Raman spectroscopy - Analytical Chemistry (ACS Publications)

Charles G. Smith , Richard A. Nyquist , Nels H. Mahle , Patrick B. Smith , Steven J. Martin , and Andrew J. Pasztor. Analytical Chemistry 1987 59 (12)...
4 downloads 0 Views 2MB Size
Anal. Chem. 1986. 58.6R-13R (78) Kim, K. H.; Frank, M. J.; Henderson, N. L. J . Pharm. Sci. 1985, 74, 283. (79) Klement, W.; Rlchter, P. W.; Clark, J. B. H/gh Temp. High Pressures 1983, 15,539. (80)Klement, W.; Cohen, L. H. J. Chem. SOC., Faraday Trans. 11984, 80, 1831. (81) Kopp, 0. C.; Harris, L. A. Int. J . CoalGeol. 1984, 3 ,333, (82) Kuhnert-Brandstaetter, M.; Proell, F. Mikrochim. Acta 1983, 3, 287. (83) Kyger, E.; Wright, H. T. Arch. Biochem. Siophys. 1984, 228, 569. (84) Lalne, E.; Tuomlnen, Y.; Kahela, P.; Liponkoski, L.; Sjoeholm, R. Acta Pharm. Suec. 1983, 20,451. (85) Langeir-Kuznlarowa, A. J . Thermal Anal. 1984, 29,913. (86) Lazerko, G. A.; Torkailo, E. M.; Zaretskii, M. V. Zh. Neorg. Khlm. 1984, 29, 1214. (87) Lee, I.C.;Lee, M. D.; Sohn, H. Y. Thermochim. Acta 1985, 84, 371. (88) Lee, W. G.; Park, J. Y. Ind. Eng. Chem. Fundam. 1985, 24, 266. (89) Lephardt, J. 0. Anal. fyrol. 1984, 95. (90) Levy, J. H.; Stuart, W. I.Thermochim. Acta 1984, 74, 227. (91) Liang, K.; Yu, X. Zhongshan Daxue Xuebao, Ziran Kexueban 1984, 130. (92) Loeblich, K. R. Thermochim. Acta 1985, 83, 99. (93) Loseva, G. V.; Abramova, G. M. Phys. Status Solid A 1983, 80, K109. (94) LOUIS,E.; Garcia-Cordovllla, C. J . Thermal. Anal. i984, 29, 1139. (95) Lynch, L. J.; Webster, D. S. Roc.-Int. Conf. Coal Scl. 1983, 663. (96) Maeda, Y.; Kawai, Y.; Fujita, T.; Ohtsubo, E. J . Gen. Appl. Microbiol. 1984, 30, 289. (97) Mallchenko, B. F.; Shelud'ko, E. V.; Tsypina, 0. N. Vysokomol. Soedln., Ser. A 1983, 25, 1869. (98) Matsubara, N.; Kuwamoto, T. Anal. Chlm. Acta 1984, 167, 101. (99) Matsuda, H.; Goto, S.Can. J . Chem. Eng. 1984, 62, 108. (100) Matsuda, H.;Goto, S. Can. J . Chem. Eng. 1984, 62,103. (101) McEwen, D. J.; Lee, W. R.; Swarin, S. J. Thermochlm. Acta 1985, 86, 251. (102) Milestone, N. B. Cem. Concr. Res. 1984, 74, 207. (103) Minier, M.; Berthier, C.;Gorecki, W. Solid State Ionics 1983, 9- IO, 1125. (104) Mraw, S.C.; Heidman, J. L.; Hwang, S.C.; Tsonopoulos, C. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 577. (105) Nair, S.M. K.; James, C. Thermochim. Acta 1985, 87,387. (106) Nakajima, H.; Shlmlzu, S.; Onukl, K.; Ikezoe, Y. Nippon Kagaku Nkaishi 1984, 1257. (107) Navard, P.; Haudln, J. M. J . Thermal. Anal. 1984, 29,405. (108) Nebuloni, M.; Mllanl, V.; Ferrari, P.; Gallo, G. G.; Pellzzl, G.; Lanfranchl, M. Farmaco, Ed. Sci. 1984, 39,353. (109) Ohrbach, K. H.;Klusmeier, W.; Kettrup, A. Thermochim. Acta 1984, 72,185. (110) O'Nelll, M. J. Anal. Chem. 1985, 57,2005. (111) Pla, C.; Podgorsak, E. B. Rev. Sci. Instrum. 1984, 55,413. (112) Park, K. H.; Lund, D. B. J. Dairy Sci. 1984, 87, 1699. (113) Parkhurst, W. A.; Dalleck, S.; Larrick, B. F. J . Nectrochem. SOC. 1984, 131, 1739. (114) Patel, A. U.; Patel, H. S.;Patel, M. N. Angew. Makromol. Chem. 1985, 737, 135. (115) Paulik, F.; Paulik, J.; Arnold, M. J. Thermal. Anal. 1984 , 29, 333. (116) Pievskii, I. M.; Shpil'skli, A. B. Prom. Teplotekh. 1984, 6 , 49. (117) Popescu, C.; Segal, E. Thermochim. Acta 1984, 76,387. (118) Randzio, S. L. J. Phys. E 1984, 77,1058. (119) Reboul, J. P.; Toureille, A. J. Polym. Sci., Polym. Phys. Ed. 1984', 22, 21. (120) Redelius, P. Thermochim. Acta 1985, 85,327. (121) Reffner, J. A. Am. Lab. 1984, 76, 29.

.

(122) Reich, L.; Stivala, S.S. Thermochim. Acta 1983, 66, 383. (123) Reich, L.;Stlvala, S. S. Thermochim. Acta 1984, 80, 185. (124) Ribas, J.; Escuer, A.; Monfort, M. Thermochim. Acta 1984, 76,201. (125) Romero Salvador, A.; Garcia Calvo, E.; Irablen Gulias, A. Thermochim. Acta 1984, 73,101. (126) Russell, T. P.; Koberstein, J. T. J. Polym. Sci., Polym. Phys. Ed. 1985, 23, 1109. (127) Seganov, I.; Fakirov, S.;Zachmann, H. G. Acta Polym. 1984, 35, 543. (128) Seifert, H. J.; Theil, G. J. Thermal. Anal. 1982, 25,291. (129) Sen, A.; Kumar, J.; Chakravorty, D. J. Mater. Sci. Lett. 1983, 2,677. (130) Serageldin, M. A,; Pan, W. P. Thermochim. Acta 1984, 76,145. (131) Shiino, H.;Yaseu, T.; Arai, Y. Gypsum Lime 1984. 188,3. (132) Shirokov, N. A.; Dauengauer, S.A,; Sazanov, Y. N. J . Thermal. Anal. 1982, 25, 597. (133) Shishkin, Y. L. J. Thermal. Anal. 1984, 29,503. (134) Singh, P. K.; Mathur, A. B.; Mathur, G. N. J . Thermal. Anal. 1982. 25, 387. (135) Smleszek, 2.; Kolenda, 2. S.;Norwisz, J.; Hajduk, N. J. Thermal. Anal. 1982, 25,377. (136) Speckhard, T. A.; Hwang, K. K. S.; Cooper, S.L. Po/ymer. Mater. Sci, €no. 1984. 50. 24. (137)-Teimurov, G. S.;Babaev, I . A. I z v . Akad. Nauk Az. SSR, Ser . Nauk Zemie 1983. 135. (138) Thomas,'G.; Ropital, F. J . Thermal. Anal. 1983, 28. 109. (139) Thoma, K.; Serno, P. Pharm. Ind. 1983, 45, 990. (140) Tomassetti, M.; Campanella, L.; Cignini, P.; D'Ascenzo, G. Thermochim. Acta 1985, 894, 295. (141) Tomassettl, M.; Campanella, L.; Sorrentino, L.; D'Ascenzo. G. Thermochlm. Acta 1983, 70,303. (142) Tompa, A. S. Thermochim. Acta 1984, 77,133. (143) Topic, M.; Mogus-Mllankovic, A. Croat. Chem. Acta 1984, 57, 75. (144) Trishin, S. P.; Tsvetkov, V. E. I z v . Vyssh. Uchebn. Zaved., Lesn Zh. 1984, 83. (145) Van der Plaats, G.; Slmmellnk, J. Thermochim. Acta 1985, 85,335. (146) Van Wagner, J.; Chapman, J. A.; Bell, J. A. E. Stud. Surf. Sci. Catal. 1984. 79.497. (147) Vossoughi, S.;Wilhite, G.; El Shoubary, Y.; Bartlett, G. J . Thermal. Anal. 1983. 27. 17. 1148) Warne, S. S.; French, D. H. Thermochim. Acta 1984, 75,139. Warrington, S. B. Proc. Conf.-Int. Coal Test. Conf. 1984, 4th, 41. Wendlandt, W. W. Anal. Chem. 1984, 56,250R. Wendlandt, W. W. Thermochim. Acta 1984, 73,89. (152) Wendlandt, W. W. Thermochim. Acta 1984, 72,1. (153) Wendlandt, W. W. Thermochim. Acfa 1983, 70,379. (154) Wesolowski, M. DfugDev. Ind. Phar. 1985, 7 1 , 80. (155) Whelan, D. J.; Spear, R. J.; Read, R. W. Thermochim. Acta 1984, 80, 149. (158) Wiedemann, H. G.; Riesen, R.; Bayer, G. ASTM Spec. Tech. Publ. 1984, 838. (157) Wiederholt, E. Thermochim. Acta 1985, 83, 113. (158) Will, F. G.; McKee, D. W. J. Polym. Sci., Polym. Chem. Ed. 1983, 27,3479. (159) Williams, P. F. Fuel 1985, 64, 540. (180) Yamawakl, M.; Matsumoto, A.; Oiwa, M. J. Polym. Sci. 1984, 29, 1761. (161) Yorulmaz, Y. Energy Res. 1983, 3, 355. (162) Yoshida, T.; Matsuda, H. Toyoda Gosei Giho 1983, 25,49. (163) Yuen, H. K.; Mappes, G. W. Thermochim. Acta 1983, 70,269. (164) Zeman, A.; Stuwe, R.; Koch, K. Thermochim. Acta 1984, 80, 1.

Raman Spectroscopy Donald L. Gerrard* and Heather J. Bowley BP Research Centre, Chertsey Road, Sunbury-on- Thames, Middlesex, England

The period of this review is from late 1983 to late 1985. During this time over 5000 papers have appeared in the scientific literature dealing with many applications of Raman spectroscopy and extending its use to several new areas of study. This large number of publications includes the proceedings of the 9th International Conference on Raman Spectroscopy held in Tokyo, Japan, in 1984 (1). As is usual with this type of review it is necessary to be highly selective in collecting material that has direct relevance to analytical chemistry. Where a topic has produced a considerable number of papers with a relatively low proportion of analytical interest, the appropriate reviews have been included to which the 6R

reader is referred for a more complete background. Many reviews on the general applicability of Raman spectroscopy have appeared (2-4)and it is particularly interesting to note that the technique is at last becoming more widely used as an industrial analytical method ( 5 ) . Reviews inclusion compounds have also appeared on zeolite studies (6), (7), Raman intensities (a), heterocyclic compounds (9), structural and conformational problems (IO), and combustion diagnostics (11). As in the previous review in this series (12) most of the applications relevant to solids are covered in one or other of the ten categories,which are the same as those used previously.

0003-2700/86/0358-6R$O 1.5010 0 1986 American Chemical Society

RAMAN SPECTROSCOPY

However, aspecta relating to solids which are not covered elsewhere include general reviews (13,14)and the specific field of semiconductors. This is an area of great current interest in terms of Raman spectroscopy and the characterization of semiconductor materials and surfaces has been reported (15). Raman scattering also provides a new probe for the elucidation of structural properties of microcrystalline silicon (16)and resoNulce Raman scattering in silicon at elevated temperatures has been studied (17). Many studies on carbon have also appeared in the literature including that of the various types of carbon Ut?),the use of Raman scattering to investigate disorder and crystallite formation in annealed carbon (19), in situ studies of intercalation kinetics (20),structural aspects of cokes and coals (21),and instrumentation for coal gasification (22). A patent application has also been filed on the use of Raman spectroscopy for separating diamonds from diamondiferous ore (23). Mineral studies by Raman spectroscopy have been increasing in number and the application of Raman spectroscopy to mineralogy has been reviewed (24). Chalcogenides (25,26),silicates (27),and fluid inclusions in minerals (28)have also been studied. Raman spectroscopy has been applied to such diverse systems as organic crystals (29),the determination of modifications in layered crystals (30). the detection of explosives on silica gel or carbon ( 3 0 , diagnostics of heterogeneous chemical processes (32),and a study of tungsten-halogen bulbs (33). Laser Raman spectroscopy has also been coupled with liquid chromatography (34)and phase-resolved background suppression has been used to enhance Raman spectra (35).

INSTRUMENTATION AND SAMPLING The instrumentation and sample handling methods used in Raman spectroscopy are continually being modified and developed to improve the capability of the technique. A book (36)and several reviews (37, 38) detailing areas of general advancement have been published. Several new instrumental design features have appeared during the period covered by this review including apparatus that will allow computercontrolled recovery of a Raman spectrum in the presence of strong luminescence (39). a moderate-cost time-resolved resonance Raman spectrometer (40), a new microprobe technique ( 4 0 , and a high-resolution Fourier transform Raman spectrometer (42). A new instrument has been produced with a multichannel light detector to he used for coherent

anti-Stokes Raman spectroscopy (43).and the use of multichannel detectors in general is expanding rapidly (44-46). New LIDAR systems have also been developed and these have heen detailed in reviews (47, 48). The application of excimer lasers to the study of atmospheric species has also been reported (49)and a spectrometer suitable for studying water vapor and impurity gases in the atmosphere has been detailed (50).The use of fibre optics for remote sensing has continued to he exploited (51, 52) and the feasibility of monitoring groundwater contaminants has been explored (53). Another area in which technique development is expanding rapidly is in the application of ultraviolet laser excitation. A spectrometer suitable for use with the lasers currently available has been developed (54)and an evaluation of the advantages and disadvantages of Nd:YAG and excimer lasers has been carried out (55). The potential of anti-Stokes Raman lasers to provide tunable ultraviolet excitation for Raman spectroscopy has also been considered (56). Techniques for fluorescence rejection are being developed continually (57) and a spectrometer to eliminate fluorescence problems in Raman spectroscopy has been patented (58).New develop. ments have also been made in areas such as the elimination of plasma lines in Raman spectra (59)and the use of an optical wavelength rejection filter to enable low-frequency modes to be detected with greater ease (60). A multiple reflection cell has been designed for gas analysis (61) and cells to be used at high temperatures and pressures have been reported (62, 63). Computer control and data handling are also important areas of expansion and a multipurpose computer interface for a scanning optical spectrometer has been reported (64). This provides a multiscanning facility on a double monochromator and performs a variety of other control and monitoring features. Deconvolution techniques (65)to improve spectral resolution and the use of spline functions (66)for smoothing and differentation of spectroscopic data have also been reported.

LIQUIDS AND SOLUTIONS Liquid-phase studies account for much of the published work on Raman spectroscopy, but this section is mainly restricted to aqueous systems, technique innovations, and conformational studies. Reviews have been published on the analysis of aqueous solutions (67).and organic pollutants at very low levels in water have been determined (68). The use of Raman spectroscopy to identify and determine concentrations of various species in aqueous solutions has continued to expand, and these studies include such compounds as phenols (69, 70).ammonium sulfate and aqueous sulfuric acid (71),determining sulfate to bisulfate ratios (721, dipicolinic acid (73),the effects of salts such as sodium chloride on the shape of water bands (74),and the composition of basic silicate solutions (75). Molten salts is another area of interest that has also grown in terms of the number of publications, both as reviews (76)and particularly for alkali halides and alkaline-earth halides (77, 78). Conformational studies have continued to provide interesting results, notably with respect to surfactants (79,SO), but also to compounds such as biphenyls (81),dichloromethyl alkyl ethers (821,trimethyl phosphate (83),and also results relating to pressure-induced conformational changes (84). Corrosion studies have also been widely reported (85)as have electrochemical studies (86),and the mechanism of transport of water through membranes (87). Solvent effects have been reported (88,89) and factor analysis has been used for isolation of the components in aqueous sulfuric acid (90).Other subjects of work in this category include studies on liquid crystals (91). and liquid sulfur (921, and the application of multichannel coherent anti-Stokes Raman spectroscopy to liquids (93).

GASES AND MATRIX ISOLATION The technique of matrix isolation continues to be a valuable aid to spectral interpretation. Several reviews have been published (94-96) that consider advances in the general technique. This method has been used to great effect in many systems including copper/ethylene complexes (97). acetonitrile (98).nucleic acids (99).unstable species (ZOO), small metal clusters ( Z O I ) , methane (102),and chalcogen chains isolated in zeolite matrices (103). ANALYTICAL CHEMISTRY, VOL. 58. NO. 5. APRIL 1986

7R

RAMAN SPECTROSCOPY

A wide range of gas-phase reactions has been reported, and this is an area of application that is proving to be of considerable practical use. Reviews have been published on such subjects as spectral line shapes in compressed gases (105) and interactions of the isotopes of hydrogen with noble gases (106). Environmental studies of atmospheric gases have also continued both as a remote sensing technique (107) and in the identification of flue gases (108). Another area that has generated a great deal of interest is the analysis of gases in flames (109-112) and hot gases (113). Raman spectroscopy has been used in the analysis of fusion product release experiments (114), gaseous inclusions in minerals (115), molecular composition of sulfur vapors (116), and molecular hydrogen (117). Raman studies have also been conducted on subjects such as conformational stability of halopropanes (118), intercalation of gases with graphite (1191, and the gas-phase synthesis of diamond (120).

orientation (193) and chain branching (1941, and the correlation of structural data with longitudinal acoustic modes in polyethylenes (195,196). Low-frequency modes have also been reported in poly(ethy1ene terephthalate) (197) and linear aliphatic polyesters (198). Other Raman studies that have produced useful information relate to the degradation of poly(viny1 chloride) (199-202), chain deformations in polypropylene (203, 204), studies on polysilanes (205), urea-formaldehyde resins (206),and other composites (207), and methods of determining critical solution temperatures (208), the effects of different draw ratios a t different temperatures for polyethylene (2091, and rates of conversion from monomer to polymer for styrene and methyl methacrylate (210).

BIOLOGICAL MOLECULES

The value of Raman spectroscopy for noninvasive analysis in hostile environments is being exploited more and more and this is reflected in the number of publications in this area. Reviews have been published on high-pressure Raman studies (211-214). Carbon disulfide at high pressures has been studied extensively both in solid (215) and liquid (216) forms. Phase transitions induced by pressure have also been reported (217) and a Raman study of sol to gel transformation a t high pressures has been made (218). The disproportionation of nitric oxide under a range of pressures (219) and temperatures (220) has been reported and conformational studies on pentane as a function of temperature and pressure have been carried out (221). High-pressure studies have also been carried out on many other systems including gypsum (222),alkali cyanides (223), enhanced oil recovery agents (224),methane (225), and semiconductors (226). The effects of high pressures on absorbed monolayers have also been investigated (227), including studies using surface-enhanced Raman spectroscopy (228). The system that has been studied most extensively under these environmental conditions is that of water. These studies have been conducted in the liquid phase for water and aqueous solutions (229) and also in the solid phase (230-234) for other systems. Several studies have also been carried out on molten salts (235, 236) and supported metal oxides (237). Raman spectroscopy has also been used to determine the temperature of the atmosphere by LIDAR (238) and temperatures inside an internal combustion engine (239).

The use of Raman spectroscopy, and particularly resonance-enhanced Raman signals, to study biological systems is still growing very rapidly and represents, in terms of the number of publications (over 450 articles in the period under review), the major application of the technique. In an article of this size it is only possible to consider this application in a very cursory manner. Several general reviews have been published (121-126) that indicate areas into which the technique is expanding. Time-resolved resonance Raman spectroscopy has been applied to a number of systems including the bacteriorhodopsin photocycle (127) and the oxidative cycle of cytochrome oxidase (128). Resonance Raman spectroscopy has been used extensively, notably in studying bacteriorhodopsins (129), carotenoids and carotenoid-containing systems (130), the photosynthetic cycle (131), aromatic amino acids (132,133), and insulin (134). The resonance effect has also been used in the study of haemoglobin as a probe of its quarternary structure (135-137). Nucleic acids have been reported upon in some detail (138, 139) and ultraviolet excitation has been used to produce resonance in some instances (140,141). The surface enhanced effect has also been used to study biological systems (142) including nucleic acids (143-145) and proteins (146). Raman spectroscopy has also been used as a tool for studying disulfide bridges in proteins (147), for looking a t low-frequency vibrations in the helices of proteins (148), and for the characterization of transient enzymesubstrate bonds (149). Quantitative studies have been carried out on urea (150,151) and on proteins, nucleic acids, and viruses (152),the results of which have been used clinically (153). Biological uses of the Raman microprobe (154, 155) have also expanded greatly and areas of interest reported include studies on microscopic particles in lung tissue (156, 153,chromosomes (158),nerve membranes (159), the analysis of pathogens (160), in vivo studies of pigment systems (161), urinary calculi (162), and on algae (163).

POLYMERS Raman spectroscopy continues to provide valuable information concerning the structure and composition of polymers for both academic and industrial workers. This is reflected by the number of reviews published in this area, both of a general nature (164-169) and also of detailed work in more specific areas such as resonance Raman spectroscopy of conjugated macromolecules ( I 70), analysis of functional groups in polymer reagents (171), studies on polymer crystal morphology ( I 72), molecular orientation (173), and the characterization of polymer wear (174). Polyacetylene maintains its position as the polymer attracting the most attention in terms of Raman studies. The correlation between the conjugated sequence length of the polyenes and the electrical properties of this polymer has been considered (175,176) as well as more general aspects (177-181). Other areas such as the classification of disorder and extrinsic order in the polymer (182), particularly hydrogenated polyacetylenes (183), the cis isomer (184, 185),and the results of usin ultraviolet laser excitation (186), have also been reported. StuJies on the effects of doping on this polymer and similar polymers have been reported, using both electron donors and acceptors as the doping agent (187-190). Polyethylene has also been studied in some detail, and areas of interest include conformational studies (191), flowing melts (192),studies on 8R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

HIGH-TEMPERATURE AND HIGH-PRESSURE STUDIES

RAMAN MICROSCOPY Since the last review in this series the Raman microprobe has been further developed and many new areas of application have been reported. This is reflected by the number of review articles concerning the technique (240,241), its development in time-resolved Raman microscopy (242) and in utilizing the surface-enhanced Raman scattering effect (243), and its general application (244). Raman microscopy has also been reported in areas such as microelectronics (245),solid phase reactions (246, 247), ceramics (248), archeological samples (249), polymers (250), and biological systems (154-163). Raman microprobes are being used more widely in conjunction with multichannel detectors (251,252) and a new, commercially available instrument has been developed (253). The industrial applications of the technique are also expanding (254) and include the areas of polymer studies (255), the analysis of catalysts (256), corrosion studies (257,258), metallurgical failure (259), and defects in industrial materials (260).

The use of the Raman microprobe in the identification and characterization of inclusions in solids, notably minerals, has continued to expand. Fluid inclusions have been identified (261) including those with a major sulfate ion content (262) and hydrogen sulfide content (263,264). Gaseous inclusions in calcites have also been examined (265). Characterization of inclusions in feldspars (266) and eclogites (267) has been carried out, having petrological applications in the case of the latter. The use of the Raman microprobe for examining environmental particulate contamination is well established and this is again reported upon (268) considering also the effects upon the respiratory system. Samples have also been examined from the Three Mile Island Unit (269) after a nuclear incident. Contaminants due to combustion, found in the arctic, have

RAMAN SPECTROSCOPY

also been studied (270) and shown to be elemental carbon. The Raman spectra of elemental carbon and silicon can be very informative and provide an ideal application for the microprobe. Characterization of different ranks of coals (271, 272) and other carbonaceous materials (273) has been undertaken, as have the changes occurring upon irradiation with a ruby laser (274) and intercalation with various compounds (275). Laser-annealed silicon samples have also been examined (276, 277). The microprobe has also been applied to the analysis of semiconductors (278) and as an aid in their manufacture (279,280)and in the identification of their common contaminants (281).

THIN FILMS AND SURFACES There is still a considerable amount of work being reported relating to thin films and surfaces and many reviews have been published including those on the study of adsorbed species (282,283)and new techniques for observing trace species on solid surfaces (284). A wide range of subjects has been reported upon in this category, and one of the areas of note is that of catalysis. The application of Raman spectroscopy to in situ catalysis has been reviewed (285),and publications have dealt with a wide range of catalyst systems including tungsten oxide/alumina catalysts (286,287)vanadium oxide/magnesium oxide catalysts (288,289),molybdena/alumina systems (290),hydrated zeolites (291),hydrotreating catalysts (292), water gas shift catalysts (293),and systems for the hydroformylation of propylene (294). Another area that is also expanding is the study of electrochemical processes by Raman spectroscopy. Electrode surfaces have been studied (295) as have their interactions with electrolytes (296). Molecules adsorbed onto the electrode surface have been considered (297,298) including a study of thiourea on silver and copper electrodes (299) and one of copper acetylide on copper electrodes (300). Raman spectroscopy has also been used in an attempt to solve corrosion problems (301),to analyze in situ corrosive and passive surfaces (302), and to identify corrosion products (303-305). Oxidation problems in high-temperature corrosion studies have also been considered (306). Thin films of semiconductors have been analyzed (307) as have molecules adsorbed onto these surfaces (308). Many publications relating to silicon thin films have appeared in the literature (309,310)and calcium fluoride/silicon heterostructure interfaces have been examined (311) as have residual stresses in silicon-on-sapphire (312). In the same way carbons formed on nickel surfaces have also been analyzed (313). The analysis of the structure and morphology of thin films has continued to use Raman spectroscopy as a tool (314-316) to study local structure in antimony-sulfur films (317) and to analyze optical coatings (318,319). Studies have also been undertaken to examine surface transformations (320),phase transitions (321),and the growth of thin alumina films (322).

RESONANCE-ENHANCED AND SURFACE-ENHANCED RAMAN SPECTROSCOPY The sensitivity and specificity of Raman spectroscopy can be greatly enhanced by surface enhancement or resonance enhancement, and this can lead to many unique qualitative and quantitative applications. Reviews have been published on the practical applications of resonance enhancement in many fields (323) including the study of excited states of molecules (324),radicals (325),reaction intermediates (326), organometallic systems (327) and sulfur-containingcomplexes, ions, and radicals (328). A large number of review articles have appeared on surface enhanced Raman spectroscopy (SERS) emphasizing the valuable information that this technique is now providing. Several of these reviews have dealt with the theoretical and mechanistic advances in this field (329-333) and others have given an overview of the current topics of interest to which this technique is now being applied (334-338). Other SERS reviews have dealt with subjects such as the observation of adsorbates (339),electrochemical applications (340), and SERS scattering by metal colloids (341-343). The resonance Raman effect has been applied to such diverse fields as the determination of trace amounts of aro-

matic nitro compounds (344),the classification of complexes (345-347), the study of micellization of surface active dyes (348, 349), and structural studies on metalloporphyrins (350-352), metallochlorins (353),and haeme complexes (354). Many papers reporting work using ultraviolet laser excitation are now appearing, and the scope of the analytical applications is growing rapidly (355). These include the analysis of coal liquids (356,357),the detection of trace amounts of polycyclic aromatics (358),and a study on mononucleotides (359). Much of the literature on SERS is concerned with the theory of the effect and the proposed mechanisms by which it works (360-362). However, the technique has also been applied to a wide range of systems including the use of colloids (363,364),the preparation of catalytic substrates (365) and studies of adsorption on such surfaces (366),and studies at electrode/electrolyte interfaces (367, 368), as a diagnostic method in the preparation of semiconductor films (369) and for the analysis of adsorbates on these films (370). SERS has also been used to study gases such as halogens (371,372)and ammonia (373)on electrode surfaces, to detect trace organics in water (374,and to gain an insight into corrosion inhibition (375).

NONLINEAR RAMAN SPECTROSCOPY The techniques of coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman scattering (SRS) continue to be of analytical interest, together with other nonlinear processes. Several reviews on nonlinear techniques in general have been published (376-378), on CARS (379-382) and on SRS (383). The diverse subjects covered by publications in this category once again emphasizes the versatility of these techniques. Of all the nonlinear techniques, CARS is undoubtedly the most widely used and the most generally applicable. It is of uniaue value in the area of combustion diagnostics, and work has been reported relating to concentration and species determination (384, 385) and combustion engineering (386). CARS has been used diagnostically for gases at high temperatures and pressures (387). This technique has also proved very useful for studying carbon monoxide in a chemical reactor (388-390) and in a semiindustrial furnace (391). This provides useful information about the concentrations of various species in an industrial environment. CARS has also been used in the study of excited states of metalloporphyrins (392),of polycyclic aromatic hydrocarbons (393),of commercial oil samples (394),and of radical reactions (395). Coal gasification streams have been analyzed (396),and surface-enhanced CARS has been observed when the active molecules are located near the surface of a small silver particle (397).

ACKNOWLEDGMENT Permission to publish this paper has been given by the British Petroleum Company, p.1.c. LITERATURE CITED

(1) "Proceedings of the IXth International Conference on Raman Spectroscopy"; Organising Committee for the IXth International Conference on Raman Spectroscopy, c/o The Chemical Society of Japan, Japan, 1984. (2)Higuchi, S.;Tanaka, S . Bunseki 1985, 4 , 263-270; Chem. Abstr. 1985, 103, 43718. (3) Clark, R. J. H.: Hester, R. E. "Advances in Infrared and Raman Spectroscopy"; Wiiey: Chichester, 1984;Voi. 11. (4)Vickers, T. J.; Mann, C. K.; Morley, N. A,; King, T. H. Am. Lab. (FairfieM, Conn.) 1984, 76 (lo),18, 20-21, 23-24, 29-34. (5)Mathieu, P.; Bello, A. Rev. Piast. Mod. 1984, 48 (341)531-540;Chem. Abstr. 1985, 102, 102503. (6)Moelier, K.; Peuker, C.; Pilz, W.; Schirmer, W.; Wiss, Z. Humboldt-Univ. Berlin Math .-Naturwiss. Reihe 1985,34 (I), 22-30; Chern. Abstr. 1985, 102. 122167. (7)DavieslJ. E. D. Inclusion Cornpd. 1984, 3 , 37-68. (8)Steele, D. J . Mol. Struct. lg84, 117 (3-4),163-191. ( 9 ) Mackin, H. C.; Kerv, E. A.; Yu, N. T. Phys. Methods Heterocycl. Chern.

1984,373-425. (IO) Laane, J. Adv. Multi-Photon Processes Spectrosc. 1984, 1 , 329-424. (11) Alden, M.; Svanberg, S. R o c . SPIE-Int. SOC.Opt. Eng. 1984,492, 100-109. (12)Gerrard, D. L. Anal. Chem. 1984. 56 (5),219-225. (13)Nakashima, S.;Mitsuishi, A. Oyo Butsuri 1984,53 (7),558-578; Chem, Abstr. 1984, 101, 119481. (14)Kojinia, S . Kagaku 1985, 14 (2),117-126; Chem. Abstr. 1985, 103, 29289. ANALYTICAL CHEMISTRY, VOL. 58,

NO. 5,

APRIL 1986

9R

RAMAN SPECTROSCOPY

(15) Katoda, T. Ext. Abstr. Conf. Solid State Devices Mater., 16th 1984, 185-188. (16) Shimada, T.; Katayama, U.; Nakagawa, K.; Matsurba, H.; Migitaka, M.; Manlyama, E. J. Non-Cryst. SotMs 1983, 59-60 (21), 783-786. (17) Compaan, A.; Trodahl, H. J. Phys. Rev. 6 Condens. Maffer 1984, 29 (2), 793-801. (18) Tamai, K.; Nakamizo, M. Kyushi Kogyo G!Iutsu Shikensho Hokoku 1984, 3 2 , 2089-2094 Chem. Abstr. 1984, 702, 148550. (19) Dlllon, R. 0.;Wooilam, J. A. Ex?. Abstr. Program-Bienn. Conf. Carbon 1983, 76th, 291-292. (20) Oik, C. H.; Eklund, P. C. Exf. Abstr. Program-Bienn. Conf. Carbon 1983, 76th, 211-212. (21) Mochida, I.; Koral, Y.; Fujitsu, H.; Takeshita, K.; Komatsubara, Y.; Koba. K.; Marsh, H. Fuel 1984, 63 (I), 136-139. (22) Taylor, D. J.; Loree, T. R.; Hareford, A.; Tlee, J. J. Report, 1984, Avail NTIS from Energy Res. Abstr. 1985, 70 (2), Abstr. No. 1736. (23) Gerrard, D. L.; Preedy, J. E.; Williams, K. P. J. U.K. Pat. Appl. GB, 2 140 555. (24) Iishi, K. Kobutsugaku Zasshi 1984, 76 (4). 327-348; Chem. Abstr. 1984, 101, 195338. (25) Guentherodt, G.: Merlln, R. Top. Appt. Phys. 1984, 5 4 , 243-287. (26) Parislni, A.; Loltici, P. P.; Razzettl, C. Phys. Status Solidi B 1984, 125 ( l ) , K7-Kl1. (27) Stodolski, R.; Piiz, W. 2.Chem. 1984, 24 (16), 225-227; Chem. Abstr. 1984, 102, 14272. (28) Rudnlck, R. L.; Ashwal, L. D.; Henry, D. J. Contrib. MineralPetrol. 1984, 87 (14), 399-406. (29) Andrews, B. Avail NLC from Diss Abstr. Int. B 1984, 45 (5), 1478-1479. (30) Lukiyanets, B. A.; Bolchuk, V. V. Ukr. Fiz. Z h . (Ross. Ed.) 1984, 29 (12), 1871-1873; Chem. Abstr. 1984, 102, 175317. (31) Carver, F. W. S.; Sinclair, T. J. J . Raman Spectrosc. 1983, 14 (6), 4 10-4 14. (32) Leyendecker, G.; Doppeibauer. J.; Baeruede, D. Springer Ser. Chem, PhyS. 1984, 3 9 , 504-514. (33) Sell, J. A.; Eesley, 0. L.; Simon, D. L. Appl. Spectrosc. 1985, 39 ( l ) , 137-142. (34) Yeung, E. S. Adv. Chromatogr. ( N Y ) 1984, 2 3 , 1-63. (35) Demas, J. N.; Keller, R. A. Anal. Chem. 1985, 57 (2), 538-545. (36) Strommen, D. P.; Natamoto, K. “Laboratory Raman Spectroscopy”; Wiley: New York, 1984. (37) Hug, W. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 3-12. (38) Gerrard, D. L. Anal. Proc. (London) 1985, 22(4), 115-116. (39) Angel, S. M.; DeArmond, M. K.; Hanck, K. W.; Wertz, D. W. Anal. Chem. 1984, 56 (14), 3000-3001. (40) Meyer, J. J.; Aubard, J.; Fontaine, J. C. J. Phys. E . 1985, 18 (5), 430-433. (41) Thurn, R.; Kiefer, W. Appl. Spectrosc. 1984, 38 ( l ) , 78-83. (42) Graener, H.; Laubereau, A. Opt. Common. 1985, 54 (3), 141-146. (43) Snelling, D. R.; Sawchuk, R . A.; Smallwood, G. J. Appl. Opt. 1984, 23 (22), 4083-4089. (44) Deihaye, M.; Deffontaine, A.; Brldoux, M.; Hug, W.; DaSilva, E. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 229-230. (45) Deffontalne, A.; Chapput, A.; Butlnx, G.; Brldoux, M. Spectrosc. Int. J. 1983, 2 ( 2 ) , 69-78; Chem. Abstr. 1983, 9 9 , 113019. (46) Deffontaine, A.; Bridoux, M.; Delhaye, M.; DaSilva, E.; Hug, W. Rev. PhyS. Appl. 1984, 19 (5), 415-421. (47) Capitlni, R.; Renaut, D.; Joos, E. Eur. Communltles [Rep] EUR 1984, Eur 8754, 181-204. (48) Takeuchl, N. Kankyo Joho Kagaku 1984, 13 (4), 29-39; Chem. Abstr . 1985, 102, 136824. (49) Laudenslager, J. 6.; Pacaia, T. J.; McDermid, I . S.; Rider, D. M. f r o c . sPrE-Int. SOC. opt. Eng. 1984, 461,34-40. (50)Georgievskii, Y. S.; Kopeikin, V. M. Izu. Akad. Nauk. SSSR. Fiz. Atmos. Okeana 1983, 19 (5), 546-549; Chem. Abstr. 1983, 9 9 , 131111. (51) Schwab, S. D.; McCreeny, R. L. Anal. Chem. 1984, 56 (12), 2 199-2204. (52) Krohn, D. A. Instrum. Control 80’sProc. Jt. Symp. 1984, 43-50. (53) Hirschfeld, T.; Deaton, T.; Mllanovich, F.; Klainer, S.Opt. Eng. 1983, 22 (9,527-531. (54) Asher, S. A.: Johnson, C. R.; Murtaugh, J. Rev. Sci. Instrum. 1983, 54 (12), 1657-1662. (55)Asher, S.A. Appl. Spectrosc. 1984, 38 (2), 276-278. (56) Wellegehausen, 6.; Ludewigt, K.; Welling. H. Proc. SPIC-Int Soc . Opt. Eng. 1984, 492, 10-14. (57) Watanabe, J.; Kinoshita, S.; Kushida, T. Rev. Sci. Instrum. 1985, 56

(6),1195-1198.

(58) Hitachi, Ltd. Jpn. Kokai Tokkyo Koho JP 58, 100, 741 (83, 100, 741).

(59) Behlow, H. W.; Peterson, J. D. J. Chem. Educ. 1985, 62 (2), 163. 160)Flauah. P. L.: O’Donnell, S. E.; Asher. S. A. ADD/. 1984, 38 . . Saectrosc. . . (6), 8z7-850. (61) Thomas, G. U S . Pat. Appl. US 274, 014 Avail NTIS Order Pat. Nos. PAT-APPL-8-2740 14. (62) Govbaytl, Y-E.; Bondarenko, G. V. Babashar Prib. Tekh. Eksp. 1984, 1 , 208-209; Chem. Abstr. 1984, 100, 182909. (63) Wong, P. T. T. Rev. Scl. Instrum. 1985, 56 (7), 1417-1419. (64) Mlhailovic, D.: Rvan. J. F.: Siertsema, W. J. Comtwt. €nhanced Saecirosc. 1983, 1 ( l i 39-47. (65) Friesen, W. I.; Michaellan, K. H. Appl. Spectrosc. 1985, 39 (3), 484-490 .- . .- -.

(66)Gans, P.; Giii, J. B. Appl. Spectrosc. 1984, 38 (3), 370-376. (67) Fontana, M. P.: Maisano, G.; Migliardo, P.; Wanderllngh, F.; J . Mol. Struct. 1984, 113, 239-250. (68) Mann, C. K.; Vickers, T. J.; Mariey, N.; Ling, Y. C. Adv. Instrum. 1983, 38 (l), 167-170. 10R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

(69) Marley, N. A.; Mann, C. K.; Vickers, T. J. Appl. Spectrosc. 1984, 38 (4), 540-543. (70) Marley, N. A. Diss. Abstr. Int. B 1985, 45 (1 I), 3487. (71) Baiej, J.; Homousek, F.; Pisarclk, M.; Sarka, K. J . Chem. Soc., Faraday Trans. 1 1984, 80 (3). 521-529. (72) Knis, P.; Hayes, A. C.; Adams, W. A. J. Solution Chem. 1985, 74 (2), 117-128. (73) Sorensen, J. A.; Thompson, L. C.; Glass, 0. E. Anal. Chem. 1985, 57 (e), 1087-1091. (74) Georgiev, G.; Kalkanzhiev, T.; Petrov, V.; Nikolov, Zh. Appl. Spectrosc. 1984, 38 (4), 593-595. (75) Dutta, P. K.; Shieh, D. C. Appi. Spectrosc. 1985, 39 (2), 343-346. (76) Enderby, J. E.; Biggin, S. Adv. Monen Salt Chem. 1983, 5 , 1-25. (77) Mitchell, E. W. J.; Raptis, C. J . Phys. C . 1983, 16 (15), 2973-2985. (78) Emans, H. H.; Horlbeck, W.; Klessiing, D. Anorg. Allg. Chem. 1984, 510, 152-162; Chem. Abstr. 1984, 100, 181095. (79) Ikeda, T.; Yashida, T.; Okabayashi, H. 2.Naturforsch A , Phys. Phys. Chem. Kopsmophys. 1983, 38A (9), 1046-1047. (80)Okabayashi, H.; Hatsushita, K. Surfactants Solution (Proc. Int. Symp .) 4th 1982, 1 , 517-526. (81) Puiham, R. J.; Steeie, D. J . Raman Spectrosc. 1984, 15 (4), 217-223. (82) Bredikhin, A. A.; Furer, V. L.; Salikhova, A. M.; Vereshchagin, A. N.; I z v . Akad. Nauk, SSSRSer. Khim. 1984, 9 , 1970-1975; Chem. Abstr. 1985, 102, 5270. (83) Yarkov, A. V.; Raevskii, 0. A. Zh. Obshch. Khim. 1985, 55 ( l ) , 50-53; Chem. Abstr. 1985, 102, 204049. (84) Gardiner, D. J.; Bassi, G. S.;Galvin, E. D.; Gorvin. A. C.; Straughan, B. P. Appl. Spectrosc. 1984, 38 (3), 313-317. (85) Gabrielli, C.; Keddan. M.; Krarti, M.; Paiiotta, C. Proc. Nectrochem. SOC. 1985, 85-3, 210-220. (86)Leo, B. H.; Lee, Y. G. Appl. Surf. Sci. 1984, 18 (4), 345-360. (87) Scherer, J. R.; Balley, G. F.; Malladi, D. P.; Kint, S.Report 1983, W8400010, OWRT-C-90297-S(9445)From NTIS-Gov. Rep. Announce Index US 1984. 84 (2), 132.

(88)Schmid, E. D.; Moschallski, M.; Schmidt, H. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 37-38. (89) Salama. S. 8.; Diab, D.; Wasif, S.Arab Gulf J . Sci. Res. 1984, 2 (2), 425-433. (90) Malinowski, E. R.; Cox, R. A.; Haldna, U. L. Anal. Chem. 1984, 56 (4), 778-781. (91) Fang, Y.; Zhu, 2.;He, D.; Hang, Ge. M. YaJi Huaxue 1983, 3 , 202-206. (92) Hattori, K.; Kawamura, H. J . Non-Cryst. Solids 1983, 59-60 (2), 1063-1066. (93) Adams, V. S.; Carreira, L. A.; Azarraga, L. Appl. Spectrosc. 1984, 36 (6),861-867. (94) Maes, G. Chem. Mag. (Ghent) 1983, 9 ( 8 ) , 11-14; Chem. Abstr. 1984, 100, 111107. (95) Jodl, H. J. Vi6 . Spectra Struct. 1984, 13, 285-346. (96) Tranquilie, M. Spectra 2000 (deux Mile) 1984, 9 8 , 43-55; Chem. Abstr. 1984, 102, 139875. (97) Bouchareb, S.;Cavagnat, R.; Mejean, T.; Tranquiile, M. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 633-634; Chem. Abstr. 1983, 9 9 , 130710. (98) Loewenschuss, A.; Guran, A. Raman Spectrosc . Proc . Int. Conf. 8th 1982, 599-600. (99) Barnes, A. J.; Stuckiey, M. A.; LeGaii, L. Spectrochim. Acta, Part A 1984, 40A (5), 419-431. (100) Qureshi, S.;Ansari, G. M. Sind. Univ. Res. J. Sci. Ser. 1982, 1 4 , 131-137. (101) Froben, F. W.; Schulze, W. Ber. Bunsen-Ges. Phys. Chem. 1984, 88 (3), 312-314. (102) Regltz, E.; Loewenshuss, A.; Bier, K. D.; Jodl, H. J. J . Chem. Phys. 1984, 80 (12), 5930-5936. (103) Bogomoiov, V. N.; Poborchii, V. V.; Romanov, S. G.; Shagin, S. I. J . Phys. C 1985, 18 (12), L313-L317. (104) Robert, D. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 269-284. (105) Hartmann. H. J.; Graener, H.; Telle, H. R.; Laubereau, A,; NATO ASI Ser., Ser. C 1984, 127, 173-184. (106) Hermans, P. W.; Hermans, L. J. F.; Beenakker, J. J. M. Physica A (Amsterdam) 1983, 122A (1-2), 173-221. (107) Glazov, G. N.; Danichkin, S. A. Z h . Prikl. Spectrosk. 1984, 41 (4) 609-614; Chem. Abstr. 1985, 102, 11516. (108) LittieJohn, D.; Chang, S. G. Environ. Sci. Techno/. 1984, 78 (5), 305-310. (109) D’Alessio, A.; Beretta, F.; Cavallere, A,; Menne, P. NATO Conf. Ser. 6 1983, 7 , 355-378. (110) Vanderhoff, J. A.; Bunte, S. W.; Kotiar, A. J.; Beyer, R. A. Chem. Phys. Processes Combust. 1983, Paper 87, 4 pp. (1 1 1 ) Michael-Saade, R.; Sawerysyn, J. P.; Sochet, L. R.; Butinx, G.; Gunelie-Cras, M.; Grase, F.; Bridoux, M. Prog. Astronaut. Aeronaut. 1984, 9 5 , 658-671. (112) Yaney, P. P.; Becker, R. J.; Danset, P. T.; Gailis, M. R.; Perez, J. I. Prog. Astronaut. Aeronaut. 1984, 9 5 , 672-699. (113) Papineau, N. Report 1984, Order No. PB85-156461/GAR 54 pp from NTTS Gov. Rep. Announce Index U S . 1985, 85 (lo), 81. (1 14) McCuiia, W. H.; Nelson, G. E.; Lorenz, R. A. Anal. Chem . Symp . Ser. 1984, 19, 327-332. (115) Guseva, E. V.: Mel’nikov, F. P.; Oriov, R. Y.; Uspenskaya, M. E. Dokl. Akad Nauk SSSR 1983, 272 ( l ) , 197-200; Chem. Abstr. 1983, 9 9 ,

2 15995. (116) Schlnazi, M.; Corset, J.; Delhaye, M.; Lesue, J. L. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 659-660. (117) Viers, K.; Rosenblatt, G. M. Anal, Chem. Symp. Ser. 1984, 79, 355-356. (118) Durig, J. R.; Godbey, S. E.; Sullivan, J. F. J. Chem. Phys. 1984, 80 (12), 5983-5993.

RAMAN SPECTROSCOPY

(119)Schloegl, R.; Jones, W.; Thomas, J. M. J. Chem. SOC., Chem. Commun. 1983, 22, 1330-1332. (120)Kamo, M.; Sato; Y.; Setaka, N. Nippon Kagaku Kaishi 1984, 10. (121)Willis, L. J. Diss. Abstr. Znt. 6 1983, 44 (5),1452. (122) Twardowski, J.; Anzenbacher, P. Zagadnienia Biofiz. Wspoiezesnej 1983, 8, 135-161. (123) Anzenbacher, P.; Twardowski, J. Zagadnienia Biofiz. Wspolezesnej 1984, 9 , 179-182. (124)Verma, S. P.; Wallach, D. F. H. Top. Mol. Struct. Biol. 1984, 4 , 167-198. (125)Rousseau, D. L.; Ondrias. M. R. Opt. Tech. Biol. Res. 1984, 65-132. (126)Carey, P. Opt. Pura Api. 1984, 77(3),219-226. (127) Hsieh, C. L.; El-Sayed, M. A.; Nicol, M.; Nagumo, M.; Lee, J. H. Photochem. Photobioi. 1983, 38 (I), 83-94. (128)Babcock, G. T.; Jean, T. M.; Johnston, L. N.; Palmer, G.; Woodruff, W. H. J. Am. Chem. Soc. 1984, 706(26),8305-8306. (129)Alhsuth, T.; Hildebrandt, P. Stockburger, M. NATO ASZ. Ser. Ser. C 1984, 739,329-346. (130)Merlin, J. C. Pure Appl. Chem. 1985, 57 (5),785-792. (131)Lutz, M. Adv. Infrared Raman Spectrosc. 1984, 7 7 , 211-300. (132)Rava, R. P.; Splro, T. G. J. Phys. Chem. 1985, 89 (lo),1856-1861. (133)Johnson, C. R.; Ludwig, H.; O'Donnell, S.; Asher, S. A. J. Am. Chem. SOC. 1984, 706 (17),5008-5010. (134)Rava, R . P.; Spiro, T. G. Biochemistry 1985, 24 (E), 1861-1865. (135)Rousseau, D. L.; Ondrias, M. R.; Tan, S. L.; Kitagawa, T.; Henry, E. R. Raman Spectrosc. Proc. Znt. Conf. 8th 1982, 725-726. (136) Nagai, K. Opt. Prop. Struct. Tetrapyrroles Proc. Symp. 1984, 157-174. (137)Copeiand, R. A.; Dasgupta, S.; Spiro, T. G. J. Am. Chem. Soc. 1985, 707 (1l), 3370-3371. (138)Tsuboi, M.; Nishimura, Y. Raman Spectrosc. Proc. Znt. Conf. 8th 1982, 683-693. (139)Bertoluzza, A. NATOASZ Ser. Ser. C 1984, 739,91-111. (140)Gustafson, T. L.; Roberts, D. M.; Palmer, J. F. Raman Spectrosc. Proc. Znt. Conf. 8th 1982, 717-716. (141)Kubasek, W. L.; Hudson, B.; Peticolas, W. L. Proc. Natl. Acad. Sci. U.S.A. 1985, 82 (E), 2369-2373. (142)Koglin, E.; Sequaris, J. M.; Valenta, P.; Nuernberg, H. W. Fresenlus' 2. Anal. Chem. 1984, 377(6),699-700. (143)Sequaris, J. M.; Koglin, E.; Valenta, P.; Nuernberg, H. W. Raman Spectrosc. Proc. I n t . Conf. 8th 1982, 93-94. (144)Koglin, E.; Sequaris, J. M.; Valenta, P. Springer Ser. Chem. Phys. 1983, 33, 64-71. (145)Koglin, E.; Sequaris, J. M.; Fritz, J. C.; Valenta, P. J. Mol. Struct. 1984, 774, 219-223. (146)Nabiev, I.R.; Savchenko, V. A.; Efremov, E. S. J. Raman Spectrosc. 1983, 74 (6),375-379. (147)Kuptsov, A. Kh.; Trofimov, V. L. Deposited Doc. 1984 VINTI 34513484,29 pp; Chem. Abstr. 1985, 10, 34420. (148)Chan, K. C. Biochem. J. 1983, 209 (3),573-580. (149)Carey, P. R.; Stover, A. C. Annu. Rev. Biophys. Bioeng. 1984, 73, 25-29. (150)Van Eck, M.; Van Daien, J. P. J.; De Galan, L. Analyst (London) 1983, 708 (1285),485-491. (151)Van Eck, M.; De Galan, L.; Lemkavltz, S. M. Analyst (London) 1985, 770 (2),141-146. (152)Thomas, G. J.; Agard, D. A. Biophys. J. 1984, 46 (6),763-768. (153)Bamford, J. C.; McGonnell, A. A,; Smith, W. E. Raman Spectrosc. Proc. Znt. Conf. 8th 1982, 815-816. (154)Truchet, M. J. Microsc. Spectrosc., Electron 1984, 9 (2),117-120; Chem. Abstr. 1984, 10,86734. (155)Duncan, M. D.; Reintjes, J.; Manuccia, T. J. R o c . SPIE-Znt. SOC.Opt. Eng. 1984, 482, 46-52. (156)Buiteveld, H.; De Mul, F. F. M.; Greve, J.; Mud, J. Raman Spectrosc. Proc. I n t . Conf. 8th 1982, 817-818. (157)Buiteveld, H.; De Mul, F. F. M.; Mud, J.; Greve, J. Appl. Spectrosc. 1984, 38 (3),304-306. (156)De Mul, F. F. M.; Van Welie, A. G. M.; Otto,C.; Mud, J.; Greve, J. J. Raman Spectrosc. 1984, 75 (4),268-272. (159)Aizawa, K.; Sakai, S.; Imagawa, M.; Saito, H.; O'Hata, S. Tokyo I k a Dalgaku Zasshi 1983, 47 (6),783-788; Chem. Abstr. 1984, 700, 171005. (160)Abraham, J. L.; Andersen, M. E.; Muggli, R. 2. Raman Spectrosc. Proc. Znt. Conf. 8th 1982, 809-610. (161)Merlin, J. C. Spectrosc. Znt. J. 1983, 2 (2),52-61; Chem. Abstr. 1983, 99, 190919. (162)Daudon, M.; Prokat, M. F.; Revieliaud, R. J.; Jaeschke-Boyer, H. Kidney Znt. 1983, 23 (6),842-850. (163)De Brettignies, B.; Dhamelincourt, P.; Merlln, J. C.; Wallart, F.; Wartel, M. Pub/. Centr. Natl. Exploit. Oceans [Ser] Actes Coiloq. (Fr) 1982, 74, 131-138; Chem. Abstr. 1984, 700, 84361. (164)Strobl, G. R. Proc. IUPAC, IUPAC Macromol. Symp. 28th 1982, 30. (165)DuPre, B. D. Polym. Test 1983, 3 (4),249-266. (166)Kobayashi, M. Kagaku no Ryoiki Zokan 1983, 740, 59-71; Chem. Abstr. 1984, 700, 121818. (167)Gerrard, D. L. Chem. Br. 1984, 20 (6),715-716,718-719, 726 (168)Smith, C. G.; Mahle, N. H.; Park, W. R. R.; Smlth, P. B.; Martin, S. J. Anal. Chem. 1985. 57 (5),254R-267R. (169)Gerrard, D. L. Anal. Proc. (London) 1983, 20 (ll),569-572. (170)Batchelder, D. N.; Bloor, D. Adv. Infrared Raman Spectrosc. 1984, f 7 , 133-209. (171)Qin, Y. Huaxue Tongbao 1984, 12,8-11; Chem. Abstr. 1985, 102,

113981. (172)Rabolt, J. F. CRC Crif. Rev. Solid Stat Mater. Sci 1984, 72 (3), 165-1 91. (173)Ward, I.M. Adv. Polym. Sci. 1985, 86, 81-115.

(174)Buckley, D. H.; Aron, P. R. NASA Tech. Memo. 1984, NASA-TM83628,E-2033,NAS1.15.83628,17 pp. (175)Mulazzi, E.; Brivio, G. P.; Tiziani, R. Mol. Cryst. Liq. Cryst. 1985, 777 (1-4),343-349. (176)Arakawa, T.; Furakawa, Y.; Takeuchi, H.; Harada, I.; Shirakawa, H. Chem. Lett. 1984, 70, 1637-1640. (177)Lefrant, S. J. Phys. Colloq. 1983, C3, 247-254. (178)Horovitz, B.; Vardeny, 2.; Erhenfreund, E.; Brafman, 0. Synth. Met. 1984, 9 (2),215-222. (179)Mulazzi, E.; Brivio, G. P. Mol. Cryst. Liq. Cryst. 1984, 105 (1-4) 233-244. (180)Ehrenfreund, E.; Vardeny, 2.; Brafman, 0.; Horovitz, B. Mol. Cryst. Liq. Cryst. 1985, 777(1-4),367-371. (181) Kuzmany, H.; Knoll, P. Mol. Cryst. Liq. Cryst. 1985, 177 (1-4), 385-392. (182)Vardeny, 2.; Eurenfreund, E.; Brafman, 0.; Horovitz, B. Phys. Rev. Lett. 1985, 54 (l),75-78. (183)Furakawa, Y.; Arakawa, T.; Takeuchi, H.; Harada, I.; Shirakawa, H. J. Chem. Phys. 1984, 87 (7),2907-2914. (164)Llchtmann, L. S.;Imhoff, E. A.; Sarhangi, I.; Fitchen, D. B. J . Chem. Phys. 1984, 8 1 (l),168-184. (185)Siebrand, W.; Zgierski, M. 2. J . Chem. Phys. 1984, 84 (l),185-190. (186)Lefrant, S.; Faulques, E.; Krichene, S.; Sagan, G. Polym. Commun. 1983, 24 (12),361-363. (187)Faulques, E.; Lefrant, S. J. Phys. Coiloq. 1983, C3, 337-340. (188)Krichene, S.;Lefrant, S.; Froyer, G.; Maivice, F.; Pelous, Y. J. Phys. Colloq. 1983, C3, 733-736. (189) Lefrant, S.; Faulques, E.;Rachdi, F.; Bernier, P. Mol. Cryst. Liq. Cryst. 1985, 777 (1-4),377-384. (190)Mulazzl. E.; Brivlo, G. P.; Lefrant, S.; Faulques, E. Mol. Cryst. Liq. Cryst. 1985, 777(1-4),351-354.

(191)Merajver, S.D.; Wallace, W.; Wunder, S. L. Proc. Z.U.P.A.C., ZUPAC Macromol. Symp. 28th 1982, 61. (192)Hendra, P. J.; Morris, D. B.; Willis, H. A. Proc. Z.U.P.A.C., ZUPAC Macromoi. Symp. 28th 1982, 65. (193)Wang, Y. K.; Lasch, J. E.; Hsu, S. L. Proc. Z.U.P.A.C., ZUPAC Macromol. Symp. 28th 1982, 24. (194)Gerrard, D. L.; Maddams, W. F.; Williams, K. P. J. Polym. Commun. 1984, 25 (6),182-184. (195)Chang, C.; Krlmm, S. J. Polym. Sci. Polym. Phys. Ed. 1984, 22(11),

1671-1884. (196)Cudby, M. E. A.; Packer, K. J.; Hendra, P. J. Polym. Commun. 1984, 25 (10). ,. 303-305. (197)Deblase, F. J.; McKelvy, M. L.; Lewin, M.; Bulkin, B. J. J . Polym. Sci. Polym. Lett. Ed. 1985, 23(2), 109-115. (198)Chang, C.; Wang, Y. K.; Waidman, D. A,; Hsu, S. L. J. Polym. Sci. Polym. P h p . Ed. 1984, 22 (12),2185-2194. (199) Gerrard, D. L.; Maddams, W. F. Polym. Commun. 1984, 25 (6), 185-186. (200)Martinez, G.; Mijangos, C.; Millan, J. L.; Gerrard, D. L.; Maddams, W. F. Makromol. Chem. 1984, 785 (7),1277-1284. (201)Bowley, H. J.; Gerrard, D. L.; Maddams, W. F.; Paton, M. R. Makromol. Chem. 1985, 186 (4),695-705. (202)Bowley, H. J.; Gerrard, D. L.; Maddams, W. F. Makromol. Chem. 1985, 786 (4),715-723. (203)Camban, L. D.; Lull, D. V. J . Raman Spectrosc. 1983, 74 (4),291296; Chem. Abstr. 1983, 99, 1591525. (204)Ize-Iyamu, M. I.Polym. Bull. (Berlin) 1984, 72 (5),487-490. (205)Vova, P.; Solin, S. A.; John, P. Phys. Rev. 6 . Condens. Matter 1984, 29 (6),3423-3429. (206)Hill, C. G.; Hendren, A. M.; Myers, G. E.; Kontsky, J. A. J . Appl. Polym. Sci. 1984, 29 (9),2749-2762. (207)Galirtis, C.; Young, R. J.; Heung, P. H. J.; Batcheider, D. N. J. Mater. SCi. 1984, 79 (1l),3640-3648. (208)Coleman, M. M.; Skrovanek, D. J.; Painter, P. C. Appl. Spectrosc. 1984, 38 (3),448-450. (209)Merino, J. C.; Pastor, J. M.; De Saja, J. A. Polymer 1985, 26 (3), 383-386. (210)Gulari, E.; McKeigne, K.; Ng, K. Y. S. Macromolecules 1984, 77 (9), 1822-1 825. (211)Jonas, J. Acc. Chem. Res. 1984, 17 (2),74-80. (212)Sherman, W. F. J. Mol. Struct., 1984, 773, 101-116. (213)Gardiner, D. J. Annu. Rep. Prog. Chem. Sect C 1983, 79 (1982c), 77-98. (214)Weinstein, B. A.; Zailen, R. Top. Appl. Phys. 1984, 54, 463-527. (215)Shimlzu, H.;Ohnishi, T. Chem. Phys. Lett. 1983, 99 (5-6),507-511. (216)Shimizu, H. Ferroelectrics 1983, 52 (1-3),141-150. (217)Medina, J.; Sherman, W. F.; Wiikinson, G. R. Raman Spectrosc. Proc, Znt. Conf. 8th 1982, 401-402. (216)Zerda, T. W.; Bradley, M.; Jonas, J. Mater. Lett. 1985, 3 (3),124-126. (219)Agnew, S.F.; Swanson, B. L.; Jones, L. H.; Mills, R. L. J. Chem. Phys. 1985, 89 (9),1678-1682. (220)Boldnan, F.; Jodi, H. J.; Loewenschuss, A. J . Chem Phys. 1984, 80 (5),1739-1742. (221)Maissara, M.; Cornut, J. C.; Devaure, J.; Lascombe, J. Spectrosc. I n t . J. 1983, 2(2), 104-119; Chem. Abstr. 1983, 99, 121498. (222)Couty, R.; Velde, B.; Besson, J. M. Phys. Chem. Miner. 1983, 70 (2), 89-93. (223) Stroessner, K.; Henkel, W.; Stoll, I.;Hoenle, W.; Werner, A.; Hockheimer, H. D. Mater. Res. SOC. Symp. Proc. 1984, 22, 101-104. (224)Kantar, K.; Connor, T. E. Oil Gas J. 1984, 82 (48),95-99. (225)Thiery. M. M.; Fabre, D.; Kobashi, K. Mater. Res. SOC.Symp. Proc. 1984, 22, 117-120. (226)Aoki, K.; Anastassakis, E.; Cardona, M. Phys. Rev. 6 , Condens. Matter 1984, 30 (2),681-687.

.

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

11R

RAMAN SPECTROSCOPY (227) Sandroff, C. J.; King, H. E.; Herschbach, D. R. Mater. Res. SOC. Symp. Proc. 1984,22, 353-356. (228) Sandroff, C. J.; King, H. E.; Herschbach, D. R. J. Phys. Chem. 1984, 88 (23), 56474653. (229) Buback, M. Proc. I n t . Symp. Hydrotherm React. 1st 1982. 24-36. (230) Slark, G. E.; Garg, A. K.; Sherman, W. F.; Wilkinson, G. R. J. Mol. Struct. 1984, 115, 161.-164. (231) Johari, J. P.; Chew, H. A. M. Phiios. Mag. 6 1984,49 (3), 281-294. (232) Klug, D. D.; Whalley, E. J. Chem. Phys 1984, 81 (3), 1220-1228. (233) Johari, G. P.; Chew, H. A. M. Phiios. Mag 6 1984,49 (6), 647-660. (234) Minceva-Sukarova, 8.; Sherman, W. F.; Wilkinson, G. R. J. Phys. C 1984, 77 (32), 5833-5850. (235) Giergiel, J.; Subbaswamy, K. R.; Eklund, P. C. Phys. Rev. B . Condens. Matter 1984,29 (6), 3490-3499. (236) Itoh, M.; Nakamura, T.; Sakai, K. Proc. I n t . Symp. Molten Salt Chem. Technoi. 1st 1983,356-361. (237) Chan, S.S.; Wachs, I.E.; Murrell, L. L.;Wang, L.; Hall, W. K. J. Phys. Chem. 1984, 88 (24). 5831-5835. (238) Mitev, V. Acta Phys. Pol. A 1984,A66 (4), 31 1-322. (239) Zur Loye, A.; Santavlcca, D. A. Prog. Astronaut. Aeronaut. 1984,92, 255-269. (240) Dhamelincourt, P.; Barbillat, J.; Delhaye, M. J. Phys. Colloq. 1984,C2, 249-253. (241) Ishitani, A. Kagaku no Ryoiki Zokan 1983, 140, 133-145. Chem. Abstr. 1984, 100, 76422. (242) Delhaye, M. NATO AS1 Ser. Ser. C 1984, 139, 587-607. (243) Ishida, H.; Ishitani, A. Appl. Spectrosc. 1983, 37 (5), 450-455. (244) Boyer, H. Spectrochim. Acta, Part 6 1984, 398 (12), 1527-1532; Chem. Abstr. 1985, 102, 71805. (245) Muggli, R. 2 . ; Andersen, M. E. Solid State Technoi. 1985, 28 (4), 287-291. (246) Dhameiincourt, M. C.; Dhamelincourt. P. Raman Spectrosc . Proc, I n t , Conf. 8th 1982, 235-236. (247) Dhamelincourt, M. C.; Dhamelincourt, P. Appi. Spectrosc. 1983, 37 (6), 512-514. (248) Clarke, D. R.; Adar, F. Mater. Sci. Res. 1983,199-214. (249) Gulneau, B. J. Forensic Sci. 1984,29 (2), 471-485. (250) Adar, F.; Noether, H. Microbeam Anal. 1983, 76th, 269-273. (251) Delhaye, M. Raman Spectrosc. Proc. I n t . Conf. 8th 1982,223-227. (252) Barbillat, J.; Dhamelincourt, P.; Delhaye, M. J. Phys. Colioq. 1984,C2, 255-256; Chem. Abstr. 1984, 100, 220718. (253) Boyer, H. Spectrochim Acta, Part 6 1984, 398 (12), 1523-1525; Chem. Abstr. 1985. 102. 71805. (254) Adar, F.; Boyer, H. Spectra-2600 1984, 12 (91), 33-37; Chem. Abstr. 1984. 100. 220715. (255) Andersen, M. E. Adv. Chem. Ser. 1983,No. 203, 383-400. (256) Johnson, C. A.; Thomas, K. M. Fuel 1984,63 (E), 1073-1080. (257) Le Vy, R.; Fiand, C.; Nguyen, A. T. J. Phys. Colioq. 1984, C2, 661-664. (258) Heidersbach, R.;Purcell, F. Microbeam Anal. 1984, 19th, 61-64. (259) Purcell, F. J.; Heidersbach, R. Am. Lab. (Fairfield Conn .) 1985, 17 (3), 118, 120--121. (260) Boyer, H. Microbeam Anal. 1983, 78th, 265-268. (261) Touray, J. C.; Beny-Bassez, C.; Dubessy, J.; Gullhaumou, N. Scanning Nectron Mlcrosc. 1985, 7, 103-118. (262) Dubessy, J.; Beny, C.; Guiihaumou, N.; Dhamelincourt, P.; Poty, B. J. PhyS. COliOq. 1984, C2, 811-814. (263) Touray, J. C.; Guilhoumou, N. Bull. Mineral 1984, 107 (2), 181-188. (264) Dubessy, J.; Guilhaumou, N.; Mullis, J.; Pagel, M. Bull. Mineral 1984, 107 (2), 189-192. (265) Guilhaumour, N.; Velde, 6.;Beny, C. Bull. Mineral 1984, 107 (2), 193-202. (266) Purcell, F. J ; White, W. B. Microbeam Anal. 1983, 18th, 289-292. (267) Boyer, H.; Smith, D. C. Microbeam Anal. 1984, 19th, 107-110. (268) Pineau, P.; Bernard. R.; Audebrand, M.; Freor, P.; Tessier, J. F.; Faugere, J. G. Raman Spectrosc. Proc. I n t . Conf. 8th 1982, 813-814; Chem. Abstr. 1983,99, 127625. (269) Doyle, T. E.; Alvarez, J. I. Microbeam Anal. 1983, 78th, 277-279. (270) Rosen, H.; Novakov, T. Nature (London) 1984, 306 (5945), 768-770. (271) Rouzaud. J. N.; Aberlin, A.; Beny-Bassez, C. Raman Spectrosc. Proc. Int. Conf. 8th 1982, 237-238. (272) Beny-Bassez, C.; Rouzaud, J. N. Nectron Micrasc. 1985, 1 , 119-132. (273) Lespade, P.; Marchand, A.; Couzl, M.; Cruege, F. Carbon 1984,22 (4-5), 375-385. (274) Steinbeck, J.; Braunstein, G.; Dresselhaus, M. S.; Dresselhaus, G.; Venkatesan, T.; Jacobson, I. Ext. Abstr. Program-6ienn Conf. Carbon 1985, 17th, 426-427. (275) McNeil, L. E.; Steinbeck, J.: Salamanca-Riba, L.;Dresselhaus, G. Phys. Rev. 6 Condens. Matter 1985, 31 (4), 2451-2455. (276) Farrow, L. A.; Hopkins, J. B.; Fisanick, G. J. Mater. Res. SOC. Symp. Proc. 1984,29, 231-236. (277) Nakashima, S.: Inoue, Y.; Mitsuishi, A. J. Appl. Phys. 1984, 56 (lo), 2989-2992. (278) Nishloka, T.; Shinoda, Y.; Ohmachi, Y. J . Appl. Phys. 1985,57 (2) 276-281. (279) Beguier, G. Raman Spactrosc. Proc. I n t . Conf. 8th 1982, 239-240. (280) Needham, C. D. Proc. SPIE---lnt. SOC.Opt. Eng. 1983,411, 13-17. (281) Hiratsuka, Y.; Tochigi, K.; Hirano, Y. Mikrochim. Acta 1984, 3 (5-6), 359-373. (282) Boelger, B. Springer Ser. Chem. Phys. 1983, 33, 2-13. (283) Burstein. E.; Brotman, A.; Apell, P. J. Phys. Colloq. 1983, C I O , 429-439. (284) Suetaka, W. Kagaku no Ryoiki Zokan 1983, 140, 11-16; Chem. Abstr. 1984. 100, 93600. (285) Onishi, T. Kagaku no Ryoiki Zokan 1983, 139, 75-89; Chem. Abstr. 1984, 700, 162440.

12R

ANALYTICAL CHEMISTRY, VOL. 58, NO. 5, APRIL 1986

(286) University of Pittsburgh Report 1983 Avail NTIS Energy Res. Abstr. 1984, 9 (l), Abstr. No. 157. (287) Chann, S. S.; Wachs, I.E.; Murrell, L. L.; Dispenziere, N. C. Stud. Surf. Sci. Catai. 1984, 19, 259-266. (288) Hanuza, J.; Hermanowicz, K.; Oganowski, W. Jezowska-Trzebiatowska 6 Bull. Pol. Acad. Sci. Chem. 1984, 3 1 (3-7), 139-152. (289) Strohmeier, B. R.; Hercules, D. M. J. Phys. Chem. 1984, 88 (21), 4922-4929. (290) Hail, W. K. Chem. Uses Molybdenum Proc. I n t . Conf. 4th 1983, 224-233. (291) Dutta, P. K.; Del Barco, B. J. Phys. Chem. 1985,89 (lo), 1861-1865. (292) Grimblot, J.; Payen, E. NATO A S I Ser. Ser. G 1983, 105, 189-196. (293) Kanchera, M.; Knoezinger, H.; Jeziorowski, H.; Delannay, K. Geterog , Katal. 1983,5 (2), 27-31. (294) Woo, S.I.; Hill, G. C. J. Mol. Catal. 1985, 29 (2), 231-258. (295) Fujishima, A.; Handa, K. 6unho Kenkyu 1983,32 (5)349-361; Chem. Abstr. 1984, IO, 111127. (296) Plieth, W. J.; Foerster, K. J. Springer Ser. Chem. Phys. 1983, 33, 2 16-220. (297) Philpott, M. R.; Corn, R.; Golden, W. G.; Kunimatsu, K.; Seki, H. Jerusalem Symp. Quantum Chem. Biochem. 1984, 17, 401-412. (298) Philpott, M. R.; Corn, R.; Golden, W. 0.; Kunimatsu, K.; Seki, H.; Report 1984 Avail. NTIS from Gov. Rep. Announce. Index U.S. 1984,84 (22), 51. (299) Fleischmann, M.; Hill, I.R.; Sunholm, G. J. Nectroanal. Chem. Interfacial Nectrochem. 1983, 157 (2), 359-368. (300) Abrantes, L. M.; Fleischmann, M.; Hill, I. R.; Peter, L. M.; Mengoii, M.; Zoti, G. J. Nectroanal. Chem. Interfacial Nectrochem. 1984, 164 (l), 177-187. (301) Baer, D. R. Appl. Surf. Scl. 1985, 20 (4), 382-396. (302) Brown, C. W. Report 1984 Avail. NTIS from Gov. Rep. Announce Index U S . 1984,84 (23), 56. (303) Jeziorowski, H.; Moser, B. Mikrochim. Acta 1984, 2 (1-2), 97-102. (304) Melendres, C. A.; Xu, S. J. Nectrochem. SOC. 1984, 131 (lo), 2239-2243. (305) Bototov, A. V.; Zaretskaya, N. B.; Musolin, V. N. Zn. Priki. Khim. (Lenningrad) 1984, 57(3), 490-493; Chem. Abstr. 1984, 100, 184903. (306) Bennett, M. J. Report 1984 AERE-R-11447. From Sci. Tech. Aerosp, Rep. 1985, 23(11), Abstr. No. N85-20121. (307) Tsang, J. C. Jerusalem Symp . Quantum Chem . Biochem 1984, 1 7 , 379-393. (308) Ueba, H. Surf. Sci. 1983, 731 (2-3), 328-346. (309) Proust, N.; Bisaro, R.; Magarino, J.; Kaplan, D.; Zellama, K. Proc. Electrochem. SOC. 1983,83-11, 314-318. (310) Nishida, S.;Kanagai, M.; Takahashi, K. Thin Solid Films 1984, 772(1), 7-16. (311) Stern, M. B.; Harrison, T. R.; Archer, V. D.; Liao, P. F.; Bean, J. C. Solid State Commun. 1984, 51 (4), 221-224. (312) Yamazaki, K.; Yamada, M.; Yamamoto, K.; Abe, K. Jpn. J. Appl. Phys. Part I 1984,23 (6), 681-686. (313) Baird, T. Fuel 1984,63 (E), 1081-1088, Fortenberry, R.; Moshrefzaden, R.; Hetherington, W. (314) Stageman, G. I.; M.; Van Wyck, N. E.; Koenlg, E. W. Proc. SPIE-Int. SOC. Opt. Eng. 1983,380, 212-218. (315) Rabolt, J. F.; Schlotter, N. E.; Swalen, J. D. Polym. News 1984,9 (IO), 300. (316) Brueck, S. R. J. Proc. DARPA Workshop Diamond-Like Carbon Coat 1982,(AD-A136 766), 214-223. (317) Watanabe, I.;Noguchi, S.; Shimizu, T. J. Non-Cryst. Solids 1983,58 ( l ) , 35-40. (318) Exharos, G. J.; Pawalewicz, T. W. Appi. Opt. 1984, 23 (12), 1986-1988. (319) Dahlgren, S. D.; Thomas, M. T.; Beauchamp, R. H.; Courtright, E. L. Thin Solid Fllms 1984, I19 (4), 365-374. (320) Iwasawa, Y.; Yamada, M.; Sato, Y.; Kuroda, H. J. Mol. Catal. 1984, 23 (I), 95-106. (321) Menendez, J.; Hoechst, H. Thin Solid Films 1984, 1 7 1 (4), 375-379. (322) Dumas, P.; Dubarry-Barbe, J. P.; Riviere, D.; Levy, Y.; Corset, J.; J. PhyS. COiiOq. 1983,C I O , 205-208. (323) Jiang, T.; Guangpuxue, Yu. Guangpu Feruxi 1984,4 (3), 7-13; Chem. Abstr. 1984, 101, 160226. (324) Zgierski, M. 2. Raman Spectrosc. Proc. I n t . Conf. 8th 1982,97-109. (325) Itoh, K. Kagaku no Ryoikl Zokan 1983, 140, 35-44; Chem. Abstr. 1984, 100, 111129. (326) Hester, R. E. Time-Resolved Vib. Spectrosc. (Proc. I n t . Conl. TRVS) 1982, 177-181. (327) Stufkens. D. J. Ned. Tijdschr. Natuurkd. A 1984, A50 ( l ) , 19-23; Chem. Abstr. 1984, 100. 100273. (328) Clark. R. J. H. Stud. Inorg. Chem. 1984, 5, 221-234. (329) Chang, R. K. Time-Resolved Vlb. Spectrosc. (Proc. I n t . Conf. TRVS) 19828369-375. (330) Phiipott, M. R. J. Phys. Coiloq. 1983,C l O , 295-303. (331) Otto, A. Top. Appi. Phys. 1984, 54, 289-418. (332) Arya, K.; Zeyher, R. Top. Appl. Phys. 1984,5 4 , 419-462. (333) Schatz, G. C. Acc. Chem. Res. 1984, 17 (lo), 370-376. (334) Takenaka, T. Nippon Kinzoku, Gakkai Kaiho 1983, 29 (9), 792-801; Chem. Abstr. 1984, 100, 14595. (335) Chang, R. K. J. Phys. Coiloq. 1983,C I O , 283-294. (336) Champion, A. Comments Solld State Phys. 1984, 17 (3) 107-123. (337) Yamada, H. Bunseki 1984, 3 , 163-167; Chem. Abstr. 1984. 700, 182258. (338) Fleischmann, M.; Hill, I . R. Compr. Treatise Nectrochem. 1984, 8, 973-432. - . - .- - . (339) Watanabe, T. Nippon Shashim Gakkalshi 1983,48 (4) 290-298; Chem. Abstr. 1984, 100, 57189.

.

Anal. Chem. 1986, 58,13R-33R (340)Chang, R. K.; Laube, B. L. CRC Grit. Rev. Solid State Mater. Sci. 1984. 12 (1)1-73. (341)Creighton, J. A. Springer Ser. Chem. fhys. 1983, 33, 55-63. (342)Kerkar, M. Acc. Chem. Res. 1084, 17 (8),271-277. (343)Kerker, M. Pure Appl. Chem. 1984, 56 (lo),1429-1437. (344)Higuchi, S.;Zheng, 2.; Tanaka, S. Bunseki Kagaku 1984, 33 (l), 6568;Chem. Abstr. 1984, 100, 174126. (345)Thaoi, P. V. Raman Spectrosc. R o c . Int. Conf. 8th 1982, 743-744. (346)Clark, R. J. H. J. Mol. Struct. 1984, 113, 117-128. (347)Ivanov, I. E.; Naumova, T. M. Opt. Spekstrosk 1985, 58 (5),10231028;Chem. Abstr. 1985, 103, 29461. (348)Takenaka, T.; Umemura, J.; Takahashi, H. Raman Spectrosc. R o c . Int. Conf. 8th 1982, 131-132. (349)Imae, T.; Ikeda, S.; Itoh, K. J . Chem. SOC., Faraday Trans. 11983, 79 (12),2843-2851. (350)Scharf, B. Chem. fhys. Lett. 1983, 102(2-3), 184-188. (351)Gurinovich. I. F.; Ivashin, N. V.; Terekhov, S. N.J. Mol. Struct. 1984, 114, 463-466. (352)Ivanara, T. M.; Berdyugln, V. V. J. Mol. Struct. 1984, 117 (3-4), 287-294. (353)Anderson, L. A.; Loehr, T. M.; Chank, C. K.; Mauk, A. G. J. Am. Chem. SOC.1985. 107(1),182-191. (354)Mitchell, M. L.; Campbell, D. H.; Taylor, T. G.; Spiro, T. G. Inorg. Chem. 1985, 24 (6),967-971, (355)Jones, C. M.; Naim, T. A,; Ludwig, M.; Murtaugh, J.; Flaugh, P. L.; Dudik, J. M.; Johnson, C. R.; Asher, S. A. Tr. AC Trends Anal. Chem. (fers. Ed.) 1985, 4 (3),75-80. (356)Asher, S. A.; Johnson, C. R. Science (Washington, D.C., 1883-) 1984, 225 (4659),311-313. (357)Johnson, C. R.; Asher, S. A. Anal. Chem. 1984, 56(12), 2258-2261. (358)Asher, S.A. Anal. Chem. 1984, 56 (4),720-724. (359)Ziegler, L. D.; Hudson, B.; Strommen, D. P.; Peticolas, W. L. Biopolymers 1984, 23 (lo),2067-2081. (360)Furtak, T. E. J. Electroanal. Chem. Interfacial Nectrochem. 1983, 150 (1-2),374-388. (361)Seki, H.; Chuang, T. J. Chem. fhys. Lett. 1983, 100 (5),393-396. (362)Otto, A. Vacuum 1983, 33 (10-12),797-802. (383)Sliman, 0.; Bumm, L. A.; Callaghan, R.; Kerker, M. Time-Resolved Vib. Spectrosc. (Proc. Int. Conf. TRVS) 1982. 387-390. (364)Creighton, J. A.; Alvarez, M. S.; Weitz, D. A.; Garoff, S.; Kim, M. W. J. Phys. Chem. 1983, 87 (24),4793-4799. (365)Miller, S.K.; Baiker, A.; Meier, M.; Wokaun, A. J. Chem. Soc., Faraday Trans. 1 1984, 80 (5), 1305-1312. (366)Wokaun, A.; Baiker, A.; Miller, S. K.; Fluhr, W. J . fhys. Chem. 1985, 89 (lo),1910-1914. (367)Dorain, P. 6.; Cheu, T. T.; Chang, R. K. f r o c . SPIE-Int. SOC. Opt. Eng. 1984, 482, 116-124. (368)Garoff, S.;Sandroff, C. J. J. fhys. Colloq. 1983, C10, 483-486. (369)Saad, E.; Lippitsch, M. E.; Leither, A.; Aussenegg, F. R. Springer Ser. Chem. Phys. 1984, 39, 486-490.

(370)Yamada, H.; Yamamoto, Y. Surf. Sci. 1983, 134 (l), 71-90. (371)Loo, B. H.; Lee, Y. G. J . fhys. Chem. 1984, 88 (4),706-709. (372)Marinyk, V. V.; Lazorenko-Manevich, R. M.; Kolotyrkin, Ya. M. Dokl. Akad. Nauk SSSR 1983, 272(5), 1161-1165:Chem. Abstr. 1984, 100, 58948. (373)Sanchez, L. A.; Lombard4 J. R.; Birke, R. L. Chem. Phys. Lett. 1984, 108 (1)45-50. (374)Vo-Dinh, T.; Hiramoto, M. Y. K.; Begun, G. M.: Moody, R. L. Anal. Chem. 1984, 56 (9),1867-1670. (375)Patterson, M. L.; Allen, C. S. Appl. Surf. Sci. 1984, 18 (4),377-388. (376)Keifer, W.; Beckmann, A. J . Mol. Struct. 1984. 13, 83-99. (377)Takahashi, H. Kagaku no Ryoiki Zokan 1983, 139, 31-50; Chem. Abstr. 1984, 100, 164395. (378)Keifer, W. Tangungsber Wiss. Tag-Tech Hochsch Karl Marx-Stadi 1984, 151-178;Chem. Abstr. 1985, 102, 69404. (379)Maeda, S.;Kataoka, H.; Kamisuki, T. Oyo Butsuri 1983, 52 (6),477484; Chem. Abstr. 1983, 99, 113023. (380)Maeda, S. Gendai Kagaku 1983, 151, 56-65; Chem. Abstr. 1984, 100, 41852. (381)Attal, 6.; Paelat, M.; Taran, J. P. J . fhys. Colloq. 1983, C7, 287-298. (382)Brandt, D.;Langllaar, J.; Van Voorst, J. D. W. Ned. Tfdschr. Natuurkd. A I984! A50 (I), 23-28; Chem. Abstr. 1984, 101, 100274. (383)Baldis, H. A. Plasma fhys. 1983, 25 (12),1297-1310. (384)Goss, L. P.; Switzer, G. L.; Trump, D. D.; Schreiber, P. W. J. Energy 1983, 7 (5),403-409. (385)Hall, R. J.; Eckbreth, A. C. Laser Appl. 1984, 5 , 213-309. (386) Inoue, T.; Iguchi, S. Kagaku no Ryoiki Zokan 1983, 140, 17-23; Chem. Abstr. 1984, 100, 88218. (387)Stufflebeam, J. H.; Hall, R. J.; Verdieck, J. F. Prog. Astronaut. Aeronaut. 1984, 92, 3-23. (388)England, W. A.; Greenhalgh, D. A.; Jenny, S. N.; Milne, J. A.; Porter, F. M. Raman Spectrosc. R o c . Int. Conf. 8th 1982, 165-166. (389)England, W. A.; Milne, J. M.; Jenny, S. N.; Greenhalgh, D. A. Appl. Spectrosc. 1984, 38 (e),867-876. (390)England, W. A,; Greenhalgh, D. A. Inst. Chem. Eng. Symp. Ser. 1984, 87, 263-270. (391)Ferrario, A.; Garbi, M.; Maivicini, C. Report 1983, C18E-2042,Avail. NTIS from Sci. Tech. Aerosp. Rep. 1983, 21 (21),Abstr. No. N8332903. (392)Apanasevich, P. A. J . Mol. Struct. 1984, 115, 233-236. (393)Van Hare, D. R.; Carreira, L. A.; Rogers, L. B.; Azarraga, L. Appl. Spectrosc. 1984, 38 (4),543-552. (394)Van Hare, D. R.; Carreira, L. A,; Rogers, L. B. Appl. Spectrosc. 1985, 39 (2),347-352. (395)Dreler, T. Report 1983 Avail NTIS from Sci. Tech. Aerosp. Rep. 1984, 22 (20),Abstr. No. N48-30008. (396)Hartford, A. Laser Focus Electro-Opt. Mag. 1984, 20 (4).63-4,66, 68,70, 72. (397)Chew, H.; Wang, D. S.; Kerker, M. J . Opt. SOC.Am. B , Opt. fhys. 1984, 7 (l), 56-66.

Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry E. L. Wehry Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996

A. INTRODUCTION This review emphasizes advances in the experimental techniques of luminescence spectrometry and instrumentation relevant (or potentially relevant) to analytical utilization of molecular luminescence phenomena. Applications (especially of well-established techniques) are cited only when they seem unusually novel or of especially broad interest. The review was prepared with the help of a computer search profile of Chemical Abstracts titles and identifiers. It covers literature indexed by Chemical Abstracts from November 1983 (Vol. 99, issue 21) through October 1985 (Vol. 103, issue 20). In addition, journals scanned manually by the author are covered up through issues received by November 30, 1985. As in the previous review in this series ( A l ) ,certain topics are excluded from coverage. They include the following: atomic fluorescence; molecular luminescence in flames, plasmas, or discharges; infrared fluorescence; solid-state phosphor and semiconductor luminescence; radioluminescence; liquid scintillation counting; and X-ray induced luminescence, The huge literature on fluorescent probing of biological and macromolecular systems has been excluded, 0003-2700/86/0358-13R$06.50f0

except for citation of a few reviews. Many other subject matter areas are covered in a seemingly arbitrary manner, in order to keep the size of the review and the number of citations from becoming totally preposterous. As the field of molecular luminescence continues to develop, it becomes progressively harder to pigeonhole publications into the categories traditionally used in this review. Some browsing may therefore be required for one to find those citations of greatest relevance to one’s specific interests. Because this is the last of these reviews that I shall be preparing, I would like to thank most sincerely those persons who have kept me informed of their most recent results and apologize to those authors whose work may appear to have been slighted.

B. BOOKS AND REVIEWS OF GENERAL INTEREST The first volume of a multiauthor monograph on molecular luminescence spectrometry edited by Schulman ( B I )includes (among other chapters) an overview of luminescence principles (B2)and lengthy, detailed reviews of the luminescence of 0 1986 American

Chemical Society

13 R