Raman Spectroscopy - ACS Publications

Chem., 24, 576 (1952). (351) Seidenburg,R. L., and Benford, J. R., Metal Progr., 58,725. (1950). (352) Smith, H. G., “Minerals and the Microscope,â€...
0 downloads 0 Views 752KB Size
V O L U M E 26, NO. 1, J A N U A R Y 1 9 5 4 Schumann, H., and Piller, H., Neues Jahrb. Mineral. Monatsh, 1950, 1. Seely, B. K., ANAL.CHEW,24, 576 (1952). Seidenburg, R. L., and Benford, J. R., Metal Progr., 58, 725 (1950). Smith, H. G., “hIinerals and the Mcroscope,” 4th ed., Kew York, The MacMillan Co., 1950. Smithson, F., Mineralog. Mag., 28, 384 (1948). Sokolov, S. Y., Zhur. Tekh. Fiz., 19, 271 (1949). Spendlove, G. A., Cummings, M., and Patnode, R., Public Health Repts. (U. S.),63, 1046 (1948). Stevenson, D. G., J . Sci. Instr., 28,275 (1951). Steward, E. G., Ibid., 29, 214 (1952). Stock, E., Deut. Farben-Z., 5 , 273 (1951). Stock, E., Farben, Laeke, Anstrichstoffe, 4, 42 (1950). Stokes, A. R., Proc. Roy. Soc. (London), A212, 264 (1952). Strugger, S.,“Fluoreszenz-Mikroskopie und Mikrobiologie,” Hannover, Verlag hI. -4.Schaper, 1949. Strugger, S.,Mitt. naturforsch. Ges. Bern., 8, 14 (1951). Tanfield, D. A,, and Hughes, W. H., Chemistry & Industry, 1951. 27. Taylor; E. W., J . Opt. SOC.Amer., 42, Si4 (1952). Tchan, Y. T., Nature, 170, 328 (1952). Tervet, I. W., Rawson, A. J., Cherry, E., and Saxson, R. B., Phytopathology, 41, 282 (1951). Tolansky, S., iVature, 169, 445 (1952). Tolansky, S.,and Omar, M., Ibid., 170, 81 (1952.) Ibid., p. 758. Tolansky, S., and Rahbek, H., Ibid., 169,1060 (1952). Tripp, V. W., and Rollins, 11.L., AXAL.CHEM., 24, 1721 (1952). Tronnier, H., and Wagener, H., O p t i k , 8, 165 (1951). Vandor, J., Magyar, Khm., Lapja, 4, 641 (1949). Wachtell, R., Materials & Methods, 32, 49 (1950). Wahlstrom, E. E., “Optical Crystallography,” 2nd ed., New York, John Wiley & Sons, 1951. Wambacher, H., Mikroskopie, 4, 92 (1949). Katts, N. P., and Boyd, G. A,, Stain TechnoZ., 25, 157 (1950). Weiser, hl., Rdntgen Blbtt., 4, 188 (1951). West, P. W., ANAL.CHEY.,22, 1069 (1950). West, P. W., and Granatelli, L., Ibid., 24, 870 (1952).

49 Weston, R. M., Phot. J., B91, 50 (1951). White, B. J., Witt, N. F., Biles, J. A,, and Poe, C. F., ANAL. CHEM.,22,950 (1950). Widerkehr, L., Assoc. tech. ind. papetihre, Bull., 2, 35 (1948). Wilchinsky, Z. W., ANAL.CREM.,21, 11% (1949). Wildman, A. B., and Appleyard, H. bI., Rea. Teztile Progr., 1, 319 (1949). Wilkins, J. E., Jr., J . Opt. Sac. Amer., 40, 222 (1950). Wilkins, M. H. F., Stokes, A. R., Seeds, W.E., and Oster, G., Nature, 166, 127 (1950). Williams, M. B., and Van Meter, W. P., ANAL.CHEM.,24, 762 (1952). Williams, M. B., Van Meter, W. P., and McCrone. W.C., Ibid., 24, 911 (1952). Williams, M. B., Van Meter, W. P., and Robinson, R. J., Ibid., p. 1220. Willis, E. R., and Roth, L. M., Science, 109, 230 (1949). Wilsdorf, H. G. F., Naturwissenschaften, 38, 150 (1951). Wilson, E. T., Phot. J., 88B, 116 (1948). Winchell, H., Am. Mineralogist, 35, 130 (1950). Wolter, H., Ann. Phys. L p z . , 7, 33 (1950). Wolter, H., Naturwissenschaften, 37, 491 (1950). Ibid.,p. 147. Ibid., 8, 1 (1950). Ibid., 9, 65 (1951). Wood, L. J., and Frank, A. J., ANAL.CHEx, 23, 695 (1951). Wooters, G., J . Opt. Soc. Amer., 40, 521 (1950). Wredden, J. H., Chemistry & Industry, 1949, 762. Yagoda, H., Econ. Geol., 41, 813 (1946). Young, J. Z., and Roberts, F., Nature, 167, 231 (1951). Zappfe, C. A., Rev. Met., 44, 91 (1947). Zappfe, C. A., Landgraf, F. K., Jr., and Worden, C. O., Jr., Iron Age., 161,77 (1948). Zednik, V., and Kaderavek, Z., Hutnick6 Listy, 5, 45 (1950). Zeffert, B. M., and Hormats, S.,ANAL.CHEX.,21,1420 (1949). Zemany, P. D., Ibid., 24, 348 (1952). Zernicke, F., J . Opt. Soc. Amer., 40, 326 (1950). Zworykin, V. K., and Flory, L. E., Elec. Eng., 71, 40 (1952). Zworykin, V. K., Flory, L. E., and Shrader, R. E., Electronics, 25, 150 (1952).

Raman Spectroscopy ROBERT

F. STAMM

Stamford Research Laboratories, American Cyanamid co., Stamford, Conn.

T

HE last review on Raman effect in this series appeared i n January 1950 (14). However, the publication of other very good surveys (2, 9, 106, 126, 140, l 4 l ) , two books (59, l@), and a bibliography (3) has made i t unnecessary to list all the articles since 1950. Consequently, the present compilation includes papers published from October 1952 to October 1953. (Several exceptions will be noted.)

Davies (30) and Matossi (100) have extended the basic theories

of polarizability; Stein (162) has calculated values of LY for paraffins from bond a ’ s ; and Stansbury et al. (160) give values of (&/by) determined from intensity ratios (Raman/Rayleigh) in the gas state (hydrogen, deuterium, hydrogen bromide, nitrogen, oxygen, carbon dioxide, and methane). MOLECUL4R STRUCTURE

THEORY

There are nine publications listed which are concerned with the subject of intensities (10, 26, 67, 92, 101, 174, 191-193). Of these, one b y Long (92) reviews the theories and presents a matrix method for calculating derived invariants of CY (polarizability) in terms of CY functions characteristic of bonds and normal modes, a n d another by Theimer (174) provides extensive tables pertaining to the vibrations permitted in all the various point groups normally encountered. There are fourteen publications which have something in common, inasmuch as they employ previously published data for testing the theoretical aspects of interaction of vibration-rotation (47), improvements in methods of calculating force constants (93, 176, 180, 194), applications of group theory (QS), internal rotation (106, 107), torsional vibrations (170-172), a viewpoint on the true meaning of the term “characteristic frequency” (110), the effect of electronic arrangement on certain vibration frequencies ( l 4 2 ) , and the use of statistical theory in interpreting p data (178).

There are 54 publications in this field (5, 8, 18, 22, 24, 38, 36, 36, 38-45, 48, 49, 58-66, 60, 61, 64, 70, 75, 87, 91, 94, 97, 98, 102,lO4,109,118-122,227,128, 132, 134, 143,144, 150,161, 163, 164,177, 186), nearly all concerned with infrared and Raman spectra, vibrational analysis, and assignment of frequencies. I n addition, some contain the calculated values of the thermodynamic functions in the ideal gas state. [See ( 9 5 ) for values on cyanogen fluoride. ] The subject matter can generally be inferred from the titles in the bibliography. Of the 25 papers (19-22, 26, 31, 50, 51, 73, 80-82, 84-86, 99, 116, 117, 123, 125, 131, 139, 152, 153, 183, 190) dealing with crystals, the majority consist of contributions from India and France; five (73,117,152,183,190)are concerned with the theory of lattice vibrations. hTew and finer details in the Raman spectra of gases have been obtained in Canada. The molecules studied are ammonia (28), ethylene (27, 166), benzene (167), and methane, methyl chloride, methylene chloride, chloroform, and methyl bromide (187). The techniques employed are discussed under Apparatus. T o

50

ANALYTICAL CHEMISTRY

the revimer, the photographing of the rotational Raman spectrum of benzene vapor (167) (BO= 0.18955 em.-’, Do = 1.2 X 10-8 em.-’, and IO= 147.64 X l O F 4 0 gram X cm.2) indicates t h a t me have passed a very important milestone in this particular field. As in the past, the method has continued to give worth-while information about geometrical isomerism (6, 29, 58, 112) and rotational isomerism (7, 74, 108, 115, 133, 196). (The last three papers are concerned mith a n i l d controversy over the structure of oxalyl chloride.) &IISCELLAIiEOUS APPLICATIONS

T’ibrational spectra are useful in obtaining evidence of interand intramolecular association. Of the ten papers listed here, seven (37, 66, 129, 130, 235, 146, 168) give results on a variety of systems, and three (137, 138, 189) on the heat of mixing of acetone and saturated hydrocarbons. Three papers (62, 63, 83) discuss the Raman spectra of glasses. I n one of these (83) the relative scattering powers of fused quartz and pure ether have been compared ( I quartz N 28% I ether), and the Doppler components observed for transverse and background scattering (2537 $.) have been found to agree with values calculated from known elastic constants. The spectra of many compounds are obtained and are never interpreted completely; also, spectra are obtained of products resulting from chemical preparations. I n these categories are two articles (158,179)on inorganic compounds (for bromine monochloride, chlorine and bromine, Y = 428, 551, and 313 em.-’, respectively) (158), five on miscellaneous silicohydrocarbons (79, 113, 1 1 4 , 136, 185), and fifteen (16, 57, 65, 68, 88-90, 111, 148, 149, 161, 173, 175, 181, 184) on miscellaneous organic compounds.

ANALYTICAL APPLIC4TIONS

There are eight papers (1, 34, 72, 77, 103, 145, 169, 186) arid one book (124) in this category. It was found (34, 103) that the intensity ratios of line pairs were proportional to concentration ratios for both nonassociated and associated systems, except t h a t in the latter i t is necessary t o work with Raman lines attributable to vibrations of atoms not directly involved in association. (These generalizations apply only to the systems studied.) Sushchinskil(169) has described a method of analysis involving a quantity called the width of the Raman line and defined bJ6 = I m / I o jthe ratio of integrated intensity to peak intensity. I n this scheme, the n-idths of the 801 cm.-’line of cyclohexane and the 992 cm.-’ of benzene are taken as 6 = 1.9 em.-’ and 1.8 e m - ’ , respectively, from measurements made interferometrically by Sterin (165). The 10scale is based on 801 em.-’ of cyclohexane and 992 cm.-‘ of benzene having vitluea of 250 and 1260, respwtively. Continued improvements in photoelectric spectrometers should cause a marked increase in applications of Rrtman effect, particularly along analytical lines, LITERATURE CITED

(2)

(3) (4) (5)

APPARATUS, ACCESSORIES, AND TECHNIQUES

The techniques used for gases (27, 28, 166, 167, 187) have originated for the most part a t the University of Toronto under the guidance of Crawford and Welsh, although Sielsen and coworkers ($3) a t the University of Oklahoma have also made significant contributions. The work by Stoichiff on benzene (167) employed all the present-day (and older) techniques: intense Toronto-type arcs (287), multiple-reflection sample tube (188), a 1 to 3 image slicer between the sample tube and the slit, and a cylindrical lens in front of the plate to increase the brilliance of the image of the line. For illuminating single crystals the exposure time was cut from 40 hours to 1 hour by placing the crystal a t the common foci of two ellipsoids and quartz mercury arcs a t the other two foci (82). Brandmuller (11) has employed multilayer interference filters in a technique for photographing spectra of crystal powders, and a new liquid filter solution of 20% [Cu(NHJ4]S04 containing 4 grams of ammonium bromide per 20 ml. of solution for suppressing the continuous background has been announced by Simon and Jentzsch (145). Two studies (71, 76) of mercury arc sources have shown that the greatest stability mill occur a t a temperature of 50°C. The helium source has been used again by Stammreich (157-159) for studying colored substances. Barredo ( 4 ) has described apparatus for p measurements a t low temperatures, and Singh (147) has found small but definite effects produced in Raman and Rayleigh scattering by application of a strong electrostatic field. The earlier work by Rank and collaborators (see 196 for references) has led to further developments in photoelectric Raman spectrometers. We find three papers from Germany (13, 13, 96), one from France (SS), one from Sweden (78) (an extensive bibliography and other useful information), and four from the United States (26, 17, 154, 155). The fundamental principles involved in the design of such instruments have been discussed (15, 17 69, j.75, 156),

P. A., and Tatel-skii, V. AT., DokZady Akad. Nauk S.S.S.R., 89, 287-9 (1953). Intensity of bands of valence vibration of C r C bond in Raman spectra of hydrocarbons. Ananthakrishnan, S. V., Current Sei. (India), 2 2 , 63-8 (1953). Raman effect and its chemical applications. 45 references. Andermann, George, “Raman Bibliography,” Glendale 5 , Calif. Applied Research Laboratories, 1952. Barredo, J. RI. G., Anales real SOC. espaR. jis. y qutm.,48B, 187-50 (1952). Method for obtaining Raman spectra a t low temperatures and measuring depolarization factors. Recher, H. J., 2. anorg. u. allgem. Chem., 271, 243-56 (1953). Raman spectra of methylboron chlorides. Rernstein, H. J., Can. J . Chem., 30, 963-72 (1952). Tibration spectra of cis- and trans-dichloroethylenedl. Rernstein, H. J., Pullin, A. D. E., Rabinovitch, B. S., and Larson, N. R., J . Chem. Phus., 20, 1227-31 (1952). Rotational isomerism and the vibrational spectrum of sum-

(1) rikishin,

(6)

(7)

dideuteriodibromoethane. (8) Bernstein, R. B., Lamport, J. E., and Cleveland, F. F., J . Chem. Phys., 21, 1903-4 (1953). Substituted methanes. C13 isotopic shifts in vibrational spectrum of methanol. (9) Bhagavantam, S., Proc. Indian Acad. Sci., 37A, 350-76 (1953). 25 ycars of research on Raman effect.

(10) Bobovich, Ya. S.,and ilrkhipenko, D. K., Doklady Akad. Y a u k S.S.S.R., 86, 247-50 (1952). Temperature dependence of intensities of Raman lines. (11) Brandmuller, Josef, 2.angew. Phys., 5 , 95-101 (1953). Highintensity Raman crystal powder technique. (12) Rrandmiiller, J., and Moser, H., Naturwissenachaften, 39, 325 (1952). Self-recording of Ranian spectra. (13) Rrandmiiller, ,Josef, and Moser, Heribert, Sitzbe-r. math.nnturw. KZ. bailer. ALad. Wiss. MGnchen, 1952, 181--90 (pub. 19531, Photoelectric Raman spectra with Steinheil Raman spectrograph and souwx. (14) Braun, W. G., and Fenske, M. R., ANAL. CHEM.,22, 11-14 (1950). Fundamental Analysis. Raman spectra. (15) Busing, W. R., J. Opt. SOC. Amer., 42, 774-8 (1952). Design of photoelectric Raman apparatus. (16) Cairns, T. L., Evans, G. L., Larchar, A . W., and McKusick, B. C., J . Am. Chem. Soc., 74, 3982-9 (1952). gem-Dithiols. (17) Cary, Howard, “Raman Spectrophotometer Design,” Symposium on hlolecular Structure and Spectroscopy, Ohio State University, June 1953. (18) Caunt, A. D., Short, L. N., and \Toodward, L. A., Trans. Faraday Soc., 4 8 , 873-7 (1952). Raman and infrared spectra of germanium tetrafluoride. (19) Chandrasekharan, V., Proc. Indian Acad. Sci., 32A, 374-8 (1950). Influence of optical activity on light scattering in crystals. Sodium chlorate. (20) Ibid., pp. 379-85. Thermal scattering of light in crystals. Diamond. (21) Chapelle, Jean, and Galy, Andri., Compt. rend., 236, 1653-5 (1953). Raman spectrum of crystal hydrates. (23) Chiorboli, Paolo, Gazz. chim. ital., 82, 227-42 (1952). Abnormally high carbonyl frequency in Raman spectra of some compounds containing C : 0 group.

V O L U M E 26, N O 1, J A N U A R Y 1 9 5 4 (23) Classen, H. H., and Nielsen, J. R., J. Opt. SOC. Amer., 43, 352-5 (1953). Raman apparatus for gases. (24) Corrsin, Lester, Fax, B. J., and Lord, R. C., J . Chem. Phys.. 21, 1170-6 (1953). Vibrational spectra of pyridine and pyridine&. ( 2 5 ) Couture-IMathieu, Lucienne, and AIathieu, J. P., Compt. rend., 236,1868-70 (1953). New measurements on polarization anomalies in Raman spectrum of calcite. 4.26) Crawford, B. L., Jr., J . Chem. Phys., 20, 977-81 (1952). Vibrational intensities. Use of isotopes. (27) Cumming, C., McKellar, A , , Stansbury, E. J., and Welsh, H. L., “Rotational Raman Spectrum of Ethylene,” Syniposium on Molecular Structure and Spectroscopy, Ohio State University, June 1953. (28) Cumming, C., and Welsh, H. L., J . Chem. Phys., 21, 1119-20 (1953). vd Raman band of ammonia. (29) Dallwigk, E., Suss, B., and Briner, E., Helv. Chim. Acta, 35, 2145-8 (1952). Infrared absorption spectra of ozonides. Characteristics of spectra of ozonides of trans- and cisstilbene; comparison with Raman spectrum of ozonide of trans-stilbene. (30) Davies, P. L., Trctrts. Fnrcrdi~ySoc., 48, 789-95 (1952). I’olarizabilities of long-chain conjugated molecules. (31) Dayal, Bisheshwar, Proc. Indian Acad. Sci., 32A, 304 12 (1952). Vibration spectrum of rutile. (32) Decker, C. E., Meister, A . G., Cleveland, F. F., and Bernstein, R. B., J . Chem. Phys., 21, 1781-3 (1953). Substituted methanes. Vibrational spectra, potential constants, and calculated thermodynamic properties of dihromodifluoromethane. (33) Dupeyrat, M,, J . phys. rudium, 14, 131 (1953). Recording, high-resolution Raman spectrograph. (34) Duyckaerts, G., and Michel, G., Bull. SOC. rou. sci. LiBge, 21, 102-14 (1952). Proportionality (of intensity to concentration) in Raman scattering from binary mixtures. (3.5) Edgell, W. F., and AIay, C. E., J . Chem. Phys., 20, 1822-3 (1952). Raman aud infrared spectra of bromotrifluoromethane and iodotrifluoromethane. 138) El-Sabban, 11,Z., Neister, A. G., and Cleveland, F. F., Ibid. 20, 1810-11 (1952j. Vihrational assignments for l , l , l trichloroethane. (37j FBnBant, Suzanne, L‘ompt. rend., 235, 1292-5 (1952). Raman spectra of aqueous acetic acid solutions. (38) Ferguson, Eldon, J . Chena. Phys., 21, 886-90 (1953). Normal coordinate analysis of nonplanar vibrations of 1,3,5-trifluorobenzene. (;XI) Ferguson, E. E., (:ollins, R. L., Nielsen, J. R., and Smith, D. C., Ibid., 21, 1470-4 (1953). Vibrational spectra of fluorinated aromatics. 1,3-Difluorobenzene. (41)) Ferguson, E. E., Hudson, R. L., Niclsen, J. R., and Smith, D. C., Ibid., 21, 1 4 5 7 4 3 (1953). Vibrational spectra of fluorinated aromatics. 1,4-Difluorobenzene. (41) Ibid., pp. 1464-9. Vibrational spectra of fluorinated aromatics. 1,2,4,5-Tetrafluorobenaene. ( 4 3 Ibid., pp. 1727-35. Vibrational spectra of fluorinated aromatics, 1,2,4-Trifluorobenzene. (43) I b d . , pp. 1736-40, 1-ilirational spectra of fluorinated aromatics. p-Fluorotoluenc. (44) Ferguson, E. E., Mikkelsen, Louis, Nielsen, J. R., and Smith, D. C. Ibid., 21, 1731 5 (1953). Vibrational spectra of fluorinated aromatics. 1,4-Bis (trifluoromethyl) benzene. (45) Ferigle, S. M., Cleveland, F. F., and LIeister, A . G., Ihid., 20, 1928-31 (1952). Raman and infrared spectral data and assignments for dimethylbiacetylene. (46) Feriple, S. hI., and lleister, A. G., A m . J . Phys., 20, 421-8 (1952). Selection rules for vibration21 spectra of linear molecules. (47) Ferigle, S. Ai., and Weber, Alfons, I b i d . , 21, 102-7 (1953). Eckart conditions for polyatomic molecule. (48) Fcriple, S. AI., and Weber, Alfons, J . Chem. P h y s . , 21, 722-5 (1953). Sormal coordinate treatment of diacetylene. (49) Fuwn, Nelson, Josien. 31. L., Jones, E. d.,and Lnwson, J. R., Ibid., 20, 1637-34 (1952). Infrared and Raman spectroscopy studies of light and heavy trifluoroacetin acids. (50) Galy, AndrB, Coinpt. rend., 235, 1504-6 (1952). Raman spectra of barium chloride dihydrate. (51) Ibid., 236, 28+6 (lY53). Raman spectrum of hydrate of aluminum chloride. (52) Gamo, Itaru, Ibid., 236, 911-12 (1953). Fundamental vibrations of ammonia and ammonium ion. (53) Gamo, I t a r u , J . Chtm. SOC.Japan, Pure Chem. Sect., 73, 5 9 4 4 (1952). Calculation of normal vibrations taking anharmonicity int,o account. I. Ammonia and ammonium ion. (54) Garg, S. N., J . Chena. Phys., 21, 1907 (1953). Importance of v l l e n (849) vibration of benzene in determining structure of monosubstituted benzenes.

51 (55) Gerding, H., Haring, H. G., and Renes, P. A., Rec. trav. chim., 72, 78-83 (1953). Raman spectrum of liquid and solid gallium trichloride. (56) Gerding, H., and Houtgraaf, H., Ibid., 72,Zl-38 (1953). Raman spectra of NaCLAlCla and NOCLAlCla. (57) Gibbens, E. E., and Zinszer, H. A., Trans. Kansas Acad. Sci., 5 5 , 472-6 (1952). Raman effect of 2-chloro-Znitropropane. (58) Glockler, George, and Tung, J.-Y., Proc. Iowa Acad. Sci., 59, 193-6 (1952). Raman effect of cis- and trans-Decalin. (59) Goubeau, Josef, “Die Ramanspektren von Olefinen,” Beiheft 56, Deut. Chem. Z., Berlin und Weinheim. Deutscher Chemiker Verlag Chemie, G.m.b.H., 1948. (60) Goubeau, Josef, and Becher, H. J., 2. anorg. u. allgem. Chem., 268, 1-12 (1952). Vibrational spectra of boron trimethyl and boron trimethyl ammoniate. (61) Goubeau, Josef, and Behr, H., Ibid., 272,2-9 (1953). Thermal behavior and Raman spectrum of trichloromethoxysilane. (62) Gross, E. F., and Kolesova, V. A., Akad. Nauk S.S.S.R., Pamyati S. 1. Vavilova, 1952, 231-8. Raman scattering of light by substances in liquid and vitreous state. (63) Gross, E. F., and Kolesova, V. A., Zhur. Fiz. Khim., 26, 167380 (1952). Raman spectra of two-component silicate glasses. (64) Ham, N. S., aud Hambly, A. N., AustraZian J . Chem., 6, 33-7 (1953). Vibration spectra of methanesulfonyl chloride and methanesulfonyl fluoride. (65) Ibid., pp. 135-42. (66) Hariharan, T. A , , Indian J . Phys., 26, 115-18 (1952). Raman spectrum of solution of benzoyl chloride in benzene. (67) Harrand, Monique, Ann. pliys., 8, 1 2 6 6 8 (1953). Intensity in Raman effect and chemical structure. (68) Harrand, Monique, and Martin, Henri, Compt. rend., 236, 192-4 (1953). Variation in intensity of Raman spectra with substitution on benzene ring and side chain of cinnamyl chloride. (69) Hasler, M. F., J . Opt. Soc. Amer., 43, 708 (1953). Relative speeds of Raman spectrometers. (70) Hawkins, J. A , , and Wilson, bI. K., J . Cheni. Phys., 21, 36;0--2 (1953). Infrared and Raman spectra of SiHzCIz. (71) Heidt, L. J., and Boyles, H. B., J . Am. Chem. Soc., 73, 572831 (1951). Influence of several variables (P,T , i) on intensity (2537 A) produced by lowpressure Hg lamu. (72) Hibino, Osamu, Takei, Xorimichi, and Suzumura, hlotoi. J . Japan Tar Ind.Assoc. (Coal T a r ) , 4,361-4 (1952). Ranian spectra of xylene isomers. (73) Huzinaga, Sigeru, and Tanaka, Tomoyasu, Busseiron Kenkyu, No. 20, 107-16 (1949). Frequency spectrum of ribration of crystalline lattices. (74) Kagarise, R. E., J . Chenl. Phus,, 21, 1615-6 (1953). Structure of oxalyl chloride. (75) Keller, W. E., and Johnston, H. L., Ibid., 20, 1749-51 (1952). Vibrational frequencies and entropy of decarborane. ( 7 0 ) Kenip, J. IT.,Jones, J. L., and Durkee, R. W., J . Opt. SOC. Amer., 42, 811-14 (1952). Source unit for Raman spcctroscopy. (77) Khromov, S.I., Pik, E. I., .Ikishin, P.A . , and Kikitina, L. AI., V e s t n i k Moskou. Uniu., 7, KO.2, Ser. Fiz.-Mat. i Estcstren. S a u k , S o . 1, 97-104 (1952). Catalytic reactions of ethylcycloheptane on platinized carbon. (78) Iiinell, 1’. O., “Spectrophotornetric Study of Polymethyl Methacrylate. Const,ruction of a Recording Raman Spectroxraph,” Uppsala, Sweden, Aluqvist & Kiksells Boktrycheri AB, 1953. (79) Kolesova, V. A , , Kukharskaya, E. V.,and Andreev, D. S . , Iznest. Akad. Nauk S.S.S.R., Otdel. Khim. hTault,1953, 2947. Raman spectra of some silicohydrocarbons. (80) Korshunov, 8.V., Doklady Akad. Nauk S.S.S.R., 86, 271-2 (1952). Low-frequency Raman spectra of some organic crvstals. (81) Ibid:, pp. 695-6. (.8 2,) Korshunov. A. V., and Selkin, V. d.,Zhur. Tekh. Fiz., 20, 745-9 (1950). Use of illuminating apparatus in investigation of lon-er-frequency scattered spectra of organic crystals. (83) Iirishnan, R. S.,Proc. Indian Acad. Sci., 37A, 377-84 (1953). Scattering of light in fused quartz and its Raman spectrum. (84) Ihid., pp. 417-17. Raman spectrum of crystalline ammonium hydrogen malate. ( 8 5 ) Krishnan, R. S., and Xarayanan, P. S., Ibid., 32A, 352-6 (1950). Intensity ratio of Raman lines in diamond. (86) Lafont, Robert, Compt. rend., 236, 678-80 (1953). Internal vibrations of sulfate ion in monocrystal of ZnS04.7HzO. (87) Lagemann, R. T., Jones, E. A , , and Waltz, P. J. H., J . Chem. Phys., 20, 1768-71 (1952). Infrared and Raman spectra of CFIOF. (86) Lagidze, R . M , , and Petrov, A. D., Doklady Akrul, m 7 4 $

52 S.S.S.R., 83, 235-8 (1952). Alkylation of benzene by 2butyne-l,4-diol diacetate in presence of aluminum chloride. (89) Lebedeva, A. I., and Almashi, L. F., Ibid., 86, 75-8 (1952). Formation of ethers from dimethylvinylcarbinol and their catalytic hydrogenation under mild conditions. (90) Levina, R. Ya., Shusherina, N. P., and Treshchova, E. G., V e s t n i k Moskov Univ.,7, No. 2, Ser. F i t . M a t . i Estestven. N a u k , No. 1, 105-8 (1952). Synthesis of hydrocarbons. Synthesis of 3,5-dimethylheptane. (91) Lippincott, E.R., and Tobin, ill. C., J . Chem. P h y s . , 21, 155965 (1953). Vibrational spectra and structure of nitrogen tetrasulfide. (92) Long, D. A., Proc. Roy. SOC.( L o n d o n ) , A217, 203-21 (1953). Intensities of Raman soectra. Bond oolarizability theory. (93) Longuet-Higgins, H. C., and Burkitt, F; H., Trans.. Faraday Soc., 48, 1077-84 (1952). Bond lengths, force constants, and interaction constants in polyacetylenes and cumulenes. (94) Lord, R. C.,and Venkateswarlu, Putcha, J . Chem. Phys., 20, 1237-47 (1952). Rotation-vibration spectra of allene and allene-d4. (95) Luft, N.W., Ibid., 21, 1900-1 (1953). Thermodynamic functions of FCN. (96) Luther, H., Bergmann, G., and Miihlfeld, A., Naturwissenschaflen, 39, 255-6 (1952). Automatic recording of Raman spectra. (97) Malherbe, F. E.,and Bernstein, H. J., J . Am. Chem. Soc., 74, 4408-10 (1952). Infrared and Raman spectra of p-dioxane. (98) Manneback, C., and Rahman, A., Ann. SOC. sci. Brurelles, Ser. I , 67, 28-67 (1953). Potential function for out-ofplane vibrations of vinyl bromide and seven deuteriovinyl bromides (including stereoisomers), and effect of anharmonicity on calculation. (99) Mathieu, J. P.,and Couture-Mathieu, Lucienne, Compt. rend., 233, 1595-7 (1951). Orientation of ammonium ions in crystals of ammonium halide. (100) Matossi, Frank, J . Chem. Phys., 20, 819-21 (1952). Polarizability model of effective charges. (101) Manants, L. S., Z h u r . Eksptl. i. Teoret. Fiz., 19, 627-32 (1949). Simplification of calculation of intensities and polarization in vibrational spectra of molecules. (102) Meister, A. G.,and Voelz, F. L., J . Chem. Phys., 21, 158 (1953). Substituted methanes. Potential constants for chlorotribromomethane. (103) Michel, Gilbert, Spectrochim. A c t a , 5, 218-37 (1952). Studies on analysis of mixed liquids by Raman spectrography. (104) Miller, F. A., and Hannan, R. B., Jr., J . Chem. Phys., 21, 110-14 (1953). Infrared and Raman spectra of dicyanoacetylene. (105) Minc, Stefan, and Kecki, Zbigniew, Wiadomosci Chem., 6, 501-16 (1952). Raman spectra. (106) Minden, H. T., J . Chem. Phys., 20, 1964-5 (1952). Complete symmetry group for internal rotation in CHaCFa and like molecules. (107) hliaushima, Sanichiro, Morino, Yonezo, and Shimanouchi, Takehiko, J . Chem. SOC.J a p a n , P u r e Chem. Sect., 73,621-3 (1952). Nature of potential hindering internal rotation. (108) Mizushima, Sanichiro, Shimanouchi, Takehiko, Miyazawa, Tatsuo, Ichishima, Isao, Kuratani, Kenji, Nakagawa, Ichiro, and Shido, Nobuhiko, J . Chem. Phys., 21, 815-18 (1953). Rotational isomerism in chloroacetone. (109) hlonfils, AndrB, and Duchesne, Jules, Compt. rend., 236, 685-7 (1953). Potential function for vibration(s) of molecule CZF4. (110) Morino, Yonezo, and Kuchitsu, Koso, J . Chem. Phys., 20, 1809-10 (1952). Classification of normal vibrations of molecules. (111) Mukerji, S. K.,and Lal, Banarsi, I n d i a n J . P h y s . , 26, 276-8 (1952). Raman spectrum of thianthrene in molten state. (112) hlurata, Hiromu, J . Chem. Phys., 21, 181-2 (1953). Raman spectra of vinyl- and dichlorovinyltrichlorosilane. (113) Nurata, Hiromu, J . Chem. SOC.J a p a n , P u r e Chem. Sect., 73, 465-70 (1952). Raman spectra of methylchlorosilanes and ethylchlorosilanes. (114) Murata, Hiromu, and Kumada, nlakoto, J . Chem. Phys., 21, 945 (1953). Raman spectra of hexamethyldisilane and hexamethyldisiloxane. (115) Nakagawa, Ichiro, Ichishima, Isao, Kurantani, Kenji, Miyazawa, Tatsuo, Shimanouchi, Takehiko, and Mizushima Sanichiro, Ibid., 20, 1720-4 (1952). Rotational isomers of chloroacetyl chloride, bromoacetyl chloride, and bromoacetyl bromide. (116) Narayanan, P. S., Proc. I n d i a n Acad. Sci., 37A, 411-14 (1953). Raman spectrum of rutile. Polarization studies. (117) Newell, G. F.,J . Chem. Phys., 21, 1877-83 (1953). Vibration spectrum of simple cubic lattice. (118) Nielsen, J. R.,Claassen, H. H., and Smith, D. C., Ibid., 20,

ANALYTICAL CHEMISTRY 1916-19 (1952). Infrared and Raman spectra of fluorinated ethylenes. Hexafluoropropene. (119) Nielsen, J. R., Liang, C. Y., and Smith, D. C. Ibid., 20, 10904 (1952). Infrared and Raman spectra of fluorinated ethylenes. l,l-Difluoro-2-chloroethylene. (120)Ibid., 21, 1060-9 (1953). Infrared and Raman spectra of fluorinated ethanes. Series CFaCHs, CFSCHzCl, CFaCHClz, and CFaCCla. (121) Nielsen, J. R., Liang, C. Y., Smith, D. C., and Alpert, Morris. I b i d . , 21, 1070-6 (1953). CClaCFzC1 and CClaCFClz. (122) Nielsen, J. R., Liang, C. Y., Smith, R. &I., and Smith, D. C., Ibid., 21, 383-93 (1953). Infrared and Raman spectra of fluorinated ethanes, Series of CFaCFs, CFsCFzCl, CFaCFClz and CFaCCla. (123) Olivelli, G., h‘uoza cimento, 10, 3434 (1953). Low-frequency Raman spectrum of aragonite. (124) Otting, Walter, “Der Raman-Effect und seine analytische ilnwendung, Anleitung fur die chemische Laboratorium Praxis,” Band V, Berlin, Springer-Verlag, 1952. (125) Padmanabhan, V. AI,, Proc. I n d i a n Acad. Sei., 37A, 401-4 (1953). Raman spectra of crystalline acetates, sodium, magnesium, and barium. (126) Pajenkamp, Horst, Fortschr. Chem. Forsch., 1, 417-84 (1950). Advances in scientific and practical applications of Raman effect. (127) Pontarelli, D. A., Meister, A. G., Cleveland, F. F., Voelz, F. L., Bernstein, R. B., and Sherman, R. H., J Chem. Phys., 20, 1949-54 (1952). Substituted methanes. Raman and infrared spectra, assignments, potential constants, and calculated thermodynamic properties of CHClBrz and CDC1Brz. (128) Quinan, J. R., and Wiberley, S. E., Ibid., 21, 1896-7 (1953). Assignment of 0-H deformation frequency. (129)Raskin, Sh. Sh., and Sechkarev, A. V., Doklady A k a d . N a u k S.S.S.R., 86, 277-80 (1952). Origin of some particularities in Raman spectra of substances with hydrogen bond. (130)Ibid., pp. 509-12. (131) Ray, A. K., I n d i a n J . Phys., 26, 22632 (1952). Raman spectra of crystals a t low temperatures. o-Xylene and benzyl bromide. (132) Riet, R. van, B u l l . classe sci., Acad. Toy. Belg., 39, 273-84 (1953). Infrared and Raman spectra of deuterioethanes. (133) Saksena, B. D., Kagarise, R. E., and Rank, D. H., J. Chem. Phys., 21, 1613-4 (1953). Raman spectrum of oxalyl chloride. (134) Saksena, B. D., and Raisada, P. S., Proc. I n d i a n Acad. Sci., 36A, 267-77 (1952). Ring frequencies of dioxane and trioxane. (135) Sandeman, I., J . Chem. Soc., 1953, 1135-8. llethanesulfonic acid-sulfur trioxide complex: detection by Raman spectroscopy. (136) Savidan, L., B u l l . soc. chim. France, 1953, 411-12. Raman spectra of several organosilicon compounds. (137) Schkfer, K., and Wolff, H., Naturwissenschaften, 39, 547-8 (1952). Line shift and heat of mixing of solutions of acetone with saturated hydrocarbons. (138) Schafer, K., and Wolff, H., Z . Elektrochem., 57, 38-41 (1953). Intermolecular forces and Raman effect in mixtures of acetone with nonpolar solvents. Relations between line shifts and heats of mixing. (139) Shantakumari, C., Proc. I n d i a n Acad. Sci., 37A, 393-400 (1953). Raman spectra of crystalline sulfates of zinc, magnesium, and sodium. (140) Sheppard, Norman, and Simpson, Delia, Quart. Revs.( L o n d o n ) , 6 , 1-33 (1952). Infrared and Raman spectra of hydrocarbons. Acetvlenes and Olefins. (141) Ibid., 7, 19-55 (1953). Paraffins. (142) Shiaorin. D.N.. Z h u r . Fiz. K h i m . , 25,798-802 (1951). Raman spectra of amidine and imido ester hydrochlorides. (143) Siebert, Hans, Z . anorg. u.allgem. Chem., 268, 13-19 (1952). Analysis of vibration spectrum of boron trimethyl. (144) Ibid., 271, 65-75 (1952). Force constants for methyl compounds of oxygen, sulfur, and selenium. (145) Simon, il., and Jentasch, D . , Ibid., 266, 193-207 (1951). Determination of ?-isomer in technical hexachlorocyclohexane by Raman spectroscopy. (146) Singh, L., Nuom cimento, 10, 89 (1953). Raman spectrum of thianthrene in solution. (147) Singh, L., Proc. P h y s . SOC.( L o n d o n ) , 66A, 309 (1953). Effect of a strong electrostatic field on scattering. (148) Sirkar, S. C.,and Roy, N. K., J . Chem. Phys., 21, 938-9 (1953). Raman spectrum of monomeric methyl methacrylate at - 180’. (149) Skvarchenko, V. R., Uchenye Z a p i s k i Moskov. Gosudarst. Univ. im. M . V . Lsmonosoca, No. 131, 167-248 (1950).

V O L U M E 2 6 , NO. 1, J A N U A R Y 1 9 5 4 Synthesis of alkenes and alkynes with central position of unsaturated link. (150) Smith, D. C., Ferguson, E. E., Hudson, R. L., and Nielsen, J. R., J . Chem. Phus., 21, 1475-9 (1953). Vibrational spectra of fluorinated aromatics. Fluorobenzene. (1.51)Smith, D . C.,Saunders, R. A., Nielsen, J. R., and Ferguson, E. E., Ibid., 20, 847-59 (1952). Infrared and Raman spectra of fluorinated ethanes. Series CHI-CHI, CHs-CH2F CHI-CHFz, and CHI-CF~. (152) Soulmagnon, Roger, Compt. rend., 236, 7969 (1953). Polarization anomalies and frequency variations of Raman lines. (153) Srinivasan, R., Proc. I n d i a n Acad. Sci., 37A, 407-10 (1953). Temperature variation of Raman spectrum of topaz. (154) Stamm, R. F., Salzman, C. F., Jr., and Mariner, Thomas, J . Opt. Soc. Ampr., 43, 119-25 (1953). Photoelectric Raman spectrometer with automatic range changing. Conversion of photographic instrument. (155) Ibid., pp. 12637. (156) Ibid., p. 708. (157) Stammreich, H., P h y s . Rev.,78, 79 (1950). (158) Stammreich, H., and Forneris, Roberto, J . Chem. P h y s . , 21, 944-5 (1953). Raman frequency of bromine monochloride. (159) Stammreich, H., and Forneris, Roberto, Z . Naturforsch., 79, 756 (1952). (160) Stansbury, E.J., Crawford, Bl.F., and Welsh, H. L., C a n . J . P h y s . , 31, 954-61 (1953). Determination of rates of change of polarizability from Raman and Rayleigh intensities. (161) Stein, XI. v., Maschks, A., Wollrab, F., and Gnilsen, W.,Z . p h y s i k . Chem., 201, 261-7 (1952). Raman spectra of a, p, 7 , and 8-1,2,3,4,5,6-hexachlorocyclohexane and of ~-l,l,2,3,4,5,6-heptachlorocyclohexane. (162) Stein, R. S., J . Chem. Phys., 21, 1193-8 (1953). Polarizability and configuration of n-paraffins. (163) Stephenson, C.V., and Jones, E. A , Ibid., 20, 1830-4 (1952). Raman spectrum, structure, force constants, and thermodynamic properties of bromine pentafluoride. (164) Stephenson, C.V., and Jones, E. A., Univ. M i c h . Dissertation Abstr., 12, 667-8 (1952). Raman spectrum, structure, force constants and thermodynamic properties of bromine pentafluoride. (165) Sterin, Kh. E.,Iztest. A k a d . N a u k S.S.S.R., Ser. Fiz., 14,4117 (1950). (166) Stoicheff, B. P., J . Chem. Phys., 21, 755-6 (1953). Vibrational Raman spectrum of gaseous ethylene. (167) Ibid., pp. 1410-11. Rotational Raman spectrum of benzene vapor. (168) Suetaka, Wataru, Gazz. chim. ital., 82,768-72 (1952). Raman spectrum of cyclopentanone in various solvents. (169) Sushchinskii, BI. M a ,Z h u r . E k s p t l . i Teoret. Fiz., 22, 755-67 (1952). Line breadth in Raman spectra of various hydrocarbons. (170) Szigeti, B., Proc. P h y s . Soc. ( L o n d o n ) , 65B, 19-32 (1952). Torsional vibrations of long-chain molecules. (171) Szigeti, B., T r a n s . Faraday Soc., 48,400-9 (1952). Torsional vibrations of long-chain molecules. Torsional polarization of isolated long-chain ketone molecules in extended configuration. (172)I b i d . , 49, 132-40 (1953). Torsional vibrations of long-chain molecules. Effects of chain ends. (173) Terent'ev, A. P.,Gracheva, R. ii., and Shcherbatova, Z. F., Doklady A k a d . N a u b S.S.S.R., 84, 975-7 (1952). Stereoisomerism of p-styrenesulfonic acid.

53 (174) Theimer, O.,Acta P h y s . Austriaca, 7, 216-38 (1953). Intensity problem in Raman effect. Classification. (175) Thoi, Le-Van, Peintures, pigments, vernis, 29, 125-31 (1953). Raman spectra of resin acids and their derivatives. (176) Thomas, W. J., ?"Tans. Faraday Soe., 49, 855-66 (1953). Force constants and hybridization in HNCO, HNCS, and HNs. (177) Tobin, M. C., J. Am. Chem. Soc., 75, 1788-90 (1953). Assignment of frequencies for the methylhalomethanes and -silanes (CHa)XYa, (CHs)zXYz, and (CHa)aXY. (178) Tobin, M. C., J . Chem. Phys., 21, 1110-11 (1953). Statistical interpretation of polarization data in Raman spectra. (179) Tomitsu, Gichi, and Nishi, Hisamitsu, M e m . Fac. Sei., K y t t s y u Univ., Ser. B, 1, No. 2, 33-6 (1952). Raman effect in aqueous solutions of some nitrates of rare earth elements. (180) Torkington, P., J . Chem. Phys., 21,83-7 (1953). Interactions in vibrating molecules. (181) Treshchova, E. G., Tatevskii, V. M., Tantsyreva, T. I., Fainzil'berg, A. A., and Levina, R. Ya., Zhur. Fiz. Khini., 25, 1239-47 (1951). Raman spectra of some isoalkanes CS-CII with tertiary carbon atoms. (182) Vigneron, Guy, Acad. roy. Belg., B u l l . classe sci., 38, 9'78-83 (1952). Raman spectrum of rotenone. (183) Viswanathan, K. S., Proc. I n d i a n Acad. Sci., 36A, 30614 (1952). Characteristic vibrations of rectangular lattice. (184) Voetter, H., and Tschamler, H., Monatsh., 84, 134-55 (1953). iMolecular spectra of saturated six-membered rings: cyclohexane, pentamethylene oxide, piperidine, N-methylpiperidine, methyl cyclohexane, and pentamethylene sulfide. 21 references. (185) . , Vol'kenshtein. M. V.,and Pokrouskii, E. I., Imest. A k a d . A\'auk S.S.S.R., Otdel. K h i m . N a u k , 1953, 177. Raman spectra of two silanes. (186) Weber, Alfons, Meister, A. G., and Cleveland, F. F., J . Chem. Phys., 21, 930-3 (1953). Substituted methanes. Vibrational spectra, potential constants, and calculated thermodynamic properties of bromochloromethane. (187) Welsh, H. L., Crawford, M. F., Thomas, T. R., and Love, G. R , C a n . J . Phys., 30, 577-96 (1952). Raman spectroscopy of low-pressure gases and vapors. (188) Welsh, H. L., Cummings, C., and Stansbury, E. J., J . Opt. SOC. Amer., 41, 712 (1951). (189) Wolff, Hans, Z. Elektrochem., 56, 965-8 (1952). Intermolecular forces and Raman effect in mixtures of acetone with nonpolar solvents. (190) Yanagawa, Sadaaki, Busseiron K e n k y u , No. 21, 59-73 (1949). Theory of lattice vibration. (191) Yoshino, Tsuneo. J . Chem. Soc. J a p a n , P u r e Chem. Sect., 73, 591-4 (1952). Intensity of Raman lines and molecular structure. Intensity and polarization of Raman lines in polarization theory. (192) Ibid., pp. 703-5. Intensity measurement of Raman lines. (193)Ibid., pp. 733-6. Calculation of intensity and depolarization factor of Raman lines. (194) Ziomek, J. S., and Mast, C B., J . Chem. P h y s . , 21, 862-9 (1953). Bipyramidal XYS molecular model. Classical vibration problem. (195) Ziomek, J. S., Meister, 9.G., Cleveland, F. F., and Decker, C. E., Ibid., 21, 90-100 (1953). Raman and infrared spectral data, assignments, potential constants, and calculated thermodynamic properties for oxalyl chloride.

U

n

U

Y