Rapid Discrimination of Polymorphic Crystal Forms by Nonlinear

The use of nonlinear optical Stokes ellipsometric (NOSE) microscopy for rapid discrimination of two polymorphic forms of the small molecule d-mannitol...
1 downloads 0 Views 1MB Size
Subscriber access provided by TULANE UNIVERSITY

Article

Rapid Discrimination of Polymorphic Crystal Forms by Nonlinear Optical Stokes Ellipsometric Microscopy Paul D Schmitt, Emma L DeWalt, Ximeng Y. Dow, and Garth J. Simpson Anal. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.analchem.6b00057 • Publication Date (Web): 19 Apr 2016 Downloaded from http://pubs.acs.org on April 24, 2016

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

Analytical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Rapid Discrimination of Polymorphic Crystal Forms by Nonlinear Optical Stokes Ellipsometric Microscopy Paul D. Schmitt1, Emma L. DeWalt1, Ximeng Y. Dow1, and Garth J. Simpson1* *Corresponding Author: [email protected] Department of Chemistry, Purdue University, West Lafayette, IN 47907

1

Abstract: The use of nonlinear optical Stokes ellipsometric (NOSE) microscopy for rapid discrimination of two polymorphic forms of the small molecule D-Mannitol is presented. Fast (8 MHz) polarization modulated beam-scanning microscopy and a recently developed iterative, nonlinear least-squares fitting algorithm were combined to allow discrimination of orthorhombic and monoclinic crystal structures of D-Mannitol with data acquisition times of 99.99%) discrimination of orthorhombic and monoclinic crystal forms of D-Mannitol in a few seconds of total measurement time. Rapid (8 MHz) polarization modulation allows the recovery of a set of polynomial coefficients for each sample at 99.99% confidence.

ACS Paragon Plus Environment

Page 12 of 19

Page 13 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Figure 4: Histograms for the intensity-normalized polynomial coefficients following LDA (A) and for the raw intensities obtained from the iterative nonlinear least-squares fitting algorithm (B). The distributions in (A) pass both the F test and the t test, while the distributions in (B) fail the F test. These results are consistent with the orientation-corrected, per-crystal SHG intensities being the primary mechanism enabling discrimination of the orthorhombic (blue) and monoclinic (red) crystal

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 5: Histograms of the raw local-frame tensor elements following LDA for orthorhombic (blue) and monoclinic (red) forms of D-Mannitol. The recovered distributions fail the F test with >99.99% confidence.

ACS Paragon Plus Environment

Page 14 of 19

Page 15 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

Figure 6: Scatter plot (A) and histograms following LDA (B) of the intensity-corrected local frame tensor elements for orthorhombic (blue) and monoclinic (red) forms of D-Mannitol. The scatter plot in (A) allows direct visualization of the increased variance in the intensity-corrected local-frame tenor elements observed for the monoclinic structures relative to orthorhombic structures. The distributions shown in (B) fail the F test.

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 19

Table 1: Summary of Statistical Tests. Green shading indicates a pass, red shading indicates a failure. Ftable = 2.44 ttable = 3.69

System

Fcalc

tcalc

Raw Polynomial Coefficients

1.35

10.8

Intensity-Normalized Coefficients

1.18

~0

Per-crystal Intensities

2.61*

-

Raw Local-Frame Tensor Elements

14.4

-

Intensity-Corrected Tensor Elements

50.1

-

*Assumes lognormal distribution

ACS Paragon Plus Environment

Page 17 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

For TOC use only

ACS Paragon Plus Environment

Analytical Chemistry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Cited References: (1)

Bernstein, J. Polymorphism in Molecular Crystals; Oxford University Press: Oxford, 2002.

(2)

Polymorphism in Pharmaceutical Solids; Brittain, H. G., Ed.; Informa Healthcare USA, Inc.: New York, NY, 2009.

(3)

Bernstein, J. Chem. Commun. (Camb). 2005, No. 40, 5007–5012.

(4)

Davey, R. J.; Dunning, B. 2003, 1463–1467.

(5)

Brog, J.-P.; Chanez, C.-L.; Crochet, A.; Fromm, K. M. RSC Adv. 2013, 3, 16905.

(6)

Erdemir, D.; Lee, A. Y.; Myerson, A. S. Curr. Opin. Drug Discov. Devel. 2007, 10, 746–755.

(7)

Allesø, M.; Tian, F.; Cornett, C.; Rantanen, J. 2010, 99, 3711–3718.

(8)

Aaltonen, J.; Allesø, M.; Mirza, S.; Koradia, V.; Gordon, K. C.; Rantanen, J. Eur. J. Pharm. Biopharm. 2009, 71, 23–37.

(9)

Domingos, S.; André, V.; Quaresma, S.; Martins, I. C. B.; Minas da Piedade, M. F.; Duarte, M. T. J. Pharm. Pharmacol. 2015, 67, 830–846.

(10)

Chen, J.; Sarma, B.; Evans, J. M. B.; Myerson, A. S. Cryst. Growth Des. 2011, 11, 887–895.

(11)

Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J. Pharm. Res. 2001, 18, 859–866.

(12)

Miller, J. M.; Collman, B. M.; Greene, L. R.; Grant, D. J. W.; Blackburn, A. C. Pharm. Dev. Technol. 2005, 10, 291–297.

(13)

Elder, D. P.; Patterson, J. E.; Holm, R. J. Pharm. Pharmacol. 2015, 67, 757–772.

(14)

Llinàs, A.; Goodman, J. M. Drug Discov. Today 2008, 13, 198–210.

(15)

Almarsson, O.; Hickey, M. B.; Peterson, M. L.; Morissette, S. L.; Soukasene, S.; McNulty, C.; Tawa, M.; MacPhee, J. M.; Remenar, J. F. Cryst. Growth Des. 2003, 3, 927–933.

(16)

Morissette, S. L.; Almarsson, O.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. Adv. Drug Deliv. Rev. 2004, 56, 275–300.

(17)

Peterson, M. L.; Morissette, S. L.; McNulty, C.; Goldsweig, A.; Shaw, P.; LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Gonzalez-Zugasti, J.; Lemmo, A. V.; Ellis, S. J.; Cima, M. J.; Almarsson, O. J. Am. Chem. Soc. 2002, 124, 10958–10959.

(18)

Lin, S.-Y. Pharm. Res. 2014, 31, 1619–1631.

(19)

Lin, S.-Y.; Cheng, W.-T. J. Raman Spectrosc. 2012, 43, 1166–1170.

(20)

Kojima, T.; Onoue, S.; Murase, N.; Katoh, F.; Mano, T.; Matsuda, Y. Pharm. Res. 2006, 23, 806– 812.

(21)

Heinz, A.; Savolainen, M.; Rades, T.; Strachan, C. J. Eur. J. Pharm. Sci. 2007, 32, 182–192.

(22)

Surwase, S. A.; Boetker, J. P.; Saville, D.; Boyd, B. J.; Gordon, K. C.; Peltonen, L.; Strachan, C. J. Mol. Pharm. 2013, 10, 4472–4480.

(23)

Detoisien, T.; Forite, M.; Taulelle, P.; Colson, D.; Klein, J. P. 2009, 13, 1338–1342.

(24)

Roberts, S. N. C.; Williams, A. C.; Grimsey, I. M.; Booth, S. W. J. Pharm. Biomed. Anal. 2002, 28, 1149–1159.

(25)

Roberts, S. N. C.; Williams, A. C.; Grimsey, I. M.; Booth, S. W. J. Pharm. Biomed. Anal. 2002, 28,

ACS Paragon Plus Environment

Page 18 of 19

Page 19 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Analytical Chemistry

1135–1147. (26)

Rawle, C. B.; Lee, C. J.; Strachan, C. J.; Payne, K.; Manson, P. J.; Rades, T. J. Pharm. Sci. 2006, 95, 761–768.

(27)

Strachan, C. J.; Rades, T.; Lee, C. J. Opt. Lasers Eng. 2005, 43, 209–220.

(28)

Strachan, C. J.; Lee, C. J.; Rades, T. J. Pharm. Sci. 2004, 93, 733–742.

(29)

Lee, C. J.; Strachan, C. J.; Manson, P. J.; Rades, T. J. Pharm. Pharmacol. 2007, 59, 241–250.

(30)

Simon, F.; Clevers, S.; Dupray, V.; Coquerel, G. Chem. Eng. Technol. 2015, 38, 971–983.

(31)

DeWalt, E. L.; Sullivan, S. Z.; Schmitt, P. D.; Muir, R. D.; Simpson, G. J. Anal. Chem. 2014, 86, 8448– 8456.

(32)

Dow, X. Y.; DeWalt, E. L.; Newman, J. A.; Dettmar, C. M.; Simpson, G. J. Biophys. J. submitted.

(33)

Dow, X. Y.; DeWalt, E. L.; Sullivan, S. Z.; Schmitt, P. D.; Simpson, G. J. Biophys. J. submitted.

(34)

Kissick, D. J.; Wanapun, D.; Simpson, G. J. Annu. Rev. Anal. Chem. 2011, 4, 419–437.

(35)

Cornel, J.; Kidambi, P.; Mazzotti, M. Ind. Eng. Chem. Res 2010, 49, 5854–5862.

(36)

Berman, H. M.; Jeffrey, G. a.; Rosenstein, R. D. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 442–449.

(37)

Kim, H. S.; Jeffrey, G. a.; Rosenstein, R. D. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 1449–1455.

(38)

Allen, F. H. Acta. Cryst. 2002, B58, 380–388.

(39)

Chowdhury, A. U.; Zhang, S.; Simpson, G. J. Anal. Chem. 2016, 88, 3853.

(40)

Toth, S. J.; Schmitt, P. D.; Snyder, G. R.; Trasi, N. S.; Sullivan, S. Z.; George, I. A.; Taylor, L. S.; Simpson, G. J. Cryst. Growth Desig. 2015, 15, 581–586.

ACS Paragon Plus Environment