Raman Spectroscopy - Analytical Chemistry (ACS Publications)

Raman Spectroscopy. D. L. Gerrard. Anal. Chem. , 1994, 66 (12), pp 547–557. DOI: 10.1021/ac00084a020. Publication Date: June 1994. ACS Legacy Archiv...
0 downloads 0 Views 2MB Size
Anal. Chem. 1994,66, 547R-557R

Raman Spectroscopy D. L. Gerrard The British Petroleum Company PIC, BP Research & Engineering Centre, Cherfsey Road, Sunbury-on- Thames, Middlesex, England TW I6 7LN Review Contents

Instrumentation and Sampling Solids, Liquids, and Gases Polymers

548R 549R 5 5 0 ~

Biological Systems Semiconductors and Superconductors Raman Microscopy Resonance-Enhanced, Surface-Enhanced, and Other Nonlinear Techniques

551R 552R 5 5 2 ~ 553R

Professor Don L. Gerrard is the Researck Associate responsible for vibrational spec. troscopy at the BP Research Centre ai Sunbury-on-Thames. He received his Ph.D degree from the City University, London and joined BP in 1970. He became involvec in the industrial applications of Ramar spectroscopy in 1972, and since that time the BP Raman group has expanded intc

many Of application includes FT' Raman and tunable pulsedand laser systems Prof. Gerrard's areas of current activib include resonance and surface enhanced techniques, the study of catalysts, polymers, composites, and semiconductors. He is also active in the application of Raman techniques to mechanistic and kinetic studies of reacting systems, especially in situ studies at elevated temperatures and pressures, using specialized cells and fiber optics. 6

The period Of this review is from late 1991 to late 1993. In this period over 6000 papers have been published in the literature dealing with all aspects of the theory and application of Raman spectroscopy. This is approximately the same number as covered in the previous review in this series ( I ) and reflects the maturity of the technique. Although traditional areas of activity, particularly those relating to biological application, still yield the largest number of publications, some serious attempts are now being made to explore the analytical potential of Raman spectroscopy in new and challenging areas. There is some evidence that industrial analysts are more aware of its potential, probably as a result of instrumental advances, which have made it a much simpler practical technique than hitherto. Too many of the published applications still relate to attempts to undertake analyses by Raman spectroscopy which can be more effectively carried out by other techniques. Nonetheless the strengths of Raman spectroscopy are being more widely appreciated, particularly its use in conjunction with other analytical techniques, and this is encouraging for the future. This article covers the published papers that are relevant to the analytical chemist and hence has been highly selective. There are areas of study that have produced large numbers of papers, very few of which have been of significant analytical interest. In these cases the reader is referred to appropriate review articles or general papers which are covered in this section. Four books have appeared in the past two years relating to the analytical application of Raman spectroscopy. The first ( 2 ) is an excellent comprehensivesurvey of the analytical applications and is the first major attempt to address this subject successfully. It is essential reading for anyone using Raman spectroscopy and for analysts who are not fully acquainted with its potential application. The chapters in the book cover the areas of theory, modern instrumentation and techniques, experimental considerations for polarization measurements, inorganic species in solution, quantitative analysis, characterization of semiconductors, pol ymers,organic and petrochemical applications, catalysts, biological applications, and gas-phase studies, and some of these will be referenced below. The second book ( 3 ) relates specifically to 0003-2700/94/0366-0547$14.00/0 0 1994 American Chemical Society

'

the applicationof Fourier transform (FT)Raman spectroscopy and provides a thorough description of the instrumentation involved but is rather short on genuine analytical applications which could not be undertaken by alternative Raman instrumentation or by other analytical techniques. The whole area of FT Raman spectroscopy has produced a large number of papers, many of which are considered in the various sections below, but the main strength of the technique, which is its ability to use near-infrared (near-IR) excitation and hence suppress fluorescence, can now be readily achieved using conventional dispersive instrumentation, and it remains to be seen whether the initial upsurge of interest in FT Raman is maintained. The third book ( 4 ) is another much needed publication and is a handbook of infrared and Raman characteristic frequencies of organic molecules. The Raman spectra of compounds of group I-VI11 elements and of inorganic ions have also been reported (5, 6 ) . Industrial applications of Raman spectroscopy have been described (7), and a review has been published ( 8 ) relating to the use of Raman spectroscopy in the industrial laboratory, which considers the relative merits of dispersive and FT systems. The industrial value of the FT techniques has also been discussed (9,ZO). The application of Raman spectroscopy in surface science, transition metal chemistry, polymer characterization, and remote sensing ( 2 2 ) and for in situ determinations (22) has also been reviewed. The use of remote Raman analysis for process monitoring has been the subject of a patent application (23) with respect to its ability to determine octane number, and a method has been described ( 2 4 ) to discriminate between high octane and regular gasoline and kerosene, although it is difficult to see the advantage of such applications over the conventional near-infrared absorption approach. Fiber-optic Raman spectroscopyfor the remote determination of analyte concentrations has been described (25, 26) and the application of a fiber-optic-based Raman AnaljcticalChemistry, Vol. 66, No. 12, June 15, 1994 547R

spectrometer fitted with a charge-coupled device (CCD) detector has been considered for developing and optimizing process conditions, measuring process kinetics, and monitoring process chemistry and concentrations with a view to eventual use for process control ( I 7 ) . Another potential industrial application is distillation process control (18, 19), although again, conventional near-infrared approaches would appear to be more appropriate. Corrosion studies offer a potentially valuable application of Raman spectroscopy and it has been applied to the in situ identification of the electrochemical corrosion products of stainless and galvanized steels (20, 21), and the in situ study of metal electrodes has been reviewed (22). Other significant areas which have been reviewed include the in situ study of surfaces and interfaces (23),near-infrared surface-enhanced Raman spectroscopy (24),ultraviolet resonance Raman spectroscopy (25),modern techniques in Raman spectroscopy (26),and nonlinear Raman spectroscopy (27). The application to earth and planetary sciences has been discussed (28), the characterization of individual environmental particles has been reviewed (29), and the use of FT Raman spectroscopy in the study of carbohydrates, a traditionally difficult area for Raman studies, has been described (30). In situ Raman measurements using a fiber-opticoptrode have been carried out (31),and the in situ analysis of thinlayer chromatography plates by FT Raman spectroscopy has been described (32, 33). The application of FT techniques in inorganic materials (34) and in the analysis of cement minerals (35) has been considered. Other areas of application of Raman spectroscopy which have been reviewed include gemology (36),stress measurements (37),combustion diagnostics (38),and the study of phase transitions (39). Other papers of some importance of a more specific nature relate to temperature and concentration measurements in turbulent flames (40), autoxidation of unsaturated fatty acids ( 4 I ) , analysis of high-explosive samples (42),differentiation of hard and soft woods ( 4 3 ) , analysis of paper and ink ( 4 4 ) , in situ gas analysis of fusion fuel processing systems (45, 46), measurement of trace hydrogen gas (47), and industrial problem solving by combined techniques (48). The problem of quantitative analysis by Raman spectroscopy has been addressed (49) and the use of FT and dispersive techniques for quantitative measurements compared (50). Apart from the introduction, which is mainly concerned with summarizing the wide range of review articles that has appeared over the past two years and covering papers which do not conveniently fall into other sections, this report is divided into seven categories. The sections previously allocated to liquids and solutions and solids and surfaces have been combined and the new section also includes gases. Also, the sections previously allocated to resonance/surface-enhanced and nonlinear studies have been combined, and papers relating to high-temperature/pressure studies have been accommodated in other sections as appropriate. INSTRUMENTATION AND SAMPLING As the simpler applications of Raman spectroscopy, and more recently of FT Raman spectroscopy, are exhausted, more attention is being paid to instrumental and sample and data handling developments to extend the range of application of 548R

Analytical Chemistry, Vol. 66,No. 12, June 15, 1994

the technique, and this is reflected in the considerably increased number of publications in this area over the past two years. There are many areas of application where the use of far-red or near-infrared lasers is a distinct advantage, mostly for fluorescence rejection, but also to avoid sample damage or resonance effects. There is currently a disagreement as to whether this is best achieved using FT systems or traditional dispersive instrumentation, and the debate tends to be highly subjective in its nature. A useful paper has appeared which addresses for the first time the consequences of the Fourier transform in FT Raman spectroscopy and highlights its advantages and disadvantages ( 5 1 ) and other papers consider the relative merits of the two approaches (52-55). The FT technique has been separately reviewed (56,57). Proponents of the dispersive approach advocate the use of the new range of C C D detectors which are sensitive in the near-infrared region, and several papers have appe d relating to their application (58-61). The advantages of a Michelson interferometer for Raman studies have been described (62),and specific applications of the technique include kinetic studies (63)and the spectroscopy of gases (64). A fiber-optic sample cell has been designed for use with FT systems (65),and the advantages of using pulsed near-infrared lasers has been reported (66). Other problems that have been addressed include the effect of apodization and finite resolution on FT Raman spectroscopy (67),self-absorption (68),and variation in relative band intensities as a function of sample alignment (69). One of the major advantages of Raman spectroscopy is the ability to couple the spectrometer to fiber-optic probes and hence to record spectra of samples situated remotely from the instrument, and this combination is now producing a considerableamount ofactivityin theliterature (70-72). A fiberoptic remote Raman probe design for use in monitoring processes in a high-temperature oven has been described (73); a long fiber-optic remote Raman probe for detection and identification of weak scatterers has been reported (74);the general use of fiber-optic probes has been discussed (75);and the technique of remote sampling has been applied to monitoring environmental pollutants (76) and a range of aqueous solutions, solids, slurries, and samples in hostile environments (77). The possibility of using such systems for the monitoring and control of chemical processes is currently being vigorously explored, and instrumentation for remote multipoint process monitoring using optical fibers and optical multiplexing has been described (78). The possibilities for using Raman spectroscopy for on-line real-time multipoint industrial chemical analysis have been considered ( 7 9 ) ,and the application of partial least-squares regression to remote quantitative analysis by the Raman laser fiber-optic method has been described (80). Compact Raman instrumentation for process and environmental monitoring has been described (81), the development of an instrument for multipoint composition analysis and control of a distillation column has been reported (82),and simultaneous multipoint fiber-optic Raman sampling using diode lasers and a C C D detector has been applied to chemical process control (83). A portable Raman system has been used for line-of-site spectral measurements of remote samples using C W lasers and applications include the monitoring of toxic waste, process monitoring,

and remote detection of highly toxic materials (84). A highthroughput Raman system has been used to analyze automobile exhaust gases (85), and a holographic sensor has been produced for process control applications (86). The use of CCD detectors has greatly enhanced the speed and sensitivity of conventional Raman systems, and their extension into the near-infrared range makes dispersive spectrometers a real alternative to FT systems in this spectral region. A sensitive near-infrared system based on a conventional spectrograph with CCD detection and a tunable titanium/sapphire laser has been described (87)and a similar system has been used to record spectra of cyanine dyes (88). Multichannel microanalysis with a CCD and 1064-nm excitation has been described (89). The advantages of CCD detectors have been considered (90, 91), the performance of CCD systems has been compared with that of intensified linear diode arrays (92),and a method has been described for cosmic ray spike correction of weak signals (93). On the instrumental side an inexpensive spectrometer for analytical surface-enhanced Raman spectroscopy has been reported (94),a new highly sensitive vapor-phase spectrometer has been described ( 9 9 , and a miniaturized no-moving-parts spectrometer with moderate spectral resolution has been constructed (96). Sampling accessories which have been reported include an optical cell for Raman studies of supercritical fluids up to 500 OC and 2 kbar (97),a mirrored spherical sample cuvette (98),a high-temperature controlled atmosphere cell (99) for in situ studies, a miniature diamond anvil cell (loo),and a cell for spectroelectrochemistry using a movable electrode (101). Another area of activity is the development of filters to remove source laser scatter, and this problem has been addressed by way of metal vapor filters (102),semiconductor bandgap filters (103) and holographic notch filters (104). In the area of microsampling, a variable-emperature stage has been used in Raman microprobe studies of biological materials (105) and a device for surface-scanning micro-Raman spectroscopy has been reported (106). The use of evanescent wave techniques has never really produced any significant applications although their use is reported for the characterizationof organic thin films (107),polymer interfaces (108) and polymer surfaces (109). The possibility of using fiber optics for Raman imaging has been considered (1 IO), and instrumental techniques for Raman optical activity have been described (111). Matrix isolation techniques have been used in conjunction with Raman spectroscopy in environmental analysis (I 1 2), an apparatus for in situ spectroscopy of ion-irradiated frozen targets has been described (113),and a sample, versatile liquid nitrogen cryostat has been constructed ( I 1 4 ) .

SOLIDS, LIQUIDS, AND GASES This section essentially relates to the analysis of solid, liquid, and gaseous materials not covered in the other sections. One of the most important applications of Raman spectroscopy in the study of solids in recent years has been the analysis of diamond films, and this still remains a productive area. A comprehensive report has been published on the growth and properties of diamond films (I 15);the general use of Raman spectroscopy in the characterization of diamond and diamond-

like films has been reviewed ( ] l a ) ,as has diamond synthesis from the gas phase (117). A system has been designed for obtaining Raman spectra in situ during growth of diamond films in a hot filament reactor (118) and during plasma deposition (119),and characterization of the growth process has been discussed (120). A wide range of diamond films have been characterized by Raman techniques, including boron-doped thin diamond films (121, 122), film with iron inclusions (123),and films deposited by a two-step process on Hastelloy (124). Other techniques of diamond film formation which have been evaluated by Raman spectroscopy include the hybrid laser-plasma ablation of graphite ( 1 2 3 ,microwave plasma assisted chemical vapor deposition and magnetron sputtering ( 1 26), the use of straight tungsten wires under tension in hot filament assisted chemical vapor deposition (127), and the transformation of graphite by bombardment withintensepulsedelectronbeams (128). Otherpapersworthy of note in this general area include high-temperature Raman scattering behavior in diamond (129), synthesis and characterization of fine-grain diamond films (130),characterization of diamond-type and graphite-type carbon (131),structural studies of novel ultrahard materials (132, 133), mechanical properties of diamond thin films (134),and surface microstructures of synthetic diamond crystals (135). Other forms of carbon are equally amenable to Raman studies and compressive strain and compressive modulus of single carbon fibers have been determined (136);the effect of laser-induced heating on strain measurements in carbon fibers has been critically evaluated (137) and a relationship established between Raman scattering and electrical conductivity in highly disordered activated carbon fibers (138). Laser-annealed amorphous carbon films have been characterized by microline focus Raman spectroscopy (139),a technique which appears to have considerable potential in many areas. Transformations have been observed in carbon films studied in situ at high pressures (140), and carbon films prepared by plasma polymerization of natural gas have been characterized (141 ). Another form of carbon which is beginning to attract attention is fullerene. High-pressure phase transitions have been observed in fullerite Cm (142),and evidence has been obtained for the conversion of fullerenes to diamond under high pressures (143). Another major area of activity in the field of solid studies relates to the analysis of catalysts and potential catalysts and the use of Raman spectroscopy in this context has been reviewed (144). Raman spectroscopy has been used to characterize supported mixed iron molybdate catalyst systems (I 4 3 , the molecular structures of precious metal oxides formed on ceria have been evaluated (146), and the structure of rhenium oxide on various oxide supports has been elucidated (147). In situ Raman spectroscopy has been undertaken on a range of alumina-supported metal oxides (148), and hightemperature in situ analysis of working oxidative coupling catalysts has been used to identify surface peroxide structures on lanthanum oxide and modified lanthanum oxide catalysts (149). Other in situ studies related to the investigation of hydrodesulfurization catalysts (I 50) and the sulfidation of molbdenum/titania-alumina catalysts (151). Other papers of interest in this area are the correlation of the Raman spectra of zeolites with their framework architecture (152) and the Analytcal Chemistry, Vol. 66, No. 12, June 15, 1994

549R

ex situ and in situ determination of stress distributions in chromic oxide films (153). Surfaces of all types lend themselves well to Raman analysis and several applications in this area have appeared in the past two years. The application to the study of surface chemistry has been reviewed (1549, the Raman microprobe has been used to obtain in situ spectra of ice layers forming on metallic substrates (155), the characterization of conversion-coated aluminium has been reported (156),and the surface products of the electrochemical oxidation of iron pyrites have been identified (157). In thearea ofcorrosion studiestheapplication of Raman spectroscopy has been reviewed (158), the mechanism for corrosion protective film formation on iron and nickel in acid solution with organoantimony compounds has been elucidated (159), the influence of nickel, molybdenum, and chromium on pitting corrosion of steels has been discussed (160), and the corrosion of ceramics in molten fluorides has been studied (161). Many other applications to solid systems have appeared in the past two years and those of analytical interest are summarized below. Materials characterization by imaging Raman spectroscopy has been reported (162), the Raman microprobe has been used to discriminate between feldspar minerals (163),vitrification of perovskite a t high temperatures has been followed (164), and the high-temperature chemistry of the conversion of siloxanes to silicon carbide has been studied (165). Structural changes with temperature have been monitored in titania/silica thin films (166), residual stresses have been measured in continuous fiber metal matrix composites (167), and polycyclic aromatic hydrocarbons of possible astrophysical interest have been characterized (168). Among the more interesting and analytically relevant publications relating to liquids the composition of aviation turbine fuel has been determined (269), polycyclic aromatic hydrocarbons in mineral oils have been identified (170), the evolution between slow and rapid chemical exchange processes in liquid binary mixtures has been followed (171), and Raman measurements have been used to determine fluid-phase equilibria (172). Multichannel techniques have been used to address problems in marine chemistry such as the determination of low levels of inorganic nutrients in seawater (173). Time-resolved techniques have been used to obtain spectra from reacting optically levitated microdroplets ( I 74), and molten salt spectra have been obtained a t temperatures up to 720 "C using an all-silica fiber-optic probe (175). In the area of electrochemistry, in situ studies have been made of anodically formed layers of titanium dioxide in solutions of sulfuric acid, potassium hydroxide, and nitric acid ( I 76), and time-resolved surface-enhanced Raman spectroscopy (SERS) techniques have been used to study the electrochemical reduction of organic sulfides ( I 77) and short-lived biological species (178). Raman spectroscopy has also been used for concentration measurements in vapor mixtures ( I 79), on-line multiple-component gas analysis (180), and isotopic methane analysis in fusion fuel gas processing systems (181). POLYMERS Raman spectroscopy is capable of providing a wealth of molecular information of value to polymer chemists, physicists, and materials scientists. This is reflected in the wide range 550R

Analytical Chemistry, Vol. 66,No. 12,June 15, 1994

of papers published in this area, and the application of Raman spectroscopy to polymer studies has been comprehensively reviewed (182, 183). Instrumental developments are also enabling very sophisticated spectroscopy to be undertaken which is proving to be of considerable significance in the areas of polymer structure, polymerization kinetics, and stress/strain measurements. FT Raman spectroscopy is being widely used to address a number of areas relating to the study of polymers, and its use in this context has been reviewed (184, 185) and the relative merits of F T Raman and FTinfrared photoacoustic spectroscopies have been compared (186). The increased information now available from Raman spectroscopy is being particularly well applied in the study of polyolefins, notably polyethylene. Structural studies of linear polyethylenes have been undertaken by factor analysis of their Raman spectra (187); carbonyl groups and unsaturation have been shown to form in electrical tree and electrically deteriorated regions of polyethylene (188). Molecular orientation in high-density polyethylene has been shown to relate mostly to the trans components (189), a detailed analysis of the Raman internal modes of crystalline polyethylene has been reported (190), the influence of temperature on the supermolecular structure has been assessed (191), and the overall mobility of polymethylene chains in the solid state has been studied (192). It is particularly important in such a complex area as polymer studies that the polymer scientist and the Raman spectroscopist work closely together, or Raman data can be very easily misinterpreted or the experiment not properly designed to correctly address the feature being studied. At least one Raman study of polyethylene published recently by wellrespected polymer scientists draws conclusions that their Raman data clearly do not support, and the advice of a Raman spectroscopist would have avoided this. The longitudinal acoustic mode in polyethylene has always been of great interest and a recent paper extends the study to virgin polyethylene powder (193). Another polyolefin which produces useful Raman spectra is polypropylene, and papers have appeared which give a detailed analysis of the spectra of the isotactic and syndiotactic polymer (194), the determination of tacticity and crystallinity (195), and measurement of orientation (196). Traditionally one of the most productive areas for the generation of papers relating to Raman studies has been that of conjugated polyene systems. While this area is now declining rapidly, probably because of the failure of these materials to become commercially significant, it does still yield some interesting information. Raman spectroscopy has been used to characterize polarons, bipolarons, and solitons in conducting polymers (197), the nature of the resonance Raman effect in conjugated polyenes has been considered (198), and the Raman spectra of conjugated polymers and copolymers have been related to their optical properties ( I 99, 200). The relationship between Raman spectra and structure/ properties of conjugated and conducting polymers has been reviewed (201-203). Raman techniques have been used to study the electrochemical doping of oriented polyacetylene (204), the stoichiometry and kinetics of pyrrole polymerization have been evaluated (205), and a detailed study has been made of the differences in the Raman spectra of pristine and doped polyenes (206). Another polymer which produces conjugated polyene structures on degradation is poly(viny1

chloride) (PVC) and this has always been a material of interest to Raman spectroscopists. A quantum chemical study has been made of the degradation and maximum polyene length in degraded PVC (207),and a much needed paper has appeared on the considerations for Raman spectroscopic determination of polyene sequence length distribution (208). The technique of Raman microline focus spectrometry has been used to great effect to map the distribution of degradation in PVC caused by polyurethane foam backing (209). In recent years, with the increasing spectral resolution offered by modern instrumentation, the use of Raman spectroscopy for studying stress/strain in polymers and composites has become relatively commonplace, but this type of work is still being extended into new areas. A very significant paper has appeared on the evaluation of molecular strain in high modulus polyethylene fibers during stress relaxation and this has important implications for the study of structure/property relationships in polyolefins (210). Another interesting piece of work relates to the behavior of polymer fibers under axial compression (211). The most fruitful area of research in this area is still the study of stress/ strain in fibers and composites and several papers have been published relating to this (212-214). The application of Raman spectroscopy to the study of reacting systems has been used effectively to monitor epoxy curing (215),emulsion polymerization (216), and vulcanization (21 7 ) . Micro-Raman techniques have been used tostudy the process of microindentation in polymers (218, 219); polarized FT Raman spectroscopy has been used for morphological studies (220). FT techniques have also been used to identify and characterize nylons (221), to study semicrystalline polychloroprene (222), to follow the cold crystallization of natural rubber and deproteinized natural rubber (223) and to analyze poly(anhydride) homo- and copolymers (224). Micro-Raman mapping has been used to study crystallinity changes in the neck region of stretched poly(vinylidene fluoride) (225). Ultraviolet excitation has been used to obtain fluorescence-free spectra of ultraviolettransparent polymers such as poly(tetrafluoroethylene), polyethylene, polypropylene, and poly(oxymethy1ene) (226). The microstructure of butadiene/acrylonitrile copolymers has been analyzed (227),and the molecular mechanism of clouding in aqueous solutions of triblock copolymers has been interpreted in terms of conformational changes (228). Other interesting areas of polymer study by Raman spectroscopy have concerned the characterization of copolymers of methyl methacrylate with butadiene (229),anisotropic scattering of uniaxially oriented polymers (230), thermophysical properties of macromolecules in the blockstate (231), a study of water in polymer gels (232), structural studies of liquid crystal polymers (233,234),and the effect of annealing temperature on the longitudinal acoustic mode of poly(3,3dipropyloxetane) (235). Two more general papers relate to the Raman study of coatings and paints (236, 237).

BIOLOGICAL SYSTEMS The application of Raman spectroscopy to biological systems has been a major area of study for many years and this is reflected once again in the number of publications devoted to this subject in the present review period. A wide

range and large number of studies have been reported in the period covered by this report although a large number of them are not directly relevant to the analytical chemist. A number of review articles have been published in the past two years, some considering the general application of Raman spectroscopy to biological systems (238, 239), while others have related to more specific studies, including living body tissues (240), cells in vivo (241), protein conformation (242),biologicalstructuredynamics and energy transfer (243), and ligands bound to proteins (244). The use of the technique to study tissues has once again been an area of significant activity, frequently using microscopy (245)and near-infrared excitation to avoid sample damage (246, 247) Human skin has been the subject of a FT Raman study (248) and has given a method for assessing changes induced by chemicals and drugs. Eye lenses have also been examined, particularly in relation to cataractous tissue (249, 250). Urinary calculi have been characterized by their Raman spectra (251, 252), including some of unusual composition (253). In vivo studies have also been attempted using coherent anti-Stokes Raman scattering (CARS) with considerable success (254),and FT Raman has been used to distinguish between normal and atherosclerotic artery tissue (225). The ability to use enhanced Raman signals has once again allowed studies to be made of biological systems where the species of interest is present at verylow concentrations. SERS has been used extensively in this context and its use has been reviewed (256, 257). Specific applications relate to studies of proteins on surfaces (258), structure of benzylpenicillin (259),and carotenoids in living cancer cells (260). Surfaceenhanced hyper-Raman spectroscopy, because its selection rules are different from those of normal Raman, resonance Raman, and infrared absorption, has been used effectively to provide vibrational information relating to biomolecules unobtainable through existing methodologies (261). Resonance Raman spectroscopy has been applied to the study of helix structure transitions in D N A (262), growth hormones (263), the structure of peptides (264), the selective analysis of nucleic acids in mycobacteria (265) and heme proteins (266). The ultraviolet resonance Raman spectroscopy of bacteria has been reviewed (267), and techniques to aid the detection and treatment of low-level resonance Raman signals have been reported (268). Time-resolved Raman spectroscopy has again been employed in the study of carotenoid structures in vivo (269) and in vitro (270, 271) and has also been successfully applied to structural and kinetic studies of bacteriorhodpsin (272,273). Photosynthesis has also been the subject of further attention (274, 275), as have photosynthetic bacteria (276) and plant compounds in general (277, 278). An area that has seen increased activity over the past two years is the use of Raman spectroscopy in the study of drugs (279, 280) and their interaction with target cells (281). A number of studies have addressed the interaction of antitumour drugs with living cells (282,283). The potential to aid cancer research is highlighted in an important paper (284). Raman spectroscopy has also been used to study neurotoxins (285) and metabolites (286). Ab initio calculations for biologically and pharmaceutically important molecules have been carried out (287),and results from a range of biomolecules have been Analytical Chemistty, Vol. 66, No. 12, June 15, 1994 0 SSlR

reported from a new Raman optical activity instrument (288). Antibody-antigen interactions have been studied (289)as has the interaction between dental adhesive resin and dentin (290). Advances have been made in the study of virus structure (291) and their interactions with proteins (292). Raman spectroscopy has also been used in the study of biocompatibility (293) and in food analysis (294). SEMICONDUCTORS AND SUPERCONDUCTORS Raman spectroscopy is still being used to provide information relating to the structure and properties of semiconductors and superconductors. Its use in the characterization of semiconducting materials has been reviewed (295-297) as has its application to the characterization of layered semiconductor materials and devices (298). Other areas relating to semiconductors which have been reviewed are semiconductor electrodes (299) and heavily doped semiconductors (300). Raman spectroscopy has been used to study 111-V semiconductor surfaces and overlayers (301) and strain and impurity distribution in 11-VI epilayers (302). A wide range of semiconductor superlattices has been characterized (303) and germanium/silicon strained layer superlatttices have been characterized (304). Among the wide range of highly specific applications, some papers of interest are a n investigation of the passivating effects of hydrogen sulfide on the gallium arsenide(100) surface ( 3 0 4 , depth profiling by in situ sputtering (306),and the characterization of semiconductivity diamond films (307). The application of Raman techniques to the study of highT, superconductors has been comprehensively reviewed by several authors during the period of this report (308-311). A method based on Raman spectroscopy has been unsuccessfully used to measure the critical temperatures of superconductors (312),and micro-Raman methods have been used todetermine the microstructure of high- Tcsuperconductor thin films (313). Micro-Raman techniques have also been applied to the characterization of impurity phases in ceramic and thin-film samples of yttrium barium copper oxide (314). This compound is the most widely studied of the high-T, superconductors and other publications have related to the characterization of single crystals with different oxygen contents a t high pressures (315317 ) ,crystal lattice orientation (318),hydrogen-charged films (319),the study of double copper-oxygen chains (320),and the observation of interface stress (321). Other materials which have been studied include rare earth barium nickel oxides (322), lead-substituted bismuth strontium calcium copper oxide (323),lanthanum copper oxide (324),and yttrium barium strontium copper oxide (325). RAMAN MICROSCOPY One of the most important analytical advantages bestowed by the Raman effect is the ability it affords to be able to obtain spatially resolved vibrational spectra down to about 1-m spatial resolution using a conventional optical microscope. The technique of Raman spectroscopy in general continues to develop rapidly and this has been further activated by the advent of FT Raman systems. The recently developed techniqueof FT Raman microscopy has been reviewed (326), and methods for performance enhancement (327)and a range of applications (328) have been discussed. The general 552R

Analyfical Chemistry, Vol. 66,No. 12,June 15, 1994

application of Raman microscopy to the study of engineered materials has been reviewed (329) and the historical development and future trends have been discussed (330). A microprobe with a holographic beamsplitter for low-frequency operation has been described (331), and the use of Raman imaging (332-334) and the application of confocal Raman microscopy (335) to polymer systems have been discussed. The technique of line focusing (336) used in conjunction with a CCD detector holds a great deal of promise and the application of polarization/orientation microscopy has been considered in some detail (337). One area which has benefited more than most from the application of Raman microscopy is that of semiconductors. Its use in characterizing semiconductor devices (338) and semiconductor microstructures has been reviewed (339) and the whole range of information relevant to semiconductors that can be obtained by Raman microscopy has been discussed ( 3 4 0 ) . The specific applications to the analysis of extended defects (341) and local misorientations (342) in gallium arsenide have been reported. Another material which has been widely studied in all of its forms is carbon, and papers have been published relating to the microanalysis of carbon cluster composites (343)and modified graphitesurfaces (344). Another major area of application is the analysis of inclusions in minerals and other solids, and a considerable number of papers are published in this area every year. The use of multichannel Raman microscopy for the analysis of fluid inclusion gases in mineral exploration has been discussed in some detail (345),and the use of visible Raman and nearinfrared FT Raman microscopes for the analysis of fluid inclusions have been compared (346). The technique has been applied in the determination of water, hydrates, and p H in fluid inclusions (347) and the characterization of gas components and deposits in bubbles in silicate glasses (348).Some of the more interesting specific applications which have appeared in the literature include the analysis of melt inclusions in zircons from pre-Cambrian rocks (349), microcrystalline inclusions in fluoride glasses and fibers ( 3 3 3 ,fluid inclusions in charnockites (351),pegmatites (352),and sillimanites (353), and pyrope inclusions in diamonds (354). A Raman microprobe study of some geologically important sulfide minerals (355) and an analysis of nitrogen in minerals (356) have also been reported. Many of the biological applications of the Raman microscope are considered in the biological section, but two papers worthy of note in this section are the conformational analysis of a peptide with polymorphism (357)and a review of the use of confocal Raman microscopy in biology (358). The use of Raman microscopy to study stress/strain in polymers is discussed elsewhere in this report, but specific microapplications in this area have included stress transfer in epoxy composites reinforced with polyethylene fibers (359), local stress on silicon surfaces in semiconductor fabrication processes (360),and stress distribution in local isolation structures, where the technique has been used in conjunction with transmission electron microscopy (361). Other areas of application of Raman microscopy include the analysis of polydiacetylene Langmuir-Blodgett films (362), the study of inclusions in glazes on porcelain dishes (363),the identification of phenyl groups in thin surface coatings (364),

and the analysis of the calcium phosphate phases of commercially available plasma-flame-sprayed hydroxyapatitecoated dental implants (365). Of growing interest is the nondestructive in situ analysis by Raman microscopy of artifacts and the general use of the technique in the chemical characterization of works of art has been discussed (366). Specific examples relate to the study of a thirteenth century illuminated bible (367) and medieval manuscripts (368). The use of Raman microscopy in the study of polymer films, surfaces, and laminates has been reviewed (369),and the relationship between structure and mechanical properties of aramid fibers has been elucidated (370). Theidentification of industrial environmental particles has been reviewed (371), and an application to liquids has been the study of evaporating single microparticles (372).

RESONANCE-ENHANCED, SURFACE-ENHANCED, AND OTHER NONLINEAR TECHNIQUES Although the Raman effect is normally very weak, which inevitably makes the technique relatively insensitive, the use of nonlinear techniques can greatly increase both sensitivity and specificity. The continual development of laser technology to extend exciting wavelengths routinely into the ultraviolet region of the spectrum has greatly increased the potential of resonance Raman spectroscopy (RRS), but on the whole the techniques considered in this section tend to be used by specialist groups rather than as generally applicable analytical techniques. The technique of RRS, its application, and future prospects have been reviewed (373) as has its quantitative use (374). Papers have been published relating to the use of R R S for the analysis of aerosol particles ( 3 7 3 , in situ studies of electrochemically generated polythiophene films (376),identification of trans and gauche isomers of n-propyl iodide (377),studies of the donor/acceptor transition in gallium arsenide (378), and ultraviolet RRS applied to the determination of protein structures (379). The overall technique of SERS, including theory and selection rules, has been thoroughly reviewed (380) and other reviews have been published relating to its application as a probe for biomolecular structure ( H I ) , a method for studying adsorbates (382), for trace detection of ionic species (383), and for the analysis and characterization of surfaces (384). Some of the more significant analytical applications of SERS published in the past two years have included the characterization of carbon electrodes (385),measurement of diffusion coefficients in polymer melts (386), cyclization and graphitization of polyacrylonitrile (387), temperature-induced structural change of acrolein (388),biomolecule/surface interactions (389) and structural studies of fullerenes (390). Of the other nonlinear techniques, the only one used to any significant extent for analytical purposes is still CARS, although most of the applications are highly specific and it can in no way be considered to be a widely applicable analytical technique. Review articles which have been published recently have related to its use for in situ gas diagnostics (391), temperature and concentration measurements in flames and combustion processes (392), analysis of solids (393) the analysis of gases (394). Specific applications have included the structure of proteins in solution ( 3 9 3 , the study of the

bacteriorhodopsin photocycle (396),and the investigation of light-sensitive biomolecules (397). Other applications of note include the two species concentration measurements of ammonia/water vapor mixtures (398) and the study of the local mixing of two liquids in a reactor (399). The study of flames and combustion processes still provides the major application area for CARS and papers have been published relating to temperature and species concentrations in pulverized coal flames (400) and in a spark ignition engine (401), temperature measurements in gas/air flames (402), and analysis of detonation products from lead azide (403). CARS has also been used to study structural distortions in natural and synthetic diamonds (404), and a high-resolution CARS spectrometer has been designed for use with a continuouswave laser (405). Other nonlinear studies have been concerned with surfaceenhanced hyper-Raman spectroscopy of biomolecules and polymers (406) and stimulated Raman spectroscopy for the quantitative analysis of organic compounds (407)and for the measurement of droplet size and component concentration in fuel sprays (408).

LITERATURE CITED Gerrard, D. L.; Blrnle, J. Anal. Chem. 1992, 64, 502R-513R. ChemIcalAna&skx Analytical Raman Spectroscopy; Graaselll, J. G., Bulkln, B. J., Eds.; John Wlley and Sons: New York, 1991; Vol. 114. Hendra, P.; Jones, 0.;Warnes. G. Fourier Transform Raman Spectroscopy; Ellis Horwood; London, 1991. Lln-Vlen, D.; CoMup,N. P.; Fateley, W. 0.;Grasselll,J. 0. The Mndbodr of Infrared and Raman Characterktlc Group Frequencies of Orgenlc Mdecules; Academic Press Inc.: Boston, MA, 1991. Davldson, G. Spectrosc. Rop. lnorg. Organomet. Compd. 1991, 24, 249-282. Degen. I.A.; Newman, G. A. Spectrochim. Acta, PartA 1993, 49A. 859-887. Orasselll, J. 0.;Walder, F.; Petty, C.; Kamany, 0. J. Mol. Spectrosc. 1993, 294, 207-210. Everall, N. J.; Lumsdon, J. Spectrosc. Ew. 1992, q2), 10-21. Hendra, P. J. Vlb. Spectrosc. 1093, q l ) , 25-32. Hendra, P. J. J. Mol. Struct. 1992, 266, 97-114. Lee, M. S. Mvahak Sekye 1992,32(7), 654-658; Chem. Abstr. 1992, 177, 222056~. Vlckers, T. J.; Mann, C. K. Roc.SPIE Int. Soc. Opt. Eng. 1993, (17th Int. Conf. Monltorlng Toxic Chemicals and Bbmarkers. 1992). 386391. Clarke, R. H. PCT Int. Appl. WO 92 05, 428(Cl GOlN21/65)02 Apr 1992, US Appi. 583, 808 Sept 1990. Purcell, F.; Grayzell, R.; Adar, F. Roc. SPIE-lnt. SOC.Opt. Eng. 1992. 7667 (Opt. Based Methods Process Anal.), 149-158 Nave, S. E.; O'Rourke. P. E.; Malstrom, R. A.; Rather, W. S. Process Control Quel. 1992, 31-4). 43-48. Nlemczyk, T. M.; Delgadolopez, M.;Newman. C. D. LaserFocus World 1993, 2q3), 85-98. Farquharson, S.; Slmpson, S. F. Roc-SPIE Int. SOC. Opt. Eng. 1992, 7687 (Opt. Based Methods Process Anal.) 276-290. Garrison, A. A.; Moore, C. F.; Roberts, M. J.; Hall, P. D. Process Control Qml.1992, 3(1-4). 57-63. Garrison, A. A.; Trlmble, D. S.; Muly, E. C.; Roberts, M. J.; Kercel, S. W. Am. Lab. (Fahflekt, Conn.) 1990, 22(3), 24-27. Bocherlt, N.; Hugot le Goff, A,; Jolret, S. Mater. Sci. Forum 1992, 7 117 72 (Electrochem. Methods Corros. ResJ.581-587. Bernard, M. C.; Hugot le Goff, A.; Masslnan, D.; phllllps, N.; Thlery, D. Mater. Sci. F m m 1992, 7 7 7- 172(Electrochem. MethodsCorros. Res.), 617-620. Pettlnger, B. I n Adsorption Mdecules at Metal Electrodes; Llpkowskl, J., Ross, P. N., Eds.; VCH: New York. 1992 pp 285-345. McGilp, J. F. Appl. Swf.SCI. 1993, 631-4). 99-105. Angel, S. M.; Myrlck, M. L. &act. Spectrosc. 1992. 13(Handbook NearInfrared Anal.), 225-245. Asher, S. A. Anal. Chem. 1993, 632). 59A-66A. Morrls, M. D. I n App/MLaserSpectroscop~Andrews, D.L., Ed.; VCH: New York.1992 pp 227-265. Berger, H.;Lavarel, B.; MRlot, 0. I nA~MLaserSpec&oscopy;Andrews, D. L., Ed.; VCH New York,1992; pp 267-318. Sharme, S. K. I n From Mantle Metwltes; Gopalan, K.. Ed.; Indian Acad. Scl.: Bangalore, Indla, 1990; pp 263-308. Xhoffer, C.; Wouters, L.; Artano, P.; Van Put, A.; Van Grleken, R. Envkon. Part. 1892, 7. 107-143. Goral, J. Cum. Top. Blophys. 1992, 76[1), 33-47. Nguyen, a. D.; Jouan, M.; Nguyen, a. H.; Da Sllva, E. Ana/~eIs1993, 21(4), 219-220.

-

Analytical Chemistry, Vol. 88, No. 12, June 75, 1994

553R

Petty, C.; Cahoon, N. Spectrochlm. Acta, PartA 1883,49A(5-6), 645655. Everell, N. J.; Chalmers, J. M.; Newton, I.D. Appl. Spectrosc. 1882, 464). 597-601. Day, T. N.; Hendra, P. J.; Rest, A. J.; Rowlands, A. J. Spectrochim. Acta, part A m i , 4 7 ~ ( 9 - 1 0 )1251-1282. Dyer, C. D.; Hendra, P. J.; Forsling, W. Spectrochim. Acta, PartA 1083, 49A(5-6), 715-722. Gramaccloll. C. Eur. J. Miner. 1881,3(4), 703-706. Anastassakls, E. Roc.-Electrochem. Soc. 1880,90- 7 7 (Anal. Tech. Semlcond. Mater. Process Charact.), 298-326. Eckbreth, A. C. IOP Short Meet. Ser. 1980,27 (Spectrosc. Combust. Stud.), 15-39. Blrt, H. D. ROC. Indlen. Aced. Sci., Chem. SCI. 18813703(3),295-304. Hassel, E.; Lipp, F.; Jervlcks, J. Int. Annu. Conf. ICT 1801. 22nd (Combust. React. Klnet.), 25/1-25/15. Agbenyega, J. K.; Claybourn, M.; Ellis, G. Spectrochlm. Acta, Part A 1881,47A(9-10), 1375-1378. Akhavan, J. Spectrochlm. Acta, PartA 1881,47A(9-10), 1247-1250. Evans, P. A. Spectrochlm. Acta, Part A. 47A(9-10) 1441-1447. Grosso, V. Int. Colloq. Role. Chem. A r c h d Int. 1881,67-75. Uda, T.; Okuno, K.; Ohira, S.;Noriese, Y. Fuslon Technol. 1891, 79, 1651-1656. Uda, T.; Okuno, K.; Ohlra, S.;Noriese,Y. J. Nucl. Scl. Technol. 1882, 29(3), 288-295. Adler-Golden. S.M.; Goldstein, N.; Blen. F.; Matthew. M. W.; Gersh, M. E.; Chang, W. K.; Adams, F. W. Appl. Opt. 1882,37(6), 831-835. Grasselll, G. J. Kem. Ind. 1881,40(12), 499-502. Vickers, T. J.; Mann, C. K. Chem. Anal. (N. Y.) 1881, 774(Anal. Raman Soectroscl. 107-135. - r --Deeley, c. 'MiSpragg, R. A.; Threlfall, T. L. Spectrochlm. Acta, Part A 1981. 47Af9-10) 1217-1237. Parker, 'S.F.: Conioy, N.; Patel, V. Spectrochlm. Acta, Part A 1883, 49A (5-6), 657-666. Schrader, B.; Keller, S.Roc. SPIE-Int. Soc. Opt. Eng. 1882,7575(Int. Conf. Fourier Transform Spectrosc., 8th, 199l), 30-39. Chase, D. B. Chem. Anal. (N. Y.) 1881, 774 (Anal. Raman Spectrosc.), 21-43. Engert, C.; Mlchelis, T.; Klefer, W. Appl. Spectrosc. 1081,45(8),13331339. Barbllat, J.; Da Silva, E.; Hallaett, J. L. J. Ramen Spectrosc. 1883, 241). 53-62. Fredericks, P. M. Chem. Aust. 1801,58(7), 268-271. Chase, B. Anal. Appl. Spectrosc., 2,1081(Proc. Int. Conf. Spectrosc. Spectrum, 2nd 1990) 13-24. McGwry, R. L. Roc. SPIE-Int. Soc. Opt. Eng. 1882, 7439(Int. Conf. Scl. Opt. Imaglng, 1990). 25-36. Chase, 8.; Talml, Y. Appl. Spectrosc. 1881,45(6), 929-931. Barbillat,J.; De Silva, E.; Roussel, B. J. R8man Spectrosc. 1881,22(7), 383-39 1. Ferris. N. S.; Bilhorn, R. B. Spectrochim. Acta, PartA 1881,47A(9-10), 1149-1157. Chase, B. Proc. SPIE-Int. Soc. Opt. Eng. 1882, 7439(Int. Conf. Sci. Opt. Imaging 1990), 47-57. Chase, B. Polvm. Prepr. (Am. Chem. SOC., Div. Folym. Chem.) 1881, 32(3), 655-656. Dyer, C. D.; Hendra, P. J. Anavst (London) 1882, 717(9). 1393-1399. Lewis, E. N.; Kalaslnsky, V. F.; Levln, I.W. J. Ramen Spectrosc. 1881, 22(9), 509-512. Cutler, D. J.; Petty, C. J. Spectrochlm. Acta, PartA 1881,47A(9-10), '

1159-1169. . . .. . . .

Parker, S. F.; Patel, V.; Tooke, P. B.; Williams, K. P. J. Spectrochim. Acta, Part A 1881. 47A(9-10), 1171-1178. Pettv. C. J. Vib. S m t r o s c . 1881.a 4 l . 263-268. Eveiall, N:; Lumsdon, J. Vlb. Spectrosc. 1881. 2(4), 257-261. McCreery, R. L. Roc. SPIE-Int. Soc. Opt. Eng. 1882, 1637 (Envlron. Process Monk. Technol.), 208-215. Angel, S.M.; Myrlck. M. L.; Vess, T. M. Roc. SPIE-Int. Soc. Opt. fng. 1881, 7435 (Opt. Methods Ultrasensitlve Detect: Anal. Tech. Appl.), 72-81. Newman, C. D.; Bret, G. G.;McCreery, R. L. ADD/. Spectrosc. 1882. 46(2), 262-265. Sharma, S.K.; Schoen, C. L.; Cooney, T. F. Appl. Spectrosc. 1883, 47(3), 377-379. ---Schoen, --__ C. L.; Cooney, T. F.; Sharrna, S.K. Appl. Opt. 1882,37(36), I N(-[(la~

Chong, C. K.; Shen, C.; F0ng.Y.; Zhu, J.; Yen. F. X.; Brush, S.;Mann, C. K.; Vlckers, T. J. Vib. Spectrosc. 1882, 3(1), 35-45. Buerck, J.; Faubel, W.; Gantner, E.; Hoeppener-Kramer, U; Ache, H. J. AMastensanlerung90, Int. KfK/TNOKongr., 3rd 7990 1881, 7,877884; Chem. Abstr. 1882, 717. 244604a. Vickers, T. J.; Mann, C. K. froc. SPIE-Int. Soc. Opt. Eng. 1882, 7637 (Environ. Process Monk. Technol.), 62-7 1. Vess, T. M.; Angel, S.M. Roc. SPIE-Inf. Soc. Opt. Eng. 1802, 7637 (Envlron. Process Monit. Technol.), 116-125. Roberts, M. J.; Garrison, A. A.; Kercel, S. W.; Muly, E. C. Rocess Control Qual. 1881, 7(4), 261-291. Huy, N. Q.; Blch, V. T.; Jouan, M.; Nguyen, Q. D. Analysr(s 1882,20(3), 141-147. Canabba, M. M.; Spencer, K. M.; Rauk, R. D. Roc.SHE-Int. Soc. Opt. Eng. 1881, 7434 (Envlron. Sens. Combust. Dlagn.), 127-134. Roberts, M. J.; Garrison, A. A,; Kercel, S.W.; Trlmble, D. S.;Moore, C. F.; MUM, E. C. A&. Instrum. Control 1800,45(Part l ) , 463-468. Angel. S. M.; Vess, T. M.; Myrlck. M. L. Proc. SPIE-Int. Soc. Opt. Eng. 1802, 7587 (Chem., Biochem., Envlron., Fiber Sens. 3), 219-231.

554R

Analytical Chemistry, Vol. 66, No. 12, June 15, 1994

Angel, S.M.; Kulp, T. J.; Vess, T. M. Appl. SpecWosc. 1882,46(7), 1085-1091. Hlrschberger,R.; D'Orazlo, M. Int. J. Envkon. Anal. Chem. 1882,46(2), 115-126. Owen, H.froc. SPIE-Int. Soc.Opt Eng. 1882. 7687(0pt. BasedMeth0d.s Process Anal.), 128-137. Mason, S.M.; Conroy, N.; Dlxon, N. M.; Williams, K. P. J. Spectrochim. Acta, Part A 1083,49A(5-6), 633-643. Iwata, K.; Weaver, W. L.; Gustafson, T. L. J. fhys. Chem. 1882,96(25), 102 19- 10224. Barbillat, J.; Da Silva, E.; Roussel, 8.; Howard, S.G.Mlcrobeam Anal. 1881,2&h, 88-90. Bllhorn, R. B.; Ferris. N. S.froc. SHE-lnt. Soc.Opt. Eng. 1882, 7439 (Ind. Conf. Sci. Opt. Imaging 1990), 15-16. Deckert, V.; Klefer. W. Appl. Spectrosc. 1882,46(2), 322-328. Hassel, E.; Lipp, F.; Neuber, A. Forschr. Ingenleunves. 1882,58(3), 50-53. Hill, W.; Rcgalla, D. Anal. Chem. 1882,64(21), 2575-2579. Laserna, J. J.; Montes, R. Spectroscopy(Eugene, Oreg.) 1881,617). 34-38. Robinson, J. C.; Fink, M.; Mlhlll. A. Rev. Scl. Instrum. 1882, 63(6), 3280-3284. Lewis, E. N.; Treado, P. J.; Levin, I.W. Appl. Spectrosc. 1883,47(5), 539-543. Frantz, J. D.; Dubessy, J.; Mysen, 8. Chem. Geol. 1883, 706(1-2), 9-26. Mould. H. M.; Bennett, R. Ger. Offen. DE 4, 104,3 16 (C1.001N21/03), 12 Sept 1991, OB Appl. 9013.690 19 Feb 1990. Poryvaev, S. G. Rib. Teck. Eksp. 1881, 4, 217-219; Chem. AbsW. 1881, 775, 2434Og. Eremets, M. I.; Shirokov, A. M.; Lomsadze, A. V. Recent Trends Hlgh Pressure Res. (Proc. AIRAPT Int. Conf. High Pressure Scl. Technol.. 13th 1991) 1882,763-765. Vess, T. M.; Wertz D. W. J. Electroanel. Chem. InterfacialElectrochemrochem. 1801,313(1-2), 81-94. Indrallngam, R.; Slmeonsson, J. B.; Petrucci, G. A.; Smith, B. W.; Wlnefordner, J. D. Anal. Chem. 1082,64(6), 964-967. Schulte, A. Appl. Spectrosc. 1882. 46(6), 891-693. Yang, B.; Morris, M. D.; Owen, H. Appl. Spectrosc. 1881,45(9),15331536. Wang, Y.; Smulevltch. G. Appl. Spectrosc. 1882,46(8), 1309-1311. Lankers, M.; Goettges. D.; Materny, A.; Schaschek, K.; Kelfer, W. Appl. SpeCbOSC. 1802. 46(9), 1331-1334. Knoll, W. M S &/I. 1881. 76(7), 29-39. Knoll, W.; Hickel,W.; Sawodny, M.; Stumpe, J.; SchmHt, F. J.; Knobloch, H. M a k r o d . Chem., Macromol. Symp. 1881,48-49(Eur. Polym. Fed. Symp. Polym. Mater., 3rd, 1990), 363-379. Knoll, W.; Hlckel, W.; Sawodny, M.; Stumpe, J.; Knobloch, H. Fresenius J. Anal. Chem. 1881,347(3-4), 272-278. Nguyen, Q. D.; Jouan, M.; Plaza. P.; Sqalll, 0. Analusls 1881, 7%7), M 4 3 4 4 5 ; Chem. Abstr. 1881, 115, 289807~. Nafle, L. A. Roc. SPIE-Int. Soc.Opt. Eng. 1882, 7687 (Opt. Based Methods Process Anal.), 29-40. Soma, Y. Trends Anal. Chem. 1081, 7 q l O ) . 337-340. Spinella, F.; Baratta, G. A.; Strazzulla, G. Rev. Sci. Instrum. 1881, 62(7), 1743-1745. Yue, K. T.; Fent, 2 . C.; Perkowitz, S.; Puckett, B. Appl. Spectrosc. 1882,46(10), 1590-1592. Albln, S. NASA Contract Rep. 1990, NASAGR-167709, NAS1.26 187709, avail. NTIS. From: Scl. Tech. AWOSD. . ReD. . 1881.29(61. . . Abstr. No. N91-14483. Chalker, P. R. NATO ASI Ser., Ser. 6 1881.266 (Diamond Dlamondlike Films Coat), 127-150. Kamo, M.; Sato, Y. frog. Ctyst. G?owth Charact. Mater. 1882, 23, 1-22. Ber&rdez, L.; McCarty, K. F.; Yang, N. J. Appl. fhys. 1982, 72(5), 2001-2005. Cappelll, M. A.; Herchen, H. New DIamond Scl. Technol. Roc. Int. Conf., 2nd 7990 1991, 225-231 Nemanlch, R. J.; Bergman, L.; Le &Ice, Y. M.; Shroder, R. E. New Diamond Scl. Technol. froc. Int. Conf., 2nd 7990 1881) 741-752. Maswd, A.; Aslam, M.; Tamor, M. A,; Potter, T. J. Appl. phys. Lett. 1082,67(15), 1832-1834. Zhang, X . K.; Guo,J. G.; Yao, Y. F. fhys. Status SoIMiA 7992, 73a2), 377-383. Pavel, E.; Baluta. G.;Barb, D.; Morarlu, M.; Lazar, D. P.; Sandu, V. Diamond Relet. Mater. 1802. 1(5-6), 489-491. Godbole, V. P.; Narayan, J. J. Mater. Res. 1882, 7(10), 2785-2790. Rengan, A.; Narayan. J.: Jahnke, C.; Bedge, S.;Park, J. L.; Ll, M. Meter. Sci. Eng.. 6 1882,675(l), 15-24. Van Huong, P.; Marcus, B.; Mermoux, M.; Veirs, D. K.; Rosenblatt, G. M. Diamocd Relet. Meter. 1992, 7(8), 869-873. Peng, X . Mater. Sci. Eng., 6 1882,674(4), L15-Ll9. Han, L.; Jiang. X. Chln. fhys. Lett. 1882,9(4), 194-197. Herchen, H.; Cappelll, M. A. Rep, Pap.-Am. Chem. Scoc. Dlv. Fuel Chem. 1881,36(3), 1047-1052. Wu, R. L. C.; Ral, A. K.; Garscadden, A,; Kee, P.; Desai, H. D.; Miyoshl, K. J. Appl. phys. 1082, 72(1), 110-116. Dowllng, D. P., Ahern, M. J.; Kelly, T. C.; Meenan, B. J.; Brown, N. M. D.; O'Connor, G. M.; Giynn, T. J. Surf. Coat. Technol. 1882, 53(2), 177-183. Huong, P. V. DIemondRelet. Mater. 1881, 1(1). 33-41. Huong, P. V. Mater. Sci. Eng., 6 1882,6 17( 1-4), 235-242. Bull, S.J.; Chalker, P. R.; Johnston, C. Meter. Scl. Technol. 1882,NE), 679-683. Hirabayashi. K. J. Appl. fhys. 1882, 72(9), 4083-4067.

Qlbtls. C.; Nicholas, P. C.; Melanltls, T. D. Dev. Sci. Technol. Compos. Mater., Eur. Conf. Compos. Mater., 1990, 4th 525-530. Everall, N.; Lumsdon, J. J. Mater. Sci. 1991, 28(19), 5269-5274. Fung,A.W.P.;Rao,A.M.;Kvlyama,K.;Dreasehaus,M.S.;Dresselheus, G.;Endo, M.; Shlndo, N. J. Mater. Res. 1993, 43), 469-500. Bowden, M.; Gardiner, D. J.; Southall, J. M. J. Appl. Phys. 1992, 71(1), 521-523. Goncharov, A. F.; Andreev. V. D. Zh. Eksp. T w . Fiz. 1991, fOql), 251-256; Chem. Abstr. 1991, 775, 16939Of. Zhou, K.; Cao, W.; Zhang, J. J. Net. Oes Chem. 1992, 7(l), 70-76. Jeon. S. J.: Kim, D.; Kim, S. K.; Jeon, I.C. J. Raman Spectrosc. 1992, 23(5), 311-313. Regueir. M. N.; Abelio, L.; Lucazeau, G.; Hodeau. J. L. Phys. Rev. 8: Condens. Matter 1992, 48(15), 9903-9905. Mehiclc, M.; Grasselli, J. 0. Chem. Anal. (N.Yy.)I99l,714(Anal. Raman SpeCtrOSC.), 325-395. HIII. C. J.: Wilson. J. H. J. Mol. Catal. 1991. 67W. 57-77. Murrell,-L. L.; Tauster, S. J.; Anderson, D. R. S t k Surf. Sd. Catal. 1991, 77 (Catal. Automat. Pollut. Control 2), 275-289. Vuurman, M. A.; Stufkens, D. J.; Oskam, A. J. Mo/. Catal. 1992, 78(13), 263-285. Vuurman, M. A.; Wacks, I.E. J. Phys. Chem. 1992, 96(12), 50085016. Mesti, 0.;Knoezlnger. H.; Lunsford, J. H. Ber. Bunsen-Oes. Phys. Chem. 1993, 97(3), 319-321. Mueller. A.; Weber, T. Appl. Catal. 1991, 77(2), 243-250. Wet 2.; Xin, Q.; Xlong, G. Catal. Lett. 1992, 15(3), 255-267. Dutta. P. K.: Rao, K. M.: Park. J. Y. J. Phys. Chem. 1991, 95(17), 6654-6856. Blrnle, J.; Crams, C.; Qrdlner, D. J.; Graves, P. R. Coffos. Scl. 1992, 33(1), 1-12. Takenaka. T.; Umemura, J. Vib. Spectra Struct. 1991, 79, 215-314. Sonwalkar, N.; Sunder, S. S.; Sharma, S. K. J. Raman Spectrosc. 1991, 22(10), 551-557. Ahern, A. M.; Schwartz, P. R.; Shaffer, L. A. Appl. Spectrosc. 1992, 48(9), 14 12- 14 19. Turcotte, S. 6.; Benner, R. E.; Riley, A. M.; LI, J.: Wadsworth, M. E.; Bodily, D. Appl. Opt. 1993, 32(6), 930-934. Melendres, C. A. NATOASI Ser. Ser. €1991.203(EIectrochem. Opt. Tech. Study Monlt. Met. Corros.), 355-388. Salto, N.; Nlshlhara, H.; Aramakl, K. Cwros. Scl. 1992, 33(8). 12531265. Boucherlt, N.; Hugot-Le Goff, A.; Joiret, S. Corrosion (Houston) 1992, 48(7), 569-579. Kontoyannls, C. G.; Tzlafos, N. S. Proc.-Electrochem, Soc. 1992, 76 (hoc. Int. Symp. Molten Salts, 6th, 1992), 94-103. Velrs, D. K.; Ager. J. W.; Rosenblatt, 0. M. Ceram. Trans. 1991, 79 (Adv. Compos. Mater.), 1043-1050. Memagh, T. P. J. Raman Spectrosc. 1991, 2a8), 453-457. Durben, D. J.; WOW, 0. H. Am. Mineral. 1992, 77(7-8), 869-892. Burns, G. T.; Taylor, R. 6.;Xu, Y.; Zangvll, A.; Zank, G. A. Chem. Mater. 1992. 46), 1313-1323. Bahtat, M.; Mugnler, J.; Bovler, C.; Roux, H.; Serughetti, J. J. Non-Cryst. Sollds 1992, 147-748, 123-126. Zong, G.; Marcus, H. L. Strength Met. Alloys, (Proc. Int. Conf.). 9th 1991, 7, 503-510. Colangell, L,; Mennella, U.; Baratta, G. A.; Bussoletti, E.;Strazzuila, G. Astrophys. J. 1992. 39q1, Part l), 369-377. Chung, W. M.; Wang, Q.; Sezerman, V.; Clarke, R. H. Appl, Spectrosc. 1991, 45(9), 1527-1532. Schrader, B. Appl. Spectrosc. 1991, 45(8), 1230-1232. Besnard, M.; Cabaco, M. I.; Yarwood, J. Chem. Phys. Lett. 1992, 79412), 207-210. Ka1ser.T.; Vossmerbaeumer,C.; Schweiger, G. Ber. Bunsen-Oes.Phys. Chem. 1992, 96(6), 976-980. Sharma, S. K.; Taylor, G. HIORAM-3; Order No. ADA235 504. avail. NTIS. From: Gov. Rep. Announce. Index(U.S.) 1991, 97(19), Abstr. No. 153,611. Carlo, J. C.; Brock, J. R. Proc. SPIE-Int. SOC. Opt. Eng. 1991, 7497 (Nonlinear Opt. Mater.), 120-131. Dal, S.; Young, J. P.; Begun, G. M.; Coffield, J. E.; Mamantov, G. Mlkrochlm. Acta 19g2. 7M3-61. 261-264. ._ .._ ArsoiTL. D.; Kormann, C.; PHeth,W.J. € I e c i ” . SOC.1991, 73410). 2984-2970. Lw, S. 6.; Klm, K.; Kim, M. S. J. phys. Chem. 1992, 98(24), 99409943. Shi. C.; Zhang, W.; Birke. R. L.; Lombardi, J. R. Proc. SPIE-lnf. SOC. Opt. €ng. 1992, 7637 (Envlron. Process Monk Technol.), 41-48. Thoennissen. J. Chem.-Ing.-Tech. 1991, 63(12). 1264-1265; Chem. Abstr. 1992, 776, 1166242. Smith. L. M.; Osakl, G.; Peters, T. A&. Instrum. Control 1990, 45(Part 2), 711-720. Uda, T.; Okuno, K.; Naruse, Y. Fuslon Technol. 1992, 21(2, Part 2), 436-441. Smith. C. 0.; Smlth, P. 0.;Pasztor. A. J.; McKehry, M. L.; Meuneir. D. M.; Froellcher. S. W.; Ellaboudy, A. S. Anal. Chem. 1993, 65(12). 217243. Ellls, 0.; Marco, C.; Gomez, F. J. M. Rev. Plast. Mod. 1992, 63(428), 181-167; Chem. Abstr. 1992, 717, 151662~. Hendra, P. J.; Jones, C. H. Makromol. Chem., Macroml. Symp. 1991. 52 (Eur. Symp. Polym. Spectrosc., 9th, 1990). 41-56. Iehlda, H.; Ishltanl, A.; Krishnan, K. Roc. SPIE-Int. Soc. Opt. Eng. 1992, 7575(Int.Conf. Fourier Transform. Spectrosc., 6th, 1991). 383384. Grose, R. I.; Hvilstead, S.; Siesler, H. W. Makromol. Chem,. Macromol. SYmP. 1991, 52(Eur. Symp. Poiym. Spectrosc., 9th, 1990). 175-189.

__

183) 184) 185) 186)

Shen, C.; Peacock, A. J.; Alamo, R. G.; Vlckers, T. J.; Mendelkern, L.; Mann, C. K. Appl. Spectrosc. 1992, 48(8), 1226-1230. Shhnlzu, N.; Uchlda, K.; Raslkawan. S. I€€€ Trans. Electr. Insul. 1992, 27(3), 513-518. Pegeon, M.; Prud’homme, R. E.; Pezolet, M. Macrmlecuks 1991, 2420), 5687-5694. Failla, M.; Alamo, R. G.; Mandelkern, L. pdym. Test. 1992, 11(2), 151159. Richter, A,;. Hcelzer. W.: Schroeter. 0.:Dalcolmo, H. J. Acta Pobm. 1991, 42(7), 337-338. Del Zoppo, M.: Zerbl, G. Rog. Colloid Poly. Sci. 1992. 87 (SolMIf. POIym.), 48-50. Wang, L. H.; Ottanl, S.; Porter, R. S. J. pdym. Scl., Part8: pdym. phys. 1991, 29(10), 1169-1192. Prabakaran, A. R.; Mohan, S. Roc. Indien Natl. Sci. Aced., Part A 1991, 57(6), 725-729. Wesley, I. J.; Jones, C. H. Proc. SPIE-Int. Soc.Opt. €ng, 1992, 7575 (Int. Conf. Fourier Transform Spectrosc., 8th. 199l), 391-392. Akashlge, E.; Usami, T. AMI. Scl. 1991. 7(Suppl. Proc. Int. Congr. Anal. Scl., 1991, Part 2), 1655-1656. Furukawa, Y.; Sakamoto, A.; Ohta, H.; Tasumi, M. Synth. Met. 1992, 4ql-3), 335-340. Kurti, J.; Kuzmany, H. Synth. Met. 1992, 5ql-3), 665-674. Lefrant, S.; Verdon, T.; Mulaul, E.; Lelslng, 0. I n FronMerS of Pwmer Research9[ProceedlngsoftheConferme], 7st; hasad. P. N., Nigam, J. K., Eds.; (Plenum: New Yprk, 1991; pp 223-231. Lefrant, S.; W n , C.; Verdon, T.; Mulaul, E.; Lelsing. G. J. chkn.Phys. Phys.-Chlm. Biol. 1992, 89(5), 947-956; Chem. Abstr. 1992, 177. 70685k. Harada, I.; Furukawa, Y. Vb. Spectre Smct. 1991, 79. 369-469. Yacoby. Y.; Ehrenfreund, E. Top. Appi. phys. 1991, &?(Light Scatterlng SOIMSe), 73-135. Gussonl, M.; Castlglbni, C.; Zerbl, 0. A&. Specirosc. (Chichester, U. KJ 1991, 79 (Spectrosc. Adv. Mater.), 251-353. Barker, J.; Wllllams, K. P. J. P o w 1991, 32(15), 2731-2735. Schlenoff, J. 6.; Fong, Y.; Shen, C. Macromokcules 1991. 24(25), 6791-6793. Castlglionl, C.; Rababll. R.; Zerbl, 0.Synth. Met. 1991,43(1-2), 34533456. Meier, R. J.; Klp, B. J. Pwm. m a d . Stab. 1992, 38(1), 69-84. Kip, B. J.; Van Aaken, S. M.; Mebr, R. J.; WlHlams, K. P. J.; Gerrard, D. L. MaCfOmObCL&S 1992, 25(17), 4290-4296. Bowden. M.; Donaklson, P.; Gardlner, D. J.; Bknle, J.; Gerrard, D. L. Anal. Chem. 1991, 63,2915-2918. Kip, B. J.; Van Eijk, M. C. P.; Meler, R. J. Integretlon offundementel PolynwScbnceandTedmokgy-5[RoceedingsooftheInternational MeetfngP~SckJnceandTedmobgy, Rolkrc Po&merMeebhg--s], 5th 799@Lemstra, P. J., Klelntjens, L. A., Eds.; Elsevier; (London, 1991; pp 183-187. Vlattas. C.; Galiotls, C. Polymer 1991, 32(10), 1786-1793. Young,R.J.;Ywng,R.;Ang,C.DevekpmsntshtheSc~Tedrnokgy of Composite Mater&&, Eurqmn Conference on Composne Matedab, 4th Fueller, J., Ed.; Elsevier: London, 1990 pp 665-690. Sato, N.; Tatsuda, N.; Karauchl, T. J. Mater. Sci. Lett. 1992, 77(6), 365-366. Fllbu. C.; Gallotis, C.; Batchelder, D. N. Composnes 1992, 23(1), 2836. Myrick., M. L., Angel, S. M., Lyon, R. E.; Vess. T. M. S A M E J. 1992, 2Cr41. 37-42. Wing, 5.;Vickers, T. J.; Schlenoff, J. 6.; Mann, C. K. Appl, S .” 1992. 46111). 1729-1731. Wailin, P: J.lJackson, K. D. 0.; Jones, C. H.; Van Duin, M.; Klp, B. Roc. SPIE-Int. Soc.Opt. Eng. 1992, 7575 (Int. Conf. Fourier Transform specaosc., 8th, 1991). 393-394. Jawhari, T.; Merino, J. C.; Pastor, J. M. J. Mater. Scl. 1992, 27(8), 2231-2238. Jawhari, T.; Merino, J. C.; Pastor, J. M. J. Mater. Sci. 1992, 21(6), 2237-2242. Everall, N. J.; Lumsdon, J.; Chalmers, J. M.; Mason, N. Spectrochim. Acta, Part A 1991, 47A(9-10), 1305-1311. Maddams, W. F.; Royaud, I. A. M. Spectrochlm. Acta. PartA 1991, 47A(9- 10). 1327-1 333. Wallen, P. J. Spectrochlm. Acta, Part A 1991,47A(9-10), 1321-1326 Jones, C. H. Spectrochh. Acta, PartA 1991,47A(9-10), 1313-1319. Tudor, A. M.; Mella, C. D.; Davles, M. C.; Hendra, P. J.; Church, S.; Domb, A. J.; Langer, R. Spectmchlm. Acta, PartA 1991, 47A(9-10), 1335-1343. Jawhari, T.; Merino, J. C.; Rodrlguez-CabeHo,J. C.; Pastor, J. M. Polymer, 1992, 33(19), 4199-4201. Cham, S.; ohlamati, E.; Mancharan. R.; Nelson, W. H. Appl. Spectrosc. 1992, 48(7), 1176-1181. Edwards, H. G. M.; Johnson, A. F.; Lewis, I. R.; Cowls, J. M. G. Polym. Int. 1993, 31(4), 391-396. Hergeth, W. D.; Allg, I.; Lange, J.; Lochmann. J. R.; Scherzer, T.; Wartewlg. S. M a k r m l . Chem. MacromoL Symp. 1991,52(Eur.Symp. Polym. Spectrosc., 9th, 1990), 289-296. Edwards. H. 0. M.; Johnson, A. F.; Lewis, I.R.; Wheelwright, S. J. Spectrochlm. Acta. Part A 1993. 49A(4), 457-464. Rabolt, J. F. Chem. AM/. (N.Y.) 1991, 714(Anal. Raman Spectrosc.), 253-274. Vettearen. V. I.: Titenkov.. L. S.:. Bronnikov. S. V. J. Therm. Anal. 1992, 345),-103 1- 1045. Terada. T.; Maeda, Y.; Kltano, H. J. Phys. Chem. 1993, 97(14), 36193622. Ellls, G.; Lorente, J.; Marco, C.; Gomez, M. A.; Fatou, J. Q.; Hendra. P. J. Spectrochim. Acta, Part A 1991, 47A(9-10), 1353-1366.

Analytical Chemistv, Vol. 66,No. 12, June 15, 1994

555R

Faurskov, N. 0.;Espinosa,J. M.;CMstensen, D. H.; Aubard, J.; Schwakr, M.; Dodin, G. Spec. PUbl.-R. Soc. Chem. 1901, 94 (Spectrosc. Bioi. Mol.), 381-382. Manfait, M.; Morjani, H.; Millot, J. M.; Debai, V.; Angiboust, J. F.; Nablev, 1. Roc. SPIE-Int. Soc. Opt. Eng. 1901, 7403(Laser Appi. Life Sci., Pt.

Fontana, M. P.; Antonloll, 0.;Jiang, 2.;Angeioni, A. S . Mol. Cryst. Liq. Cryst. 1901, 207, 151-159. Pastor, J. M.; Saavedra, P.; De Saja, J. A. Polym. Bull. (Serin) 1001,

27(1),95-99. Claybourn, M.; Turner, P. Polym. Mater. Scl. Eng. 1901, 64,193-194. Claybourn, M.; Hendra, P.; Agbenyega. J. Polym. Mater. Sci. Eng. 1901, 64, 191-192. Barron, L. D.; Gargaro, A. R.; Hecht, L.; Wen, 2. 0.; Hug, W. Proc. SPIE-Int. SOC. Opt. Eng. 1001, 7403 (Laser Appi. Life Sci., Part I),

2). 895-707. Nabiev, I.R.; Sokolov, K.; Morjani, H.; Manfait, M. Spec. Pub/.-R. Soc. Chem. 1991, 94 (Spectrosc. Bioi. Mol.). 345-348. Smuievitch, G.;Mantini, A. R.; Casu, M.; Marzocchi. M. P. Roc. SPIEInt. Soc.Opt. Eng. 1991, 7403(Laser Appi. Life Sci., Pt. I),125-127. NaVleV, I.R.; Morjani, H.; Manfait, M. Ew. Wophys. J. 1901, 79(6),

66-75. Fabian, H.; Anzenbacher, P. Vib. Spechosc. 1003, 42). 125-148. Ozaki, Y.; Mizuno, A. Kobunshi Kako 1002, 47(9),448-454. Chem. Abstr. 1993, 778, 208651a. Aiier, A. J. Appl. Spectrosc. Rev. 1091, 26(1-2),59-71. Bandekar, J. Biochlm. Biophys. Acta 1092, 7720(2),123-143. Asher, S.A. Spec. Pub/.-R. SOC.Chem. 1091, 94 (Spectrosc. Bioi. Mol.), 11-14. Caiiender, R. Spec. Pub/.-+. SOC.Chem. 1091, 94 (Spectrosc. Bioi. Mol.), 227-230. Greve, J.; Puppeis, G. J.; Otto, C. Spec. Pub/.-/?. SOC.Chem. 1991, 94 (Spectrosc. Bioi. Mol.), 293-296. Ozaki, Y.; Mizuno, A.; Fujii. K.; Tsuji, M.; Maraishi. S. Proc. SPIE-Int. Soc. Opt. Eng. 1092, 7575 (Int. Conf. Fourier Transform Spectrosc., 8th 1991),449-450. Baraga, J. J.;Feld, M. S.;Rava, R. P. Roc. Natl. Acad. Sci. U.S.A. 1902,

311-316.

Negrerie, M; Aslanian. D.; Bouet. F.; Menez, A.; Hoang, 0. N.; Changeux. J.P. FEES Left. 1991, 292(1-2), 249-253. Wang, s. Y.; Hasty, C. E.; Watson. P. A.; Wicksted, J. P.; Stith, R. D.; March, W.F. Appl. Opt. 1903, 32(6). 925-929. Choi,Y.; Lubman, D. M. Anal. Chem. 1092, 6422)2626-2734. Barron, L. D.; Gargaro, A. R.; Hecht, L.; Wen, 2. Q. Spec. Pub/.-R. SOC. Chem. 1901, 94 (Spectrosc. Bioi. Mol.), 117-120. Fagnano, C.; Fini, 0. J. Remen Spectrosc. 1902, 23(11), 837-639. Suzuki, M.; Kato, H.; Wakumoto, S. J. Dent. Res. 1991, 7q7),1092-

1097. Towse, S.A.; Benevides,J. M.; Thomas, G.J. Proc. SPIE-Int. SOC.Opt. Eng. 1091, 7403 (Laser Appi. Life Sci., Pt. I), 6-14. Li, H.; Wurrey. C. J.; Thomas, 0. J. J. Am. Chem. Soc. 1992, 714(19),

7463-7469.

89(8),3473-3477.

Bwtoiuzza, A.; Fagnano, C.; Monti, P.; Simoni, R.; Tinti, A,; Tosi, M. R.; Caramazza. R. Clin. Mater. 1992, Rl),49-68. Ozaki, Y.; Cho, R.; Ikegaya. K.; Muraishi, S.; Kawauchi, K. Appl, Spectrosc. 1092, 46(10), 1503-1507. Prevot, B.; Wagner, J. Prog. Cryst. &owthCharact. Mater. 1001.21(4),

Barry, 8. W.; Edwards, H. G. M.; Williams, A. C. J. Raman Spectrosc. 1002, 23(11), 641-645. Sokolov, K. V.; Lutsenko, S. V.; Nabiev. 1. R.; Nie, S.;Yu, N. T. Appl. Spectrosc. 1091, 45(7), 1143-1148. Siebinga, I.; Vrensen, G. F. J.M.; De Mul, F. F. M.; Greve, J. Exp. Eye. Res. 1991, 53(2), 233-239. Hong, T. D.; Nguyen, P. D.; Plaza, P.; Daudon, M.; Nguyen, Q. D. Clln. Chem. (Winston-Salem, N.C.) 1092, 38(2),292-298. Sudlow, K.;Wooif, A. Clln. Chlm. Acta 1991, 203(2-3),387-393. Kodati, V. R.; Tu, A. T.; Nath, R.; Turumin, J. L. Appl. Spectrosc. 1993,

245-319. O'Connor, G. M.; Glynn, T. J.; Morgan, G. P. Key Eng. Mater. 1002, 72-74 (Mater. Adv. Technoi. Appi.), 373-360. Poilak, F. H. Chem. Anal. (N. Y.) 1991, 7 74 (Anal. Raman Spectrosc.),

137-221. Brugger.H.NATOAS1Ser.,Ser.B l991,273(LightScatteringSembnd. Struct. Superlattices), 259-274. Rajeshwar, K. Spectroscopy (Eugene, Oreg.) 1093, &1), 16-26. CastibAhrarado.F. L.: ContrerasPuente,0. S.;Banlo, R. A. I nDlsorder inCondensedMatterPhysh, Blackman, J. A., Taguena, J., Eds.; Oxford University Press: Oxford, U.K, 1991;pp 134-138. Guerts, J. Festhoefperprobleme, 1901, 37, 177-188. Kudlek, 0.: Gutowski, J. J. Lumln. 1992, 52(1-4),55-69. Dumelow, T.; Hamiiton, A. A.; M a s h K. A.; Parker, T. J.; Samson, B.; Smith, S. R. P.; Tiiley, D. R.; Beall, R. B. NATO ASI Ser., Ser. B 1001, 273 (Light Scattering Semicond. Struct. Superlattices), 4612-476. Wang, X.; Sun, H. H.; Wang, J. 8.; Zheng, S. D.; Sheng, C.; Yu, M. R. Spectroscopy Optoelectronics in Semiconductorsand RelatedMaterials, of the Sino-Soviet Seminar; Shen, S. C., Ed.; WorM Sci: Singapore, 1990;pp 44-54. Hughes, G. J.; Roberts, L.; Henry. M. 0.; McGuigan, K. M.; O'Connor, G.M.; Anderson, F. G.;Morgan, G.P.; Glynn, T. Mater. Sci. Eng., 81081,

47(3),334-337. Lau, A.; Pfieffer, M.; Werncke, W. Roc. SPIE-Int. SOC.Opt. Eng. 1091, 7403 (Laser Appi. Life, Sci., Pt. l), 212-220. Rava. R. P.; Baraga, J. J. PCT Int. Appl. W092 15,008(GOlN21/65) 03 Sept 1992,US Appi. 681. 077,26 Feb 1991 Shaikh, E. A.; Kumar, Y. Indian J. Phys., 6 1991, 658(6), 655-659. Cotton, T. M.; Kim, J. H.; Chumanov, G.D. J. Reman Spectros. 1091,

22(12), 729-742. Cotton, T. M.; Rospendowski, B.; Schiegei, V.; Uphaus, R. A.; Wang, D. L.; Eng. L. H.; Stankovitch, M. T. Roc. SPIE-Int. SOC. Opt. Eng. 1001, 7403 (Laser Appi. Life Sci.. Pt. l), 93-101. Reipa, V.; Horvath, J. J. Appl. Spectrosc. 1902, 46(6),1009-1013. Manfait, M.; Morjani, H.; Efremov, R. G.; Angiboust. J. F.; Poiisscou, M.; Nabiev, I.R. Spec. Pub/.-R. SOC.Chem. 1091, 94(Spectrosc. Bioi. Mol.), 303-304. Yu, N. T.; Nie, S. Roc. SPIE-Int. SOC.Opt. Eng. 1091, 7403(Laser Appi. Life Sci., Pt. I), 112-124. Mlskovsky, P.; Laigle, A.; Chinsky, L.; Turpin, P. Y. J. Blomol. Struct. Dyn. 1092, 7c(1),169-179. Thamann, T. J.; Havei, H. A,; Kauffman, E. W.; Eizinga, P. A. Roc. SPIE-Int. Sdc. Opt. Eng. 1090, 7336(RamanLumin. Spectrosc. Technoi.

B9 (1-3).37-41. Ramsteiner, J.; Wagner, J.; Kokll, P. Appl. Phys. Left. 1901, 59(27),

3616-3618. Okano, K.; Iwasaki, T.; Kiyota. H.; Kurosu, T.; Lkla, M. Thin SolMFilms 1081, 206(1-2), 183-167. Liarokapis, E. NATO ASI Ser., Ser. B 1001.266(Front High-Pressure Res.), 457-472. Sugai, S.Jasco Rep. 1003, 35(1), 1-8. Thomsen, C. A&. Mater. (Welnhelm, Fed. Rep. Ger.) 1002, 45),341-

2),200-210. Wang, Y.; Purrello, R.; Jordan, T.; Spiro, T. G. J. Am. Chem. Soc. 1901,

773(17),6359-6368. Feofanov, A.; Okelelov, V. I.; Tatarinov, A. P.; Martynova,E. S.;Efremov, R.; Nabiev, I.R.; Pashcbnko, V. 2.; Mafykin, E. A. Zh. Prlkl. Spektrosk. 1001, 5q3),410-417;Chem. Abstr. 1901, 715,227538~. Larkin, P. J. Avail. Univ. Microfilms Int., Order No. DA9137098.From: Dlss. Abstr. Int. B 1002, 52(7),3573. Nelson, W. H.; Manoharan, R.; Sperry, J. F. Appl. Spectrosc. Rev. 1901, 27(1),67-124. Efremov, R. G.; Feofanov, A. V.; Nabiev, I. R. Zh. Pflkl. Spektrosk. 1991, 54(5),717-724;Chem. Abstr. 1901, 775, 178544m. Hayashi, H.; Noguchi, T.; Tasumi, M.; Atkinson, G. H. Biophys. J. 1001,

346. Cardona, M. Physlca C (Amsterdam) 1991, 785-189 (Part l),65-71. Matauda, K. Jpn. Kokai Tokkyo Koho JP 03 21,835(91 21,835)(Ci. G01K11/00),30 jan 1991,Awl. 891156,406, 19 Jan 198% Huong, P. V. Physlca C (Amsterdam) 1091, 78ql-4),128-131. Etz, E. S.;Schroeder, T. D.; WongNg, W. MlcmbeamAnal. 1091,26th,

113-118.

60(1),252-260. Hayashi, H.; Brack, T. L.; Noguchi, T.; Tasumi, M.; Atkinson, G. H. J. Phys. Chem. 1091, 95(18),6797-6802. Ames, J. B.; Raap, J.; Lugtenberg, J.; Mathles, R. A. Biochemlstry1992,

31(50), 12546-1 2554. Ames, J. 8.; Ros, M.;Raap, J.; Lugtenberg, J.; Mathles,R. A. Biochemktry 1992, 37(23)5328-5334. Nagle, J. F. Petrochem. Phofobiol. 1901, 54(6), 897-903. Lutz, M.; Mattioii, T.; Moenne-Loccoz, P.; Qing, 2.; Robert, B. Proc. SPIE-Int. SOC. Opt. Eng. 1991, 7403 (Laser Appi. Life Sci., Pt. l),

59-85. (275) Mattloll. T.; Hoffmann, A.; Sockaiingum, D. G.; Schrader, B.; Robert, 8.; Lutz, M. Spectrochim. Acta, Part A 1903, 49A(5-6),785-799. (276) Okada, K.; Fujimoto, Y.; Muraishi. S.; Koyama; Y.; Ozaki. Y. Proc. SPIE-Int. SOC. Opt. Eng. 1092, 1575 (Int. Conf. Fourier Transform Spectrosc.. 8th, 1991), 447-448. (277) Depecker, C.; Legrand, P.; Merlin, J. C.; Sombret, B. Proc. SPIE-Int. SOC. Opt. Eng. 1002, 7575 (Int. Conf. Fourier Transform Spectrosc., Bth, 1991),428-427. (278) Koziova, T. G.;Lobacheva, M. I.; Pravdin, A. B.; Romakina, M. Y.;

Sirichin, Y. P.; Tuchin, V. V. Roc. SPIE-Int. SOC.Opt. Eng. 1091. 7403 (Laser Appi. Life Sci., Pt. l), 159-160. (279) Auperez, A.; Motes, R.; Laserna, J. J. Vib. Spectrosc. 1091, 2(2-3),

145-154.

556R

Analytical Chemistty, Vol. 66, No. 12, June 15, 1994

. . (321) (322) (323) (324) (325) (326)

Goncharov, A. F.; Muinov, M. T.; Uvarova, T. 0.;Stishov, S.M. Pis'ma Zh. EkSp. Tw. F k 1091, 54(2), 113-117. Denisov, V. N.; Goncharov, A. F.; Mavrin, B. N.; Pcdobedov, V. B. Laser OpUm of condensed Mttef,Vdume 2 [proceedings of the Blnational USA-USSR Symposium]l,4th, 1990; Garmlre. E., Maradudin, A. A., Rebane, K. K., Eds.; (Plenum: New York. 1991;pp 131-136. Burns, 0.; Decol, F. H.; Feild, C.; Holtzberg, F. Physica C (Amsterdam) 1991, 781(1-3),37-44. Masi, L.; Uiivi. L.; Zoppi, M. Conf. Roc.-Ital. Phys. Soc. 1901, 29 (Quantum Electron. plasma Phys.), 221-224. Richter, A.; Irmer. 0.; Kessier, 0.;Panzner, M.; Herzog, K. J. Alloys &@. 1002, 787(1),59-66. Kodama. Y.: Tanemura. S.: Ikeda. T. Jm.J. Am/. . . Phys.. . Part21901. 3q8A). L1367-L1370. Matsubara. G.;Matsui, T.; Okabe, Y. Jpn. J. Appl. Phys., Pert2 1001, 30(10B), L1794-L1797. De Andres, A.; Martinez, J. L.; Saez-Puche, R.; Salinas-Sanchez, A. SolH state Commun. 1002, 82(12),931-937. Kao. S.;Ng, K. Y. S. J. Superond. 1001. 42),179-188. YOShkla, M. ISTEC J. 1091, 43), 13-16. Kolesov, 8. A.; Aiferova. N. 1.; Vesnln, Y. I.; Shubin, Y. V.; Starikov, M. A. SVtwkhprovodYmost: Flz. Khh., Tekh. 1002,42), 314-318;Chem. Ab&. 1902, 777, 141539d. Cook. 8. W. AnalyNcal Appiicatlons of Spectroscopy 2, [Proceedings of the International Conference Spectroscopy across the Spectrum], 2nd 1990; Davies, A. M. C., Creaser, C. S., Eds.; Royal Society of Chemistry; Cambridge, U.K., 1991;pp 81-71.

Sommer, A. J.; Katon, J. E. Spectrochim. Acta, PartA 1993, 49A(5-6), 611-620. Bergin, F. J. Mlcrobeam Anal. 1990. 255th. 235-239. Adar, F. Mlcrobeam Anal. 1991, 26th, 79-80. Delhaye, M.; Dhamelincourt, P. MlcrobeamAnal. W90,25fh,220-227. Pallister, D. M.; Liu, K. L.; Govil, A.; Morris, M. D.; Owen, H.; Harrison, T. R. Appl. Spe~trosC.1992. 48(10), 1469-1473. Morris, M. D.; GovH, A.; Llu, K. L.; Sheng. R. Roc, SPIE-Int. Soc.Opt. Eng. 1992, 7439 (Int. Conf. Sci. Opt. Imaging, 1990), 95-101. Dhamelincourt, P. Analusis, 1991, 19(7), M45-M48. Pitt. 0. D.; Hayward, I.P. Mater. WwM 1993, 7(l), 6. Tabaksblat, R.; Meler, R. J.; Kip, B. J. Appl. Spectrosc. 1992, 48(1), 60-68. Ivanda, M.; Furlc, K. Appl. Opt. 1992, 37(30), 6371-6375. Tmchel, D. D. Mlcrobeam Anel. 1991, 26th 109-1 12. Abstreker, 0. Appl. Swf. Scl. 1991, 50, 73-76. Tang, W. C.; Rosen, H. J. Microbeam Anal. 1991. 26th, 101-104. Nakashh, S. NATO ASI Sef,, Ser, B 1991, 273 (Light Scattering Semicond. Struct. Superlattices), 291-309. Jlmenez, J.; Maw,E.; Carmelo, P.A.; Torres, A. Semlcond. Scl. Technd. 1992, 7(1A), A288-A293. Jlmener, J.; Martin, E.; Prieto, A. C. Mater. Lett. 1901. 72(3), 132-137. Grigoryan, L. S.; Birt, H. D.; Sathalah, S.; Sharma, S. V.; Clara, H.; Majumdar, A. K. J. Raman Spectrosc. 1992, 2a2), 127-129. Niwase, K.; Nakamura. K.; Tanaka, I.; Miyamoto. Y.; Tanabe, T. J. Nucl. Mater. 1991, 779-187 (Part A), 214-217. Wllklns, R. W. T.; Jenatton. L. J. Geochem. €xplor. 1991, 42(1), 157166. PLonon,J.: Sawatzki, J.; Dubessy, J. C%ochlm. Cosmochim. Acta 1991, 55(12), 3885-3891. Dubessy, J.; Boiron, M. C.; Molsette, A.; Monnin, C.; Sretenskaya, N. Eur 4-s-,. 5 ) . 885-894. -. . .I. -. .Mlneral. .... -. . IgP2. . - - - -- .. LW, S. W.; Hong, K. S.; Condrate. R. A.; Hapanowicz, R. P.; Speyer, R. F. J. Mater. Scl. 1992. 27118L 4961-4966. Chupin, V. P.; Tkov, A. V.;Siepanyuk, L. M.; Goryalnov, S. v. h k l . Akad. Nauk. 1992,32a3), 545-548; Chem.Abstr. 1992, 7 77,216507e. Freitas, J. A.; Sanghara, J. S.; Strom. U.; Pureza, P. C.; Aggarwai. I. D. J. Non-Ctyst. SolMs 1992, 740(1-3), 166-171. Wllmart, E.; Clocchlattl, R.; Duchesne. J. C.; Touret, J. L. R. Contrlb. Mineral. Petrol. 1991, 1084). 453-462. Ruggieri, G.; Lattanzl, P. Ew. J. Minefal. 1992, 4(5), 1085-1096. Thomas, R.; Ziemann, M.; Hofmann, J. Mitt. Oester. Mineral. Gas. 1992, (137), 73-82; Cham. Abstr. 1993, 718, 84521m. Wang, A.; Wang, W.; Zhang. A. Can. Mineral. 1991, 2Sf3), 517-524. Mrnagh, T. P.; Trudu, A. G. Cham. &I. 1993, 103(1-4). 113-127. Bastoul, A. M. Pironon, J.; Mosbah, M.; Dubois, M.; Cuney, M. Eur. J. Mlneral. 1993, @2), 233-243. Tsuboi, M.; Ueda, T.; Ikeda, T. Spec. Pub/.-/?. Soc. Chem. 1991, 94 (Spectrosc. Biol. Mol.), 29-30. Puppeis, 0. J.; Otto, C.; Greve, J. Trends Anal. Chem. 1991, 70(8), 249-253. Boogh, L. C. N.; M e r . R. J.; Kausch, H. H.; Kip, B. J. J. Polym. Sci., Part 8: Polym. Phys. 1992. 30(4), 325-333. Son, M. Y.; Jung, J. K.; Park, J. S.; Kang, S. C. Anal. Sci. Technol.1992, @4), 359-366; Chem. Abstr. 1993, 178, 223148k. De Wolf, I.; Vanheilemont, J.; Romano-Rodriguez, A.; Norstroem, H.; Maes, H. E. J. Appl. Phys. 1992. 77(2), 898-906. Batchelder, D. N.; Cheng, C.; Mueiler, W.; Smith, 8. J. E. Makromol. Chem., Macromol. Symp. 1991. 46(Eur. Conf. Organ. Org. Thin Films, 3rd, 1990), 171-179. Buerhop, C.; Condrate, R. A.; Moertel, H.; Hapanowicz, R. P. Appl. Spectrosc. 1992, 46(10), 1545-1547. Davis, C. A.; Rupeng, 2.; Crossley, J. A. A.; Graves, P. R.; Myhra, S. Appl. S U ~SCI. . 1993, 65-66(1-4), 362-365. Weinlaender, M.; Beumer, J.; Kenney. E. B.; Moy, P. K.; Adar, F. J. Mater. Sci: Mater. Med. 1992. 3(6),397-401. Dufilho, J.; Coupry, C. Analusis 1992, 20(5), M14-M20; Chem. Abstr. 1992, 177, 233029r. Best, S. P.; Clark, R.; Daniels, M. Chem. 61. 1993, 29(2), 118-122. Best, S. P.; Clark, R. J. H.; Wlthnall. R. Endeavour 1992, 76(2), 66-73. Pastor, J. M. M a k r m l . Chem. Macromol.Symp. 1991, 52(Eur. Symp. Polym. Spectrosc., 9th. 1990), 57-73.

-.

Young, R. J.; Lu, D.; Day, R. J.; Knoff, W. F.; Davis, H. A. J. Mater. Scl. 1992. 27120). 5431-5440. Van &ieken:’R.; Xhoffer, C. J. Anal. At. Spectrom. 1992, 7(2), 81-88. Schweiger,G. NATOASISef., Ser,El992,207(Combust.FlowDiagn.), 535-545. Teraoka. J. Of#mnomet.News 1991, (2), 99-104; Chem, Abstr. 1992, 177. 120468q. Vlckers, T. J.; Mann, C. K.; Zhu, J.; Chong. C. K. Appl. Spectrosc. Rev. 1991, 28(4), 339-373. Fung, K. H.; Tang, 1. N. Appl. Spectrosc. 1992, 48(1), 159-162. Hoke, R. Synfh. Met. 1991, 40(3), 379-385. Phillips, D. L.; Lawrence, B. A.; Vakntini, J. J. J. Phys. Chem. 1991, 95(20), 7570-7575. Hennlng, J. C. M.; Kessener, Y. A. R.R. Semlcond. Sci. Technol. 1992, 7(11). 1390-1393. Kk&wa,T.; Kamineka, S.8unkoKenkyu1991,444),193-206 Cham. Abstr. 1991. 775. 273509n. Aroca, R.; Kovacs. 0. J. Vlb. Spectra Struct. 1991. 79, 55-112. Cotton. T. J.; Kim, J. H.; Holt, R. E. A&. Biophys. Chem. 1992, 2, 115-147. Otto, A. J. Raman Spectrosc. 1991, 22(12), 743-752. Mullen, K. I.; Wang, D. X.; Crane, L. 0. Carron, K. 1.Spectroscopy (EL&” Oreg.) 1992, 7(5), 24-31. Creighton, J. A. Anal. Roc. 1993, 30(1), 28-30. Aismeyar, Y. W.; McCreery, R. L. Lengmuk 1991, 7(10), 2370-2375. Hong, P. P.; Boerio, F. J.; Clarson, S. J. w m . Pmpr. (Am. Chem. Soc., Div. Polym. Chem.) 1991, 31(3), 314-315. Xue, G.; Dong, X.; Zhang, J. Macromobcubs 1992, 2@21), 58555857. Fujii, S.; Misono, Y.; Itoh, K. Swf. Sei. 1992, 277(1-2), 220-228. Garreii, R. L. J. 8ioect. Compef. Polym. 1991, 8(3), 296-307. Akers, K. L.; Cousins, L. M.; Moskovits. M. Chem. Phys. Lett. 1992, 190(6). 6 14-620. Richter, W. Top. Appl. Phys. 1092. 70 (Dye Lasers: 25 Years), 183194. Greenhalgh, D. A. IOPShcrt Meet. Ser. 1990.27(Spectrosc. Combust. Stud.), 71-89. Materny, A.; Leuchs, M; Kiefer. W. Nuovo cknento SOC. I&/.Fk., D 1992, 740(10), 989-1001. Lavorel, B.; Miiiot, G.; Rotger, M.; Rouiile, G.; Berger, H.; Schrotter, H. J. Mol. StruCt. 1992, 273, 46-59. Chlkishev. A. Y.; Lucassen, G. W.; Koroteev, N. I.; Otto, C.; Greve, J. BiOphyS. J. 1992, 63(4), 976-985. Atklnson, G. H.; Uji. L. Insf. Phys. Conf. Ser. 1992, 726 (Ultrafast Processes Spectrosc. 199l), S99-604. Werncke, W.; Pfieffer, M.; Lau, A.; Bok. K. M. Springer Roc. Phys. 1992, 83 (Coherent Raman Spectrosc.), 54-67. Noda, M.; Deguchi. Y.; Takuma, M.; Sato, T.; Horl, J. Mltsublshl Juko Giho 1991, 28(6), 593-597; Chem. Abstr. 1992, 776, 167019s. Kraus, H. P.; SchneMer, F. W. SpringerProc. Phys. 1992,63(Coherent Raman Swctrosc.). 275-281. Hanmck,’R. D.; Boyack, K. W.; Hedman. P. 0. A&. Coal Spectrosc. 1992. 373-407. Brueggermann, D.; Wies, B.; Zhang, X. X.; Heirize. T.; Knoche, K. F. NATO ASI Ser., Ser. E 1992, 207(Combust. Flow Diagn.), 495-51 1. Llu, M.; Jin, E; Li, Y.; Wu, D.; Wang, D.; Wel, 2.; Jlang, 2. JlblnDaxue Zban KexueXusbao 1992,(1), 59-63; Chem.Absfr. 1992, 7 7 7,1144 16e. Grisch, F.; Pealat, M.; Bouchardy. P.; Taran, J. P.; Bar, I.; Heflinger, D.; Rosenwaks, S. Appl. Phys. Lett. 1991. 59(27), 3516-3518. Vlgasina, M. F.; Ivanov. A. A.; Orlov, R. Flz. Tverd. Tela (S.-Peterburg) 1992, 34(2), 664-666; Chem. Ab&. 1992, 777, 80454~. Schroetter, H. W. Springer Proc. Phys. 1992, 63 (Coherent Raman Spectrosc.), 119-126. Nle, S.; Lipscomb, L. A.; Yu, N. T. Appl. Spectrosc. Rev. 1991, 28(3), 201-274. Lai, E. P. C.; Harris, J. M. Can. J. Appl. Spectrosc. 1992, 31(6), 161169. Golombok, M.; Pye, D. B. IOP Short. Meet. Ser. 1990, 27(Spectrosc. Combust. Stud.), 107-1 18.

Analytical Chemlstw, Vol. 68, No. 12, June 15, 1994

b

557R