Rates of Physical and Chemical Processes in a Carbonate Aquifer

Jul 22, 2009 - Chapter DOI: 10.1021/ba-1971-0106.ch003. Advances in ... For much of the Tertiary carbonate aquifer system of Florida, the velocity of ...
2 downloads 5 Views 2MB Size
3 Rates of Physical and Chemical Processes

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

in a Carbonate Aquifer WILLIAM BACK and BRUCE B. HANSHAW U. S. Geological Survey, Washington, D. C. 20242

For much

of the Tertiary

carbonate

ida, the velocity

of ground-water

meters per year.

Water

calcite

in about 4000 carbon-14

dolomite amount

it attains

produced

processes with carbon-14 the total entropy production The

equilibrium

values

from thermal

for the system as a function range from

about

Flor­

undersatu-

As the

water

with respect

years and with years.

respect

Combining

chemical

ages provides

(excluding

area is

and dolomite.

in about 15,000 carbon-14 of entropy

system of

ranges from 2 to 8

in the recharge

rated with respect to both calcite moves downgradient,

aquifer

flow

and

to to the

physical

an approximation

of

energy from heat flow) of time and

—2 to 7

years for various flow paths of about 100

distance.

mcal/kg/°K/1000 km.

A g e n e r a l reference base for i r r e v e r s i b l e processes is p r o v i d e d b y e n t r o p y p r o d u c t i o n w h i c h serves as a u n i f y i n g c o n c e p t r e l a t i n g changes i n b o t h p h y s i c a l a n d c h e m i c a l energy. D i s t r i b u t i o n of e n t r o p y p r o d u c t i o n p r o v i d e s a n i n t e g r a t i n g v a r i a b l e for use i n e v a l u a t i n g the r e l a t i v e i m p o r ­ tance of p h y s i c a l a n d c h e m i c a l processes at p o i n t s w i t h i n a system or b e t w e e n t w o h y d r o l o g i e systems. B e c a u s e the c o n c e p t of e n t r o p y is g e n e r a l l y not f a m i l i a r to h y d r o l o gists, a b r i e f i n t r o d u c t i o n is p r o b a b l y i n order. A t h o r o u g h a n d rigorous e x p l a n a t i o n c a n b e o b t a i n e d f r o m s t a n d a r d w o r k s s u c h as those b y F a s t ( I ) , Fitts (2), Katchalsky and Curran ( 3 ) , Klotz (4), L e w i s and R a n ­ dall (5), and Prigogine (6).

A statement of the s e c o n d l a w of t h e r m o ­

d y n a m i c s is g e n e r a l l y u s e d as a d e f i n i t i o n of e n t r o p y of a system as f o l l o w s : dS ^ DQ/T,

w h e r e dS is a n i n f i n i t e s i m a l c h a n g e i n e n t r o p y for

a n i n f i n i t e s i m a l p a r t of a process c a r r i e d out r e v e r s i b l y , DQ

is the heat

a b s o r b e d , a n d Τ is the absolute t e m p e r a t u r e at w h i c h the heat is a b ­ sorbed.

I n one sense, e n t r o p y is a m a t h e m a t i c a l f u n c t i o n for the t e r m 77 In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

78

NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS

DQ/T,

w h i c h is a n exact d i f f e r e n t i a l , whereas DQ

alone cannot b e i n t e -

g r a t e d w i t h o u t h a v i n g a p a t h specified (4, p. 1 0 1 ) . T h a t is, DQ/T

is b o t h

a n extensive v a r i a b l e a n d a t h e r m o d y n a m i c f u n c t i o n a n d merits a s y m b o l a n d name—i.e., e n t r o p y , w h i c h comes f r o m the G r e e k w o r d m e a n i n g "evolution." T h e s e c o n d l a w of t h e r m o d y n a m i c s is often stated to be the l a w of d i s s i p a t i o n or d e g r a d a t i o n of energy; h o w e v e r , this c a n l e a d to c o n f u s i o n Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

because it seems to v i o l a t e the first l a w of t h e r m o d y n a m i c s , a statement of c o n s e r v a t i o n of energy.

W h e n the second l a w is stated i n the a b o v e

f o r m , i t is r e a l l y r e f e r r i n g to the d e g r a d a t i o n of the " u s e a b l e " energy of a system. E n t r o p y is therefore a n i n d i c a t i o n of the d e g r a d a t i o n of a system or a n i n d e x of the exhaustion of a system (4, p. 1 3 0 ) . It f o l l o w s l o g i c a l l y that the c o m b i n a t i o n of a l l spontaneous

reactions

w i t h i n a n a t u r a l system w i l l t e n d to increase the e n t r o p y of that system, a n d this is the basis for the statement that e n t r o p y of the u n i v e r s e is s t r i v i n g t o w a r d a m a x i m u m . A l t h o u g h energy a n d e n t r o p y are expressed i n s o m e w h a t s i m i l a r u n i t s , calories per m o l e for energy a n d calories p e r m o l e per degree for e n t r o p y , c o n f u s i o n arises i f t h e y are t h o u g h t of as h a v i n g s i m i l a r attributes or characteristics. A s K l o t z (4, p. 129)

points

out, one c a n t h i n k of energy as b e i n g a k i n d of m a t e r i a l f l u i d , a n d h e n c e it flows f r o m one area to another a n d is conserved.

E n t r o p y , o n t h e other

h a n d , m u s t b e v i e w e d as a n i n d e x of c o n d i t i o n o r character r a t h e r t h a n as the measure of content of some i m a g i n a r y f l u i d a n d is the i n d e x of c a p a c i t y for spontaneous change.

E n t r o p y s u m m a r i z e s i n a concise f o r m

the possible w a y s i n w h i c h the v a r i a b l e s of t e m p e r a t u r e , pressure, a n d c o m p o s i t i o n m a y c h a n g e i n n a t u r a l processes. O n e of the f u n d a m e n t a l tasks r e q u i r e d to a c h i e v e the u l t i m a t e g o a l of h y d r o g e o l o g y is to u n d e r s t a n d the controls o n energy d i s t r i b u t i o n a n d t r a n s f o r m a t i o n w i t h i n a n a q u i f e r system. If this is a c c e p t e d , it t h e n becomes the h y d r o l o g i s t s ' role to b r i n g together i n t o one c o n c e p t the fluxes a n d forces of the c h e m i c a l reactions, of the h y d r o d y n a m i c flow paths, a n d of heat.

T h i s idea was clearly articulated a n d developed b y G . B.

M a x e y (7, p. 1 4 5 ) , w h o stated i n p a r t : " A q u i f e r systems h a v e b e e n s t u d i e d b y three separate m e t h o d s of analysis: (1) h y d r o d y n a m i c , utilizing a distributed potential system; (2) h y d r o c h e m i c a l , u s i n g parameters of w a t e r q u a l i t y ; a n d ( 3 ) h y d r o t h e r m a l , u s i n g d i s t r i b u t i o n a n d gradients of t e m p e r a t u r e . T h e v a r i o u s approaches h a v e b e e n d i c t a t e d l a r g e l y b y the s p e c i a l i z e d t r a i n i n g a n d experience of the i n d i v i d u a l research w o r k e r . H o w e v e r , the c o m p l e x i t y of present h y d r o l o g i e p r o b l e m s n o w requires b r i n g i n g together the v a r i o u s aspects i n t o a single c o n c e p t of a f u n c t i o n i n g s y s t e m . " It f o l l o w s that one of the f u n d a m e n t a l objectives of

hydrogeochem-

istry is to evaluate the r e l a t i v e significance of v a r i o u s processes that c o n t r o l the t o t a l e n e r g y d i s t r i b u t i o n a n d energy d i s s i p a t i o n w i t h i n a h y -

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

3.

BACK A N D HANSHAW

drologic

system.

Carbonate

79

Aquifer

Classical "thermostatics" c a n provide

description of the functioning of a hydrogeochemical

only a partial

system, a n d i t is

necessary to a p p l y t h e p r i n c i p l e s of i r r e v e r s i b l e or n o n e q u i l i b r i u m t h e r modynamics. I n t h e f u n c t i o n i n g of a carbonate a q u i f e r , r a i n f a l l infiltrates t h r o u g h the s o i l zone, becomes c h a r g e d w i t h c a r b o n d i o x i d e , moves to t h e w a t e r table, dissolves

soluble m i n e r a l s of t h e a q u i f e r , increases

i n chemical

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

c o n c e n t r a t i o n , a n d continues to m o v e to d e e p e r parts o f the a q u i f e r , e v e n t u a l l y to discharge to t h e ocean. A l l of these c h e m i c a l a n d p h y s i c a l p r o c esses a r e i r r e v e r s i b l e reactions a n d c a n b e t h o r o u g h l y u n d e r s t o o d

only

b y t h e a p p l i c a t i o n of p r i n c i p l e s of i r r e v e r s i b l e t h e r m o d y n a m i c s .

The

processes a n d reactions c o u l d b e f o r m u l a t e d a n d expressed

i n energy

terms, b u t i t i n t u i t i v e l y a p p e a r e d m o r e s i m p l e to us to b r i n g

together

the p r o d u c t s o f these processes t h r o u g h t h e c o n c e p t o f e n t r o p y r a t h e r t h a n t h r o u g h a n energy f u n c t i o n .

Line of equal head above \ sea level, in meters Area of principal recharge

Figure

1.

Pnncipal artesian aquifer of central Florida, major recharge (after Ref. 9, plate 12)

showing

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

area of

80

NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS

Hydrogeology C e r t a i n p r i n c i p l e s of i r r e v e r s i b l e t h e i m o d y n a m i c s c a n be a p p l i e d b y c o n s i d e r i n g the interrelations b e t w e e n geology, g r o u n d - w a t e r

flow

pat-

tern, a n d c h e m i c a l character of w a t e r i n the F l o r i d i a n p e n i n s u l a .

The

p r i n c i p a l artesian a q u i f e r of F l o r i d a consists chiefly of T e r t i a r y limestone, w i t h m i n o r amounts of d o l o m i t e , a n d ranges i n age f r o m m i d d l e E o c e n e Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

to m i d d l e M i o c e n e .

It is one of the most extensive limestone aquifers

i n the U n i t e d States. T h e T e r t i a r y limestones c r o p out i n n o r t h - c e n t r a l F l o r i d a and i n a broad belt extending from western F l o r i d a through southeastern A l a b a m a , G e o r g i a , a n d southeastern C a r o l i n a , a p p r o x i m a t e l y p a r a l l e l i n g the F a l l L i n e . T h e O c a l a L i m e s t o n e of late E o c e n e age is one of the most p r o d u c t i v e w a t e r - b e a r i n g formations of the p r i n c i p a l a q u i f e r (8, p. 3 1 ) . F i g u r e 1 shows the height of the energy surface i n meters a b o v e sea level.

T w o m o u n d s t e n d to d o m i n a t e the g r o u n d - w a t e r flow of c e n t r a l

F l o r i d a : one near the center of the m a p that is 40 meters a b o v e sea l e v e l a n d another smaller one to the west that is about 25 meters a b o v e sea level. T h e g e n e r a l p a t t e r n of flow is p r i m a r i l y d o w n the p o t e n t i o m e t r i c g r a d i e n t a n d p e r p e n d i c u l a r to the contours. A l s o s h o w n is the area of p r i n c i p a l recharge.

N o r t h of the

two

m o u n d s , the o v e r l y i n g sediments that f o r m the c o n f i n i n g b e d are t h i n to nonexistent, a n d because of exposed limestone i n this area, a large a m o u n t of recharge occurs; h o w e v e r , the p o t e n t i o m e t r i c surface is l o w o w i n g to r a p i d discharge of the w a t e r . T h i s is a r e g i o n i n w h i c h a great d e a l of w a t e r is d i s c h a r g e d t h r o u g h m a n y springs, s u c h as S i l v e r a n d R a i n b o w S p r i n g s , that exist i n the area of the g r o u n d - w a t e r saddle f o r m e d b y the c e n t r a l m o u n d a n d a p o t e n t i o m e t r i c h i g h n o r t h of the s t u d y area. A l t h o u g h the p o t e n t i o m e t r i c surface has essentially the same g r a d i e n t a n d shape n o r t h a n d south of the m o u n d s , less recharge occurs i n s o u t h ern parts of the elongated d o m e t h a n i n the n o r t h e r n part because of a t h i c k e r c o n f i n i n g b e d a n d l o w e r t r a n s m i s s i v i t y of the a q u i f e r to the south. W a t e r that flows s o u t h w a r d discharges u p w a r d t h r o u g h the c o n f i n i n g b e d a n d also to the ocean a n d gulf.

T h e m a x i m u m g r a d i e n t of the p o -

t e n t i o m e t r i c surface of c e n t r a l F l o r i d a is about 2.5 meters per k i l o m e t e r w i t h a n average g r a d i e n t of about 1 meter per k i l o m e t e r . T h e g r o u n d w a t e r of c e n t r a l F l o r i d a comprises one major h y d r o l o g i e system, a n d it has r e c e n t l y b e e n s h o w n that a g e o c h e m i c a l coexistent w i t h the h y d r o l o g i e system (10, 11).

system is

D e p t h s of w e l l s s a m p l e d

d u r i n g this s t u d y range f r o m about 100 to 500 meters.

A b o d y of salt

w a t e r that u n d e r l i e s the entire F l o r i d a p e n i n s u l a ranges i n d e p t h f r o m near sea l e v e l at parts of the shoreline to about 700 meters i n c e n t r a l F l o r i d a . T h e interface b e t w e e n the fresh w a t e r a n d salt w a t e r forms one

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

3.

BACK A N D HANSHAW

Carbonate

81

Aquifer

of the b o u n d a r i e s of the fresh-water system. G e o c h e m i c a l m a p p i n g , i n ­ c l u d i n g d i s t r i b u t i o n of c h l o r i d e , sulfate, c a l c i u m , m a g n e s i u m , a n d c a r ­ bon-14 concentrations, shows a systematic p a t t e r n of increase d o w n g r a dient. It w a s c o n c l u d e d that, a l t h o u g h the w e l l s h a v e a range of t o t a l depths a n d o p e n i n t e r v a l s , t h e y are s a m p l i n g parts of the same h y d r o -

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

l o g i c a l l y - c o n n e c t e d g e o c h e m i c a l system

Figure

2.

(11).

Principal artesian aquifer, showing areas of under saturation ground water with respect to calcite and dolomite

of

Chemical Reactions I n the carbonate a q u i f e r system of c e n t r a l F l o r i d a , t w o major controls o n the c h e m i c a l c h a r a c t e r of the w a t e r are s o l u t i o n of c a l c i t e a n d of dolomite.

O n e w a y to evaluate the significance of these reactions as

c h e m i c a l controls is to d e t e r m i n e the d e p a r t u r e f r o m e q u i l i b r i u m of the w a t e r w i t h respect to e a c h of the m i n e r a l s . T o c a l c u l a t e d e p a r t u r e f r o m e q u i l i b r i u m , s o l u b i l i t y p r o d u c t s of 10"

8 3 5

and 2 Χ

10"

17

w e r e u s e d for

calcite a n d d o l o m i t e , r e s p e c t i v e l y . T h e d e p a r t u r e f r o m e q u i l i b r i u m w i t h

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

82

NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS

respect to c a l c i t e is s h o w n i n F i g u r e 2. T h e area of u n d e r s a t u r a t i o n c o i n cides closely w i t h the area of m a j o r r e c h a r g e ( F i g u r e 1 ) . T h e e q u i l i b r i u m b o u n d a r y outlines the e l o n g a t e d d o m e o n the p o t e n t i o m e t r i c m a p , w h i c h i n d i c a t e s that some w a t e r is r e c h a r g e d i n t o the a q u i f e r a l o n g the t o p of the d o m e a n d is t h e r e b y l o w e r i n g the a m o u n t of s a t u r a t i o n i n this area. A p r e l i m i n a r y m a p of d e p a r t u r e f r o m e q u i l i b r i u m w i t h respect

to

d o l o m i t e is also s h o w n i n F i g u r e 2. T h e area of u n d e r s a t u r a t i o n is larger Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

for d o l o m i t e t h a n for calcite. B e c a u s e the d o l o m i t e v a l u e is exactly one h a l f that of c a l c i t e , i t f o l l o w s that i n o r d e r for a w a t e r that is i n e q u i l i b r i u m w i t h c a l c i t e to b e c o m e saturated w i t h respect to d o l o m i t e , it is o n l y necessary f o r the m a g n e s i u m c o n c e n t r a t i o n to e q u a l the c a l c i u m c o n c e n t r a t i o n ( 1 2 , 13, 14).

T h e area of recharge a n d the area of highest

p o t e n t i o m e t r i c surface s h o w that the w a t e r is u n d e r s a t u r a t e d w i t h respect to

dolomite;

downgradient,

it p r o g r e s s i v e l y

attains e q u i l i b r i u m w i t h

d o l o m i t e a n d e v e n t u a l l y becomes supersaturated. I n m a k i n g t h e r m o d y n a m i c c a l c u l a t i o n s to d e t e r m i n e d e p a r t u r e f r o m equilibrium, thermodynamic dolomite were used.

d a t a for p u r e s t o i c h i o m e t r i c c a l c i t e

and

H o w e v e r , minéralogie a n d x-ray e x a m i n a t i o n of

a q u i f e r m a t e r i a l has s h o w n that the c a l c i t e m a y h a v e several m o l e percent m a g n e s i u m ; the d o l o m i t e t h a t occurs i n the system is g e n e r a l l y c a l c i u m r i c h (IS).

T h e r e f o r e , b o t h of these m i n e r a l s i n the n a t u r a l state have a

h i g h e r free e n e r g y a n d h e n c e a s o m e w h a t h i g h e r s o l u b i l i t y t h a n the p u r e minerals.

T h u s , p a r t of the s u p e r s a t u r a t i o n that w e

have

calculated

m a y be more apparent than real. Rates of Flow and Chemical Reactions F o r the past several years, w e h a v e b e e n w o r k i n g to evaluate the r a d i o c a r b o n t e c h n i q u e for d a t i n g g r o u n d w a t e r ; that is, to d e t e r m i n e the a m o u n t of t i m e the w a t e r has b e e n out of contact w i t h the ( 1 5 , 1 6 , 17).

atmosphere

T h i s is d o n e b y means of the carbon-14 a c t i v i t y of the d i s -

s o l v e d c a r b o n a t e species.

Results of p a r t of this w o r k give t h e age

w a t e r as a f u n c t i o n of p o s i t i o n i n the a q u i f e r system.

of

I n the recharge

area, there are waters of m i x e d o r i g i n , a n d the age varies a c c o r d i n g to the a m o u n t of m i x i n g of e x c e e d i n g l y y o u n g w a t e r w i t h s o m e w h a t

older

w a t e r . H o w e v e r , d o w n g r a d i e n t f r o m the area of p r i n c i p a l r e c h a r g e , the age of the w a t e r increases i n a systematic m a n n e r . T h u s , b y c o m b i n i n g results f r o m r a d i o c a r b o n c o n c e n t r a t i o n w i t h changes i n the c h e m i c a l a n d p h y s i c a l parameters of the system, rates of c h e m i c a l a n d p h y s i c a l p r o c esses w h i c h o c c u r w i t h i n a system m a y be d e r i v e d . W i t h i n the recharge area, the m a x i m u m a p p a r e n t age of the m i x e d w a t e r is a p p r o x i m a t e l y 5000 years.

D o w n g r a d i e n t f r o m the recharge a r e a , the w a t e r increases

to a p p r o x i m a t e l y 30,000 years before present, w h i c h is the oldest f o u n d i n that p a r t of the a q u i f e r system.

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

age

3.

BACK A N D HANSHAW

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

83°

83°

Carbonate 82°

83

Aquifer 81°

82°

801

81°

80°

Figure 3. Residence time of water within the aquifer and velocity of ground-water flow; values at the arrow tips are averages for entire flow paths

T h e values o n the flow lines i n F i g u r e 3 w e r e c a l c u l a t e d f r o m r a d i o c a r b o n dates a n d i n d i c a t e velocities i n meters per year for v a r i o u s segments a l o n g p a r t i c u l a r flow p a t h s , w h i c h are s h o w n b y the h e a v y lines w i t h a r r o w s . T h e average values for the entire p a t h r a n g e f r o m

about

2.5 meters per year to 6.5 meters per year. A l o n g short reaches, the range of velocities is a b o u t 1.5 to 8.5 meters per year. I n a d d i t i o n to e s t i m a t i n g v e l o c i t y of g r o u n d - w a t e r

flow,

carbon-14

concentrations p e r m i t e s t i m a t i o n of the rate of s o l u t i o n a n d p r e c i p i t a t i o n of c a r b o n a t e m i n e r a l s . T h e a q u i f e r is c o m p o s e d of a p p r o x i m a t e l y

2/3

calcite a n d 1 / 3 d o l o m i t e d i s t r i b u t e d t h r o u g h o u t the section. S a t u r a t i o n w i t h respect to c a l c i t e occurs rather r a p i d l y , a n d it is o n l y i n areas of p r i n c i p a l recharge that u n d e r s a t u r a t e d waters are g e n e r a l l y f o u n d ( F i g ures 1 a n d 2 ) .

H o w e v e r , the k i n e t i c s of d o l o m i t e f o r m a t i o n a n d d i s s o l u -

t i o n are q u i t e slow, a n d the area of u n d e r s a t u r a t i o n extends

farther

d o w n g r a d i e n t t h a n does the area of calcite u n d e r s a t u r a t i o n . B y

com-

b i n i n g age of w a t e r f r o m F i g u r e 3 w i t h s a t u r a t i o n b o u n d a r i e s of c a l c i t e a n d d o l o m i t e f r o m F i g u r e 2, a n a p p r o x i m a t i o n c a n be o b t a i n e d for the

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

84

NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS

t i m e r e q u i r e d for w a t e r to b e c o m e saturated w i t h these m i n e r a l s .

The

results s h o w that w a t e r attains e q u i l i b r i u m w i t h respect to calcite i n a b o u t 4000 carbon-14 years a n d w i t h respect to d o l o m i t e i n about

15,000

carbon-14 years. Rate of Entropy

Production

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

T h u s f a r i n this d i s c u s s i o n , these

fluid-filled

formations of

Florida

h a v e b e e n c o n s i d e r e d as p a r t of a geologic system, a h y d r o l o g i e system, a n d as a c o e x i s t i n g g e o c h e m i c a l system. It w o u l d seem d e s i r a b l e to c o m ­ b i n e the results of the v a r i o u s n a t u r a l processes i n t o one u n i f y i n g concept. T h e i n p u t to the c o m b i n e d system occurs o n the p o t e n t i o m e t r i c h i g h s i n the f o r m of r a i n f a l l c o n t a i n i n g m i n o r amounts of t o t a l d i s s o l v e d solids. I n i t i a l changes i n w a t e r c h e m i s t r y o c c u r w i t h i n the s o i l zone w h e r e the w a t e r is c h a r g e d w i t h large amounts of C 0

2

gas.

This C 0 - r i c h water

percolates into the g r o u n d - w a t e r system w h e r e the C 0

2

2

attacks the car­

bonate m i n e r a l s . T h i s is a n i r r e v e r s i b l e c h e m i c a l process w h e r e b y C0

2

the

i n the w a t e r reacts w i t h the m i n e r a l s a n d b r i n g s t h e m i n t o solution. Likewise, simple gravitational movement

of w a t e r f r o m

potentio­

m e t r i c highs to oceanic base l e v e l is a n i r r e v e r s i b l e p h y s i c a l process w h i c h p r o d u c e s a loss of p o t e n t i a l energy.

T h e basis for e v a l u a t i n g energy d i s ­

t r i b u t i o n of a g r o u n d - w a t e r system is the p o t e n t i a l theory best e x p l a i n e d in a classical paper b y H u b b e r t ( 8 ) .

P o t e n t i a l is c o m p o s e d of the s u m

of t w o terms, a g r a v i t a t i o n a l p o t e n t i a l energy a n d a pressure energy.

Po­

t e n t i a l is e q u a l to the w o r k r e q u i r e d to t r a n s f o r m a u n i t of mass of

fluid

f r o m a n a r b i t r a r i l y chosen s t a n d a r d state to the state at the p o i n t u n d e r c o n s i d e r a t i o n (18,

p. 7 9 7 - 8 ) .

F o r the s t a n d a r d state, it is c o n v e n i e n t to

use a n e l e v a t i o n of zero, a pressure of 1 a t m , a n d a v e l o c i t y of zero.

Po­

t e n t i a l , φ, for g r o u n d w a t e r c a n be expressed as f o l l o w s (19, p. 1959) Φ =

gz +

7

(1)

w h e r e g is a c c e l e r a t i o n o w i n g to g r a v i t y , ζ is e l e v a t i o n , Ρ is gage pressure, a n d ρ is density.

I n almost a l l instances, the k i n e t i c energy of

g r o u n d w a t e r is n e g l i g i b l e because of the l o w velocities of

flow.

flowing "Total

h e a d " as u s e d b y h y d r o l o g i s t s is r e l a t e d to " p o t e n t i a l " b y the expression φ =

gh, w h e r e h is h e a d . A l t h o u g h it m a y i n t u i t i v e l y seem that the t o t a l

p o t e n t i a l c o u l d i n c l u d e terms other t h a n g r a v i t y a n d pressure to reflect c h e m i c a l a n d t h e r m a l energy changes,

H u b b e r t s p o t e n t i a l c o n c e p t is

r e s t r i c t e d to m e c h a n i c a l energy o n l y a n d is so u s e d i n this p a p e r . H e a d is a n intensive state v a r i a b l e a n d is i n d e p e n d e n t of the process that p r o d u c e s a c h a n g e i n h e a d . T h u s , to c a l c u l a t e energy loss f r o m

flow,

a k n o w n r e v e r s i b l e process c a n replace the u n k n o w n i r r e v e r s i b l e process.

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

3.

BACK A N D HANSHAW

Carbonate

Aquifer

85

H e a d loss thus represents useable energy lost f r o m the system a n d m a y be t h o u g h t of as a measure of c h a n g e i n e n t r o p y . L i k e w i s e , the i r r e v e r s i b l e process of d i s s o l v i n g m i n e r a l s i n the a q u i f e r system has a n e n t r o p y c h a n g e associated w i t h i t . O n e w a y i n w h i c h t h e p h y s i c a l a n d c h e m i c a l processes w i t h i n s u c h a system c a n be c o m p a r e d is t h r o u g h use of e n t r o p y concepts. B e c a u s e none of the p o t e n t i a l energy of a g r o u n d - w a t e r system is Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

c o n v e r t e d to k i n e t i c energy, a l l the e n e r g y is t r a n s f o r m e d to heat w h i c h is a b s o r b e d b y the system. T h e r e f o r e , changes i n e n t r o p y o w i n g to h e a d loss, w h i c h c a n b e t r e a t e d as a r e v e r s i b l e process, are o b t a i n e d b y c a l c u l a t i n g the changes i n p o t e n t i a l energy associated w i t h flow t h r o u g h the system. T h i s p r o v i d e s a d e t e r m i n a t i o n of m i n i m u m e n t r o p y p r o d u c t i o n c a u s e d b y c h a n g e i n a l t i t u d e . W h e n i t becomes possible to separate a l l sources of heat to the system ( e a r t h heat flow, solar r a d i a t i o n , heats of s o l u t i o n a n d p r e c i p i t a t i o n , a n d f r i c t i o n a l heat p r o d u c t i o n ) , the a d d i t i o n a l

Figure

4.

Distribution

of entropy change resulting from head loss within the aquifer

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

86

NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS

e n t r o p y p r o d u c t i o n c a n b e c o m b i n e d w i t h the m i n i m u m to o b t a i n t o t a l e n t r o p y p r o d u c e d f r o m p h y s i c a l processes. K i l o g r a m - m e t e r s c a n b e c o n v e r t e d r e a d i l y to m i l l i c a l o r i e s ( m e a l ) p e r k i l o g r a m as f o l l o w s 1 k g - m e t e r = 2.34 Χ 1 0 m e a l

(2)

3

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

T o convert to e n t r o p y b e t w e e n a n y t w o p o i n t s Ammeters] X 2.34 Χ 1 0 m e a l 3

Entropy [mcal/kg/°K] =

O

R

k

g

"

m

e

t

e

r

(3)

S

w h e r e Ah is loss i n h e a d b e t w e e n t w o p o i n t s . T h e t e m p e r a t u r e of g r o u n d w a t e r i n this system ranges f r o m a b o u t 23 ° C i n the r e c h a r g e area to a m a x i m u m of a b o u t 28 ° C i n the deepest p a r t of the system. A s i m p l e sensitivity test c a n b e m a d e as f o l l o w s : If Τ = =

30 m , t h e n f o r Τ =

m e a l ; for Τ = a n d for Τ =

298.16° db 2 ° K a n d h e a d

296.16°K ( 2 3 ° C ) , the c a l c u l a t e d e n t r o p y is 237.0

298.16°K ( 2 5 ° C ) , the c a l c u l a t e d e n t r o p y is 235.5 m e a l ; 300.16°K ( 2 7 ° C ) , the c a l c u l a t e d e n t r o p y is 234.0 m e a l .

T h i s suggests t h a t o v e r the n a r r o w r a n g e of o b s e r v e d t e m p e r a t u r e s , the e n t i r e system m a y b e a p p r o x i m a t e d b y a s s u m i n g a n i s o t h e r m a l system at 25 ° C . F o r this p r e l i m i n a r y s t u d y , the a s s u m p t i o n of a n i s o t h e r m a l system p e r m i t s n e g l e c t i n g t h e r m a l energy transfer f r o m sources m e n t i o n e d above. T h i s topic w i l l be

rigorously

e v a l u a t e d i n a subsequent s t u d y .

T h e results of c a l c u l a t i n g e n t r o p y p r o d u c t i o n f r o m h e a d values r a n g ­ i n g b e t w e e n elevations of 40 meters to a b o u t sea l e v e l are s h o w n o n F i g u r e 4. N o t e that the h i g h p o i n t o n the p o t e n t i o m e t r i c surface is d e s i g ­ n a t e d as h a v i n g a zero e n t r o p y l e v e l . T h i s is the i n p u t b o u n d a r y of the system, a n d b y o u r d e f i n i t i o n , the e n t r o p y of the w a t e r a t t r i b u t e d to p o s i t i o n is zero at this p o i n t . T h e r e f o r e i n o r d e r to d e p i c t t h e e n t r o p y increase a t t r i b u t e d to d o w n g r a d i e n t flow, the e q u a t i o n w a s m o d i f i e d to , . , Change in entropy = p

,, (ft x ma

, ν 2.34 Χ 1 0 m e a l K) 0^

, . (4)

3

A s the w a t e r flows d o w n the p o t e n t i o m e t r i c surface, e n t r o p y is p r o g r e s ­ s i v e l y p r o d u c e d b y this p h y s i c a l process to a b o u t 300 m c a l / k g / ° K . T h e m i n e r a l o g y of the F l o r i d i a n a q u i f e r consists of a p p r o x i m a t e l y 6 5 % c a l c i t e a n d 3 4 % d o l o m i t e , w i t h m i n o r amounts of g y p s u m scattered t h r o u g h the f o r m a t i o n . G y p s u m m a y b e l o c a l l y a b u n d a n t i n some parts o f the a q u i f e r system. T h e r e f o r e , o n l y three c h e m i c a l reactions n e e d b e c o n s i d e r e d to d e s c r i b e the m a j o r c h e m i c a l changes i n this system. is the s o l u t i o n of c a l c i t e b y means of w a t e r a n d s o i l C 0

2

First

gas; s e c o n d is

the s o l u t i o n of d o l o m i t e , also b y means of w a t e r a n d s o i l C 0

2

In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.

gas; a n d

3.

Carbonate

BACK A N D HANSHAW

Table I.

87

Aquifer

Standard Entropy Values" s°

Cal/°K/Mole -13.2 -28.2 22.7 29.0 16.716 4.1 22.2 37.09 46.36

Ca + aq. Mg + aq. 2

2

HCO3-

C 0 aq. H 0 S0 C a C 0 [calcite] C a M g ( C 0 ) [dolomite] C a S 0 - 2 H 0 [gypsum] 2

Downloaded by UNIV OF MASSACHUSETTS AMHERST on October 7, 2015 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch003

2

4

2

3

3

4

6

2

2

Values from Rossini et al. (20) except where noted. Value for dolomite from Stout et al. {21).

0

6

t h i r d is s o l u t i o n of g y p s u m ( C a S 0

· 2H 0)

4

t o f o r m c a l c i u m ions, s u l ­

2

fate ions, a n d w a t e r . A l t h o u g h sulfate r e d u c t i o n occurs w i t h i n t h e system, the s i m p l i f y i n g a s s u m p t i o n has b e e n m a d e t h a t t h e decrease i n sulfate c o n c e n t r a t i o n is n o t significant f o r these c a l c u l a t i o n s . I n o r d e r to deter­ m i n e t h e c h e m i c a l e n t r o p y p r o d u c t i o n of t h e system, t h e e n t r o p y of e a c h of these three reactions w a s c a l c u l a t e d u s i n g values i n T a b l e I as f o l l o w s : Calcite CaC0

+ H 0 + C0

3

2

=

Abaction

-

= Ca + + 2 H C 0 2

2 a q

(5)

3

35.7 c a l / ° K / m o l e

Dolomite CaMg(C0 ) 3

2

+ 2H 0 + 2C0 2

=

^reaction

-

= Ca + + Mg + + 4 H C 0 2

2 a q

2

3

(6)

79.9 c a l / ° K / m o l e

Gypsum CaS0

+ 2 H 0 = Ca + + S 0

4

2

2

AS eaction = r

-

4

2

" +

2H 0 2

(7)

22.1 c a l / ° K / m o l e

T h e c h a n g e i n e n t r o p y at a n y p o i n t , i , i n t h e system o w i n g to the a b o v e three equations is g i v e n b y t h e f o l l o w i n g r e l a t i o n s h i p s ASi.calcite =

AStf.calcite [m

^'St'.dolom ite ASt.gypeum ^ Ο chem

=

=

AS, alcite

Ca



(^Mg +

omite X AStf,gypsum

^S0 )] 4

Wjiir

X m