. J. Svnth. Met. 1986. 13H-3). 101-112. (231) Surjan, P. R.; Kuzmahy, H. Phys. Rev. B l Condens. Matter 1988, 33f4). 2615-2624. (232) Surjan, P. R.; Vibok, A.; Kuzmany, H.; Iwahana, K. Springer Ser. SolM-State Sci. 1985, 63, 133-136. (233) Ehrenfreund, E.; Vardney, 2 . ; Brafman, 0. Springer Ser. SolM-State Sci. 1985, 63, 137-143. (234)Millazzi, E. Springer Ser. Solid-state Sci. 1985, 63, 128-132. (235) Plaggio, P.; Cuniberti, C.; Dellepiane, G.; Bolognesi, A,; Cateliani, M.; Destri, S.;Porzio, W.; Tubino, R. Synth. Met. 1987, 77(1-3),337-342. (236) Muelier, F.; Mersterle, P.; Kuzmany, H. Mol. Cryst. Liq. Cryst. 1985, 121(1-4),237-239. (237) Batchelder, D. N. NATO AS1 Ser., Ser. E 1985, No. 102, 187-212. (238)Bozovic, I.; Rakovic, D. Phys. Rev. B : Condens. Matter 1985, 32(6), 4235-4238. (239) Akimoto, M.; Furukawa, Y.; Takenchi, H.;Harada, I.; Sana. Y.; Sana, M. Synth. Met. 1986, 15(4),353-360. (240) Nemanich, R. S. Mater. Res. SOC. Symp. Proc. 1986, 69,23-37. (241)Nakashima. S. Kino Zairyo 1986, 6(10),70-79;Chem. Abstr. 1987, 106,94138h. (242)Esaki. L. Heterojunctions Semicond. Superlattices , Proc. Winter Sch . 1988, 2-10. (243)Gonzalez-Hernandez, H.; Chao, S. S.;Martin, D.; TSU,R. Proc. SPIErnt. SOC. opt. Eng. 1985, 524, 126-136. (244) Beeman, D.; Tsu, R.; Thorpe, M. F. Phys. Rev. 6: Condens. Matter. 1985, 32(2),874-878. (245) Tsu, R. Disord. Semicond. 1987, 479-488. (246) Persans, P. D.; Ruppert, A. F.; Abeies, B.; Tiedje. T. Phys. Rev. 5 : Condens. Matter. 1985, 32(8),5558-5560. (247)Tsang, J. C.; Thompson, W. A.; Dehrieln. G. S.J. Vac. Sci. Techno/., 6 1985, 3(4),1129-1135. (248) Huang, P. V.; Vuotto, J. L.; Raboisson, P.; Defranould, N.; Verle, C. Comm. Eur. Communities, [Rep.] EUR 1985, EUR 70025. 123-127. (249) Sasaki, Y.; Nishlna, Y.; Sate, M.; Okamura, K. Vogyo Kyokaishi 1988, 94(8),897-899. (250) Wang, X.; Zhang, X. Solid State Commun. 1988, 59(12),869-872. (251) McDevitt. N. T.; Solomon, J. S. J. Nectrochem. Soc. 1986. 733(9), 1913-1917. (252)Beuk, J.; Mannaerts, J. P.; Feldman, L. C.; Davidson, 8. A,; Lowe, W. '

P.; Glass, A. M.; Pearsali, T. P.; Menendez, J.; Pinczule, A,; Ourmazd, A. Mater. Res. SOC.Symp. Proc. 1988, 67, 189-196. (253)Gorelik, V. S.;Khashimov, R. N.; Begishev, A. R.; Sushchinskii, M. M. Poverkhnost 1985, I f , 3033;Chem. Abstr. 1985, 103,221458~.

RAMAN SPECTROSCOPY (254) Lee, M. C. C h h . J . Physlol. (Taipei) 1988, 24(2). 69-80. (255) Kiriilar, D.; Powell, R. A.; Modul, D.T. Mater. Res. SOC. Symp. Proc. 1988, 52. 131-138. (256) Kambayashi, S.;Hamasaki, T.; Nakakubo, T.; Watanake, M.; Tango, H. Ext. Abstr. Conf. Solid State Devlces Mater. 1968, 78th, 415-418. (257) Manger, A.; Godart, C. Phys. Rep. 1988, 141(2-3). 51-176. (258) Aulich, M. A.; Saibert, T.; Fritz, M. P. Conf. Rec. I€€€ Photovoftalc Spec. Conf. 1985, Wth, 848-853. (259) Katoda, T. Nippon Kessho Selcho Gakkalshi 1988, 73(2-3), 202-208; Chem. Abstr. 1987, 106, 110228~. (260) Susnow, R. G.; Schuwab, G. P.; Gualtieri, 0. J.; Sunder, W. A. J . Vac. Scl. Technol. B 1988, 4(4), 789-793. (261) Irmer, G.; Moneche, J.; Siegel, W. Cryst. Res. Technol. 1985, 20(8), 1125-1 131. (262) Abbi, S. G.; Maheshwari, R.; Shukia, A. K. Res. lnd. 1985, 30(3), 337-339. (263) Kobashi, K.; Etters, R. D.;Spain, I. L.; Thiery, M. M.; Fabre, D.; Chandresekharan, V. Solid State Phys Pressure: Recent Adv. Anvll Devices 1985. 709-114. (264) Bolduan, F.; Hochheimer, H. D.;Jodi, H. J. J. Chem. Phys. 1988, 84(12), 6997-7004. (265) Agnew, S.F.; Swanson, B. I . ; Eckhart, D. G. Shock Waves Condens. Matter., [Proc. Am. Phys. SOC. Top. Conf.], 4th, 1988, 221-229. (266) Thiery, M. M.; Kobashi, K.; Spain, 1. L. SolM State Commun. 1985, 54(1), 95-97. (267) Thiery, M. M.; Fabre, D.; Spain, I.L.; Kobashi, K. Physica 8 + C : (Amsterdam) 1988, 739- 740(1-3), 520-522. (268) Dare-Edwards, M. P.; Gardiner, D. J.; Walker, N. A. Nature (London) 1985, 378(6029), 614-616. (269) MaisSara, M.; Devarue, J. J. Chlm. Phys. Phys.-Chim. Bloi. 1985, 82(5), 565-569; Chem. Abstr. 1988, 104, 108864q. (270) Hanfland, M.; Syassen, K.; Fahy, S.;Louie, S.G.; Cohen, M. L. Physica B+C (Amsterdam) 1988, 739-740(1-3), 516-519. (271) Grimsditch, M. Phys. Rev. B : Condens. Matter 1988, 34(6), 4372-4373 - (272) Tse, W. S.;Liang, N. T.; Lin, W. W.; Chiang, P. Y. Chem. Phys. Lett. 1985, 179(1), 67-70. (273) Kania, A.; Roieder, K.; Kugei, G. E.; Fontana, M. D. J . Phys. F 1988, 79(1). 9-20. (274) Baranaic. G.; Volasek, V. J. Mol. Struct. 1988, 743, 29-32. (275) Exarhos, G. J. Mater. Res. SOC. Symp. Proc. 1985, 4 8 , 461-469. (276) Tagirov, V. I.; Gasanly, N. M.; Meinik, N. N.; Vinogradar, E. A. USSR SU 1272196 (CI. GOlN21/65) 23 Nov 1986, Appl. 3909197, 04 June 1985. From: Otktytiya, Izobret. 1988, 43, 173; Chem. Abstr. 1987, 106, 111890s. (277) Minceva-Sukarova, B.; Siark, G. E.; Sherman, W. F. J . Mol. Struct. 1988, 743, 87-90. (278) Hirsch, K. R.; Holzapfel, W. B. J. Chem. Phys. 1988, 84(5), 2771-2775. (279) Fjaer, H.; Samuelson, E. J. J . Phys. F. 1988, 19(30), 5945-5956. (280) Zerbi, G.; Conti, G.; Minoni, G.; Pisar, S.;Bigotto, A. J . Phys. Chem. 1987, 91 2386-2393. (281) Kabisch, G.; Kiose, M. 2. Phys. Chem. (Le/&) 1985, 266(4), 687-694. (282) Hamilton, J. C.; Anderson, R. J. Hlgh Temp. Sci. 1985, 19(3), 307-321. (283) (284) Hamilton, J. C.; Anderson, R. J.; McCarty, K. F.; Nageiberg, A. S. ROC. S P E - l f l t . SOC. Opt. €ng. 1988, 6 4 4 , 48-52. (285) McHargue, C. J.; Fariow, G. C.; Begun, G. M.; Williams, J. M.; White, C. W.; Appieton, B. R.; Skiad, P. S.; Angeiini, P. Nucl. Instrum. Methods Phys. Res., Sect. B 1986, 1376(2-3), 212-220. (286) Fischbach, D.B.; Couzi, M. Carbon 1988, 24(3), 365-369. (287) Ratcliffe, C. I.;Irish, D. E. Cen. J. Chem. 1985, 63(12), 3521-3525. (288) Shionoya, T.; Abe, K.; Shigenarl, T. J . Phys. F 1988, 19(23), 4547-4560. (289) KhiiJi, M. Y.; Sherman, W. F.; Wiikinson, G. R. J . Mol. Struct. 1988, 743, 109-112. (290) Stockmeyer, R. Physlca B+C: (Amsterdam) 1988, 736(1-3), 18-21. (291) Duvai, D.;Condrate, R. A. Phys. Status Solidi B 1985, 132(1), 83-92. (292) Takase, A.; Miyakawa, K. J. Phys. F 1985, 78(29), 5579-5584. (293) Baranar, S.P.; Prisyazhnii, V. D.;Yaremchuk, G. G.; Chernobaev, V. F. Dopov. Akad. Nauk. Ukr. RSR, Ser. B : Geol. Khlm. Biol. Naukl 1988. 7 , 27-28; Chem. Abstr. 1986. 105, 123266k. (294) Dhameiincourt, M. C.; Waiiart, F.; Barbies, P.; Mairesse, G. J. Mol. Struct. 1988, 142, 463-466. (295) Johnson, C. A.; Thomas, K. M. Fuel 1987, 66(1), 17-21. (296) Katon, J. E.; Pacey, G. E.; OKeefe, J. F. Anal. Chem. 1988, 58, 465A-466A, 468A, 470A, 472A, 474A. 476A, 478A, 481A. (297) Gardiner, D. J.; Bowden, M.; Graves, P. R. Phllos. Trans. R. SOC. London, A 1986, No. 320(1554), 295-306. (298) Adar, F. Sagamore Army Mater. Res. Conf. Proc. 1988 31st, 339-360. (299) Lander, J. A. Anal. R o c . (London) 1988, 23(7), 70. (300) Pham, V. U. J. Pharm. Homed. Anal. 1988, 4(6), 811-823. (301) Ataila, R. M. J . WoodChem. Technol. 1987, 7(1), 115-131. (302) Carver, F. W. S.;Wyndham, D. P.; Sinclair. T. J. J . Raman Spectrosc. 1985, 76(5), 332-336. (303) Doyil, T. E.; Aivarez, J. L. Mater. Scl. Res. 1985, 79, 155-165. (304) DelaDubois, M. L.; Dhamelincourt, P.; Parot, J. P.; Schubnes, M. J. J. Mol. Struct. 1988, 143, 135-136. (305) Pasteris, J. D.;Kuewn, C. A,; Bodnar, R. J. €con. Geol. 1988, 81(4), 915-930. (306) Pasteris, J. D.; Seitz, J. C.; Wapenka, B. Microbeam Anal. 1985, ZOth, 25-28.

.

_ _

~

(307) Dairmont, A.; Dhamelincourt, P. Ann. SOC. Geoi. Belg. 1985, 708, 361-364; Chem. Abstr. 1988, 104, 152646~. (308) Burke. E. A. J.; Lustenhower, W. J. Chem. Geol. 1987, 61(1-4), 11-17. (309) Chen, A. Yanshl Kuangwu Jl Ceshi 1985, 4(3), 231-237; Chem. Abstr. 1988, 104, 719043. (310) Konnerup-Madsen, J.; Dubessy, J.; Rose-Mansen, J. Lithos 1985, 18(4), 271-280. (311) Higgins, K. L.; Stein, C. J. Microbeam Anal. 1986, 21st, 31-34. (312) Wopenka, B.; Pasteris, J. D.Appl. Spectrosc. 1986, 40(2), 144-151. (313) Nanmov, V. B.; Akhamanara, M. V.; Soboiev, A. V.; Dhameiincourt, P. Geokhlmiva 1988, 7 , 1027-1034; Chem. Abstr. 1988, 105, 824741. (314) Masui, A.; Noshiro, M.; Kurata, M. Anal. Scl. 1985, 1(4), 313-19. (315) Johnson, W. L. Mlcrobeam Anal. 1986, 27st, 26-28. (316) McNeii, L. E.; Steinbeck, J.; Saiamanca-Riba, L.; Dresselhaus, G. Carbon 1988, 24(1), 73-76. (317) Fischbach. D. 8.; Cruege, F. Ext . Abstr. Program-Bienn . Conf. Carbon 1985, 17th, 428-429. (318) Rousseau, G. Report SNIAS-852-430-108 1985, (13 pp). Available NTIS from: Scl. Tech. Aerosp. Rep. 1988 24(7), Abstr. No. N86-16275; Chem. Abstr. 1988, 705, 456714a. (319) Mackiin, J.; Brownlee, D.; Chang, S.;Bunch, T. Microbeam Anal. 1987, 22nd, 211-212. (320) Alien, G. C.; Butler, I. S.;Nguyen, A. T. J . Nucl. Mater. 1987, 744(1-2), 17-19. (321) Lang, P. L.; Katon, J. E.; O'Keefe, J. F.; Schieriing, D. W. Mlcrochem. J . 1988, 34(3), 319-331. (322) Lang. P. L.; Katon, J. E.; Schieling, D. W.; O'Keefe, J. F. Poiym. Mater. Sci. Eng. 1988, 54, 381-385. (323) Tanak.4, H.; Ikeda, T.; Nishi, T. Appl. Phys. Lett. 1988, 48(6), 393-395. (324) Gardiner, D.J.; Gwvln, A. C.; Gutteridge, C.; Jackson, A. R. W.; Raper, E. S.Corros. Scl. 1985. 251111. 1019-1027. (325) Gardiner, D. J.; Littieton, 'c. J.; Thomas, K. H.;Strafford, K. N. Oxid. Met. 1987, 27(1-2), 57-72. (326) Graves, P. R.; Bennet, M. J.; Hawes, R. W. M. Report AERE-R-12037 AGR/FPWGIP(86)736, 1986 ( I 9 pp). Available NTIS from: Sci. Tech. Aerosp. Rep. 1987, 25(8), Abstr. No. N87-16135. (327) Adar, F. ACS Symp Ser. 1986. No, 295, 230-239. (328) Purceil, F.; Heidersbach, R. Microbeam Anal. 1985, 20th 57-59. (329) Lang, P.; Katon, J. E. Microbeam Anal. 1986, 2 7 s t , 47-49. (330) Powell, R. C.; Casiavski, J. L.; Aishieb, 2 . ; Bowden, J. M. Microbeam Anal. 1988, 21st, 29-30. (331) Farrow, L. A.; Sandroff, C. J. Mlcrobeam Anal. 1988, Z f s t , 22-25. (332) Herman, R. G.; Bogdan, C. E.; Sommer, A. J.; Simpson, D. R. Appl. Soectrosc. 1987. 4 f(3). 437-440. (33j) Mizoguciii, K:; Nakashima, S.;Inoue, Y.; Miyanchi, M.; Mitsuishi, A. Oyo Butsuri 1988, 55(1), 73-80. (334) Sana, Y.; Sana, M. Kokurlstu Kogal Kenkyusho Kenkyu Hokoku 1985, No. 79. 133-143. (335) Scheetz, B. E.; White, W. B.; Adar, F. Mater. Sci. Res. 1985, 19, 145-154. (336) Fauchet, P. M. Mater. Res. SOC.Symp. Proc. 1988, 51, 149-154. (337) Fauchet, P. M.; Campbell, I. M.; Adar, F. AJP Conf. Proc. 1986, No. 146, 730-731. (338) Kudo, S.;Mizuno, J.; Hasegawa, H. Yogyo Kyokaishi 1988, 94(8), 737-741; Chem. Abstr. 1988, 705, 138534~. (339) Adar, F.; Noether, H. Microbeam Anal. 1985, 20th, 41-48. 1340) Adar. F.: Noether. H. Polvmer 1985. 26113). 1935-1943. i341j Jha; S: S. Pro;. As&-Pac. Phys. Conf., 2nd, 1986 1987, 2, 1098-1102. (342) Takahashi, M. Prog. Org. Coat. 1988, 14(1), 67-86. (343) Takahashi, M. Proc. Int. Conf. Org. Coat. Sci. Technol., 11th 1985, 407-411. (344) Sugimoto, K. Nippon Klnzoku Gakkai Kalho 1985, 24(9), 754-761. (345) Dixit, L.; Gerrard, D. L.; Bowiey, H. J. Appl. Spectrosc. Rev. 1988, 22(2-3), 189-249. (346) Kanesaka, I. Shokubai 1986, 28(7), 536-539; Chem. Abstr. 1987, 106, 110104b. (347) Wachs, I.E. Hardcastle, F. D.; Chan, S.S. Spectroscopy (SprlngfleM, Oreg.) 1988, 7(6), 30-38. (348) Knoezinger, H. Erdoel Erdgas 1986, 702(6), 300; Chem. Abstr. 1988, 705, 85786~. Fahim, R. (349) Ismaii, H. M.; Theocharis, C. R.; Waters, D. N.; Zaki, M. I.; B. J. Chem. SOC.,Faraday Trans. 11987, 83(5), 1601-1608. (350) Ono, T.; Miyata, H.; Kubokawa, Y. J. Chem. SOC.,Faraday Trans. 1 1987, 83(6), 1761-1770. (351) Stencel, J. M.; Diehl, J. R.; D'Este, J. R.; Makovsky, L. E.; Rodrige, L.; Marcinkowska, K.; Aduct, A.; Roberge, P. C.; Kaliaguine, S. J . Phys. Chem. 1988. 90, 4739-4743. (352) Stampfi, S. R.; Chen, Y.; Dumesic, J. A,; Niu, C.; Hili, C. G., Jr. J . Catal. 1987, 108(2), 445-454. (353) Zhang, H. B.; Schrader, G. L. J. Catal. 1988, 99(2), 461-471. (354) Bobrov, A. V.; Kimelfeld, Ya. M.; Giebar, L. S.;Kiiger, G. A,; Loktev, S. M. Chem. Phys. Lett. 1985, 718(2), 156-158. (355) Zhang, H.; Schrader, G. L. J . Catai. 1985, 95(1), 325-332. (356) Zhang, H.; Tsai. K. R. Xlamen Daxue Xuebao Zirun Kexueban 1988, 25(6), 658-655; Chem. Abstr. 1987, 106, 215839~. (357) Saieh, R. Y.; Wachs, I . E.; Chan, S. S.;Cherisch, C. C. J. Catai. 1988, 98(1), 102-114. (356) Breysse, M.; Cattenot, M.; Decamp, T.; Frety, R.; Galhet, C.; Lacroix, M.; Leclercq, C.; De Mourgues, L.; Portefaix, J. L. Prepr.-Am. Chem. SOC.,Dlv. Pet. Chem. 1987, 32(2), 291-297.

.

VALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

375R

RAMAN SPECTROSCOPY (359) Reichmann, M. G.; MI, A. T. Langmuir 1887, 3, 563-567. (360) Stampf, S. R. Report available from University Microfilms Int., Order No. DA 861 5667: 1966 (397 pp). From: Dlss. Absh. I n t . , B 1887, 47(7), 3022. (361) Chan, S. S.; Wachs, I.E. J. Catal. 1987, 103(1), 224-227. (362) Parker, W. L.; Siedle, A. R.; Hexter, R. M. J . Catal. 1986, 99(2), 482-485. (363) Yeager, E.: Schersan, D. A.; Fierro, C. A. ACS Symp. Ser 1985, No. 288, 535-549. (364) England, W. A.; Bennett, M. J.; Greehalgh. D. A,; Jenny, S. N.: Knights, C. F. Corros. Scl. 1986, 26(7), 537-545. (365) Ohtsuka, T.; Kuiso. K.; Sato, N. Corrosion (Houston) 1986, 42(8), 476-48 1. (366) Ohtsuka, T.; Sato, N. Proc. Jt. J p n . - U S . Semln. 1986, 275-283. (367) Carr, K.; Baer, S.; Meiendees, C. A. Corrosion (Houston) 1986, 42(5), 307-309. (368) Hugot-le. G. A.; Palletta, C. Mater. Sci. Forum 1988, 8 , 451-461. (369) Campion, A. J . Vac. Sci. Technol. B 1985, 3(5), 1404-1407. (370) Campion, A. Annu. Rev. Phys. Chem. 1985, 36, 549-572. (371) Hemminger, J. Report DOE/ER/10820-TI, 1985; Order No. DE 85012981 (16 pp). Available NTIS from: Energy Res. Abstr. 1985, 10(17),Abstr. No. 34237. (372) Hsu, L. S. Report available from University Microfilms Int., Order No. DA 8517289. 1985 (138 pp). From: Dlss. Abstr. I n t . , 6 1986 46(6), 2012-2013. (373) Exarhos, G. R. Report AFWL-TN-84-72, 1985; Order No. ADA160887/6/GAR (41 pp). Available NTIS from: Gov. Rep. Announce. Index (U.S.) 1986, 86(3), Abstr. No. 605,960. (374) Exarhos, G. J.; Morse, P. L. NBS Spec. Pub. (U.S.) 1986, N o . 727, 262-27 1. (375) Dutta, P. K.; Shieh, D. C. J . Phys. Chem. 1986, 90, 2331-2334. (376) Baranska. H.; Czerwiaska, B.: Labudzinska, A. J . Mol. Struct. 1986. 143 485-488. (377) Howe, R. F. Chem. N . Z . 1966, 50(1), 10-11. (378) Shindo, H.; Nishihara, C. Surf. Sci. 1985, 158(1-3), 393-397. (379) Thanos. I.C. G. Electrochim. Acta 1986, 31(12), 1585-1595. (380) Melendres, C. A.; McMahon, J. J.; Ruther, W. J . Electroanal. Chem. Interfacial Electrochem. 1988, 208(1), 175-178. (381) Sushchinskii, M. M.; Gorelik, V. S. J. Raman Spectrosc. 1986, 17(1), 16 1-165. (382) Morimoto, A,; Shimizu, T. Jpn. J . Appl. Phys., Part 1 1986, 25(9), 1275- 1279. (383) Cander, W. S. Report available from University Microfilms Int.. Order No. DA 8605331, 1985 (142 pp). From: Diss. Abstr. Int.. B 1986, 47(1), 164. (364) Dierker, S. 9.; Murray, C. A,; Legrange, J. D.; Schlotter, N. E. Chem. Phys. Lett. 1987, 137(5), 453-457. (385) Takenaka, T. Oyo Butsuri 1986, 55(9), 903-908; Chem. Absh. 1967, 106, 144400k. (386) Hudson, B.; Kelly, P. 8.;Chadwick, R. R.; Desidero. R. A.; Ziegler, L. D. AIP Conf. Proc. 1986, N o . 146, 706-707. (387) Hudson, B. Spectroscopy (Springfield, Ores.) 1986 7(1), 22-24, 26, 26-3 1, (388) Weitz, D. A.; Moskovits, M.; Creighton, J. A. Chem. Struct. Interfaces 1986, 197-243. (389) Watanabe, T. Kagakuto Kogyo (Tokyo) 1986, 37( 12), 972-978; Chem. Abstr. 1987, 706, 202217~. (390) Efrima, S. Mod. Aspects Electrochem. 1985, 16, 253-369. (391) Seki, M. J . Electron Spectrosc. Relat. Phenom. 1986, 39, 289-310. (392) Gu, R. Huaxue Tongbao 1986, 5 , 20-25: Chem. Abstr. 1986, 105, 123089e. (393) Weitz, D. A.; Lin, M. Y.; Sandroft, C. J. Surf. Sci. 1985. 158(1-3), 147-164. (394) Chang, R. K. Ber. Bunsen-Ges Phys. Chem. 1987, 91(4), 296-305. (395) Murray, C. A. Adv. Laser Spectrosc. 1986, 3, 49-86. (396) Parthasarathi, N.: Hansen, C.; Yamaguciu, S. Spiro, T. G. J . Am. Chem. Soc. 1987, 109, 3865-3871. (397) Higuchi, S.; Zheng, 2.; Tanaka, S. Bunseki Kagaku 1965, 34(9), 529533: Chem. Abstr. 1985. 103, 205102b. (398) Cataiiotti, R. S.; Murgia, S. M.; Paliani, G.: Polelti, A,; Zgierski, M. Z. J . Raman Soectrosc. 1985. 16(4). ~, 251-257. (399) Womack, J. D.; Vickers, T. J.: Mann, C. K. Appl. Spectrosc. 1987, 4 1 ( 1 ) , 117-119. (400) Hub, W.; Schneider, S.; Doerr, F. Adv. Mutii-Phofon Processes Spectrosc. 1986, 2 , 239-332. (401) Gemty, D. P.; Ziegier, L. D.; Keiiy, P. B.; Pesaero, R. A,; Hudson, B. J . Chem. Phys. 1985, 83(7), 3209-3213. (402) Payhe, M. J.; Berglund, K. A. Mater. Res. Soc. Symp. Proc. 1986, 73, 627-631. (403) Copeland, R. A. Reprints availabe from University Microfilms Int., Order No. DA 8607704, 1986 (196 pp). From: Diss. Abstr. I n t . , B 1986, 47(2). 610. (404) Mayne, L. C.; Ziegler, L. D.; Hudson, B. J. Phys. Chem. 1985, 89, 3395-3398. (405) Johnson, C. R.; Ludwig, M.; Asher, S. A. J . Am. Chern. SOC. 1986, 708, 905-912. (406) Asher, S. A.: Jones, C. M. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 1966, 31(1), 170-180. (407) Brotrnan, A.; Burstein. E.; Jiang, J. D. Surf. Sci. 1985, 158(1-3), 1-20. (408) D'Andrea. A. Solid State Cornrnun. 1986, 57(9), 763-767 I

I

376R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

(409) D'Andrea, A. J . Phys. F 1985, 18(31), 5921-5933. (410) Yacoby, Y.; Roth, S. Synth. Met. 1986, 13(4), 299-318. (411) Kuzameny, M.; Knoll, P. J. Ramen. Spectrosc. 1986, 17(1), 89-92. (412) Faiques, E.; Rzepka, E.; Lefrant, S.; Mulozzl, E.; Brivic, G. P.; Leising, G. Phys. Rev. B : Condens. Matter 1886, 33, 8622-8628. (413) Koizumi, H.; Koshiyama, H. Bunseki Kagaku 1985, 34(6), 376-380; Chem. Abstr. 1985, 103, 115364j. (414) Koizumi, H.; Suzuki, Y. HRC & CC, J . High Resolut. Chromatogr. Chromatogr. Commun. 1987, 70(4), 173-176. (415) Berg, R. S. Report available from University Microfilms Int., Order No. DA 866 9938, 1981 (148 pp). From: Diss. Abstr. I n t . , B 1986, 47(3), 1126. (416) Berg, R. S. Report LBL-20328, 1985; Order No. DE 86004 007 (144 pp). Available NTIS from: Energy Res. Abstr. 1986, 11(4), Abstr. No. 75 12. (417) Wolfard, D. J. Report AD-A162482/4/GAR, 1985 (254 pp). Availabie NTIS from: Gov. Rep. Announce Index (U.S.) 1988, 86(7), Abstr. No 615,638. (418) Moore, J. N.: Phillis, D.; Kollough, P. M.; Hester, R. E. Springer Proc. PhyS. 1985, 4 , 132-136. (419) Cable, J. R.; Aibrecht, A. C. J. Chem. Phys. 1986, 84(4), 1969-1980. (420) Fodar, S. P. A. Report available from University Microfilms Int., Order No. DA 851 5665, 1985 (207 pp). From: Dlss. Abstr. Int., B 1986, 46(5), 1575. (421) Peticolas, W. L.; Lagant, P.; Vergoten, G. Proc. SPIE-Int. Soc. Opt. Eng. 1986, 620, 89-96. (422) Caroli, S. Acqua Aria 1986, 9, 989-994; Chem. Abstr. 1987, 106, 6038832. (423) Wokaun, A.; Barker, A.; Fluhr, W.; Meier, M.; Miuer, S. K. J. Vac. Sci. Techno/., B 1985, 3(5), 1397-1403. (424) Vo-Dinh, T.: Eniow, P. D. Proc.-APCA Annu. Meet. 1985, 78th, 85-81.3. (425) Ishda, H.; Fukuda, H.; Katagiri, G.; Ishitani, A. Appl. Spectroc. 1986, 40(3), 322-330. (426) Graves, P. R. J . Chem. Soc., Chem. Commun. 1986 18, 14 . . 18-14 . . . . i. s -. (427) Graves, P. R. Report AERE-R-12146, 1986 (26 pp). Available NTIS from: Sci. Tech. Aerosp. Rep. 1987, 25(8),Abstr. No. N87-16110. (428) Van Duyne, R. P.; Maushaiter, J. P.; Janik-Czachor, M.; Levinger, N. J . Phys. Chem. 1985, 89, 4055-4061. (429) Takahashi, M.; Furta, M.; Ito, M. Surf. Sci. 1985, 158(1-3), 307-313. (430) Shin, G. S.; Kim. J. J. Surf. Sci. 1985, 158(1-3), 286-294. (431) Weaver, M. J.; Gao, P.; Gosztola, D.; Patterson, M. L.; Tadayyani, M. A. ACS Symp. Ser. 1886, No. 307, 135-149. (432) Suh, J. S.; Michaeiian, K. H. J . Phys. Chem. 1987, 91, 598-600. (433) Gass, A. N. Kapusta O I Poverkhnost 1987, 4 , 27-32; Chem. Abstr. 1967, 106, 22089n. (434) Lengraf, C.; Thierry, D. h c . Scand. Corros. Congr., 10th 1986, 249-254. Vincett, P. A. J . (435) Aroca, R.; Jennings, C.; Kavac, G. J.; Lautfy, R. 0.; Phys. Chem. 1985, 89, 4051-4054. (436) Wessel, J. J. Opt. Soc. Am. B : Opt. Phys. 1985, 2(9), 1538-1541. (437) Hembree, D. M., Jr.; Oswaid, J. C.; Smyrl, N. R. Appl. Spectrosc. 1987, 4 1 (2), 267-272. (438) Sequaris, J. M.; Koglin, E.; Fresenius, 2. Anal. Chem. 1985, 321. 758-759. (439) Yamada, H.; Nagata, H.; Kishibe, K. J . Phys. Chem. 1986, 90, 8 18-823. (440) Creiguran, J. A. Surf. Sci. 1986, 173(2-3), 665-672. (441) Schroelter, H. W.; Berger, H.; Lavorel, B. J . Mol. Struct. 1986, 141, 195-202. (442) Pubanz, G. A. Report available from University Microfilms Int., Order No. DA 8629611, 1986 (110 pp). From: Dlss. Abstr. I n t . , B 1967, 47(9), 3788. (443) Adachin, Y.; Kamisuki, T.; Maeda, S. Reza Kenkyu 1985. 13(3), 232240; Chem. Abstr 1985, 103, 78436m. (444) Valentini, J. J. Spectrom. Tech. 1985, 4, 1-62. (445) Beterov, I.M. I z v . Akad. Nauk. SSSR, Ser. Fiz. 1986. 50(4), 654660; Chem. Abstr. 198S9 704, 232995~. (446) Rockwell, D. A.; Brusselbach, H. W. NATO ASI Ser., Ser. B 1985, 132, 41 1-445. (447) Boyd, T. J. M. Can. J . Phys. 1986, 64(8), 944-955. (448) Urquhart, W. P.; Laybourn, P. J. R. I€€ Proc., Part J : Optoelectron. 1986, 133(5), 327-331. (449) Schadt, D.; Jaskorzynska, B.; Oesterberg, U. J . Opt. Soc. Am. B : Opt. Phys. 1986, 3(10), 1257-1262. (450) Aiden, M.; Suanberg, S. LIA 1984, 45, 47, 134-143. (451) Taran. J. P. Kuantouaya Elektron (Moscow) 1985, 12(10),2114-2125; Chem. Abstr. 1988, 104, 156466~. (452) Lynn, W. F.; Yaney, P. P.; Goss, L. P.; Kizirnis, S. W. AIP Conf. Proc. 1986, 146, 277-278. (453) Eckbreth, A. C. AIP Conf. Proc. 1986, 746, 269-272. (454) Lucht, R. P. Proc.-Int. Conf, Coal Sci. 1985, 367-370. (455) Brueggemann, D.; Hassei, E. P.; Dittie. G.; Schmidt, T.; Daams. H. J. VDI-Ber. 1986, 617, 333-346; Chem. Abstr. 1987, 106, 53141k. (456) Lucht, R. P.; Farrow, R. L.; Palmer, R. E. Combust. Sci. Technol. 1986, 45(5-6), 261-274. (457) Wang, D.; Jiang, 2. Guangxue Xuebao 1986, 6(1 I), 1043-1049. (458) Farrow, R. L.; Lucht, R. P.; Flaver, W. L.; Palmer, R. E. Symp. ( I n t . ) Combust. [Proc.]),1985, ZOth, 1307-1312. (459) Boedeker, L. R.; Dobbs. G. M. Combust. Sci. Technoi. 1986, 46(3-6), 301-323. (460) Devonshire, R.; Dring, I.S.; Hoey, G.; Porter, F. M.; Williams, D. R.; Greenhalgh, D. A. Chem. Phys. Lett. 1986, 129(2), 191-196. (461) Ferrario, A.; Malvicini, C. NATO ASI Ser., Ser. B 1985, 719, 89-105.

.

Anal. Chem. 1900, 60, 377 R-387 R (462) Alden, M.; Wallln, S. Appl. Opt. 1985, 24(21), 3434-3437. (463) England, W. A.; Glass, D. H. W.; Brennan, J.; Greenhalgh, D. A. J . Catel. 1988, 700(1), 103-117. (464) Eckbreth, A. C.; Anderson, T. J. Appl. Opt. 1985, 24(16),2731-2736.

(465) Pubanz, 0. A.; Maronelli, M.; Nibler, J. W. Chem. f h y s . Lett. 1985, 720(3), 313-3 17. (466) Van Hare, D. R.; Carrera, L. A.; Rogers, L. B. Appl. Spectrosc. 1988, 39(2), 347-352.

Surface Analysis: X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Noel H. Turner Chemistry Division, Naval Research Laboratory, Washington, D.C. 20375-5000

This fundamental review is on the subject of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) and will cover the literature abstracted in Chemical Abstracts between November 18, 1985, and November 6,1987. The review is written in three separate parts for the convenience of the reader: section A, XPS; section B, AES; and section C, combined XPS-AES topics. However, for those who use only one of these techniques, there may be items of interest in the other sections. XPS and AES are used widely for the analysis of surfaces. From about 1970 to the present time, these techniques have grown in acceptance by the scientific community. Much of this activity has been documented in earlier fundamental and application reviews in Analytical Chemistry (1-14). While this review is lengthy, it is not an all-inclusive bibliography of XPS and AES during the review period. The articles have been selected with the idea of the improvement in the "state-of-the-art" of these techniques. The goal of this review is to help analysts solve the problems that are encountered in using XPS and AES in a routine laboratory setting with commercially available equipment. A section on inelastic mean free paths (IMFP) will be in the combined XPS-AES art of this review. Finally, t t e names of the authors of the papers cited could not be included in text due to space limitations.

X-RAY PHOTOELECTRON SPECTROSCOPY Introduction

XPS or electron spectroscopy for chemical analysis (ESCA) is one of the most widely used techniques for elemental analysis of the near surface region. Also, this method gives information about the chemical environment of the observed atoms. Much useful information can be obtained from XPS, even though a complete understanding of binding energies and intensities has not been achieved. There have been a number of reviews of XPS during the past 2 years, both general ( A I )and specific with an emphasis on topics such as small clusters (A2, A3), metal complexes (A4),binding energy shifts (A5), electronics (A6, A n , the Si02/Si interface (At?), failure analysis (A9), soils (AIO), surface reactions ( A l l ) , ceramics (A12), mineral flotation processes (A13),and polymers (A14,AI5). Investigations that have used synchrotron radiation have not been included in this review; this topic has been discussed elsewhere (A16). Blndlng Energies

A compliation of 13000 binding energies from XPS data was reported to be near completion (A17). This information will be invaluable to XPS users. A review of XPS with an emphasis on energy scale calibration and instrument response functions for various commercial spectrometers was presented ( A B ) . It was suggested that Zn or Ga 2p3I2and 3d peaks be used for XPS binding energy calibration, since the 3d peaks can be resolved (A19). Also, the energy that separates these peaks is known accurately from X-ray emission spectroscopy (XES). The variation in binding energies (f0.2 eV) with different instruments was found to be smaller than in an earlier round-robin study for selected transitions (A20). However, for some other peaks that were not used earlier, the

range of reported binding energies was somewhat lar er. Studies of the effect of charging have continued. i n investigation of charging by the deposition of metal dots on various insulating substrates was undertaken (A21). It was found that the surface charge could change during the determination if a flood gun was not used. With the use of a flood gun it was noted that the reference levels were to the vacuum level and often dependent on the work function of the specimen. Variations in the observed binding energy of Au on different insulators were noted (A22). Also, the shift was larger with materials that have a greater bond ionicity. With insulating samples it was observed that charging decreases when the current and voltage of the X-ray source increase (A23). Some differences were found also when there was an A1 window used with the X-ray source. Pd clusters and SiOzwere shown to have shifts that were related on A1203 to particle size (A24). At low coverages initial state effects were suggested to be important. The polarizability of the substrate and number of available d electrons were considered to become more important as the cluster size increased. Binding energy shifts to higher values for Ag and Pd on C substrates were greater for smaller clusters (A%). With Si02 the shifts were dominated by preferential charging, and A1203 and it was proposed that final state effects could account for these observations. Shifts in the binding energy of Pd on CdTe (a poor conductor) were suggested to be due to initial state effecta at low coverage (i.e. small particles) and changes in valence band energies (A26). At higher coverages final state effects approximately balance changes in the valence band binding energies. The calculation of relaxation energies with an electron gas model for small particles indicated that a fall off starts with sizes about 4 nm (A27). These findings agree with other determinations. Small negative binding energy shifts were noted upon the addition of up to several layers of Au on Ag(ll1) ( A B ) . From data of this type and the use of a Born-Haber cycle, a cohesion energy of the adsorbate can be computed. Surface binding energies were found to be shifted relative to bulk peak positions for Au-Pt alloys (A29). In this case the surface atoms had lower binding energies than the bulk. It was observed that for Ar+ bombardment on plasma-induced C films on glass, binding energies increased with higher doses (A30). These findings were explained by charge transfer effects. It was suggested that H impurities in the surface region can be observed with binding energy changes with different compositions in Ag-Pd alloys (A31). The energy separation between the A1 2s or 2p and the first loss peak was found to be sufficiently different to distinguish A1N from A1203(A32). Data Handling

A number of different approaches to the treatment of XPS data have been investigated during the review period. A relationship for the S/N ratio in terms of the S B (B is the background) for XPS was developed and teste (A33). To use this method, the noise level of the spectrometer must be known. This method allows an estimate of the time required for obtaining separate spectra with a given S/N ratio. A comparison of curve fitting and factor analysis for W03 overlayers on W indicated that the agreement between the methods was within 20% (A34). Where there is a large

This article not sublect to U.S. Copyright. Published 1988 by the American Chemical Society

d

377 R