Reaction of Group IV transition metal tetraorganyls with carbon

DDR-4200 Merseburg, Otto-Nuschke-Str., GDR. Irma Otvos, Tames Bartik, and Gyula Pblyi*s. Research Group for Petrochemistry of the Hungarian Academy of...
0 downloads 0 Views 552KB Size
2290

Organometallics 1987, 6, 2290-2293

Reaction of Group I V (4+) Transition Metal Tetraorganyb with Carbon Monoxide Karl-Heinz Thiele, * Christian Kruger, and Angela Sorkau Department of Chemistiy, Technical Universiw "Carl Schorlemmer " Merseburg, DDR-4200 Merseburg, Otto-Nuschke-Str.,GDR

Irma Otvos, Tames Bartik, and Gyula Pblyi*s Research Group for Petrochemistry of the Hungarian Academy of Sciences, H-820 1 Veszprgm, Schonherz Z . U . ~ .Hungary , Received October 17, 1986

Carbon monoxide reacts with tetrabenzyl, tetrakis( 1-naphthylmethyl), and tetra-1-norbornyl compounds of titanium, zirconium, and hafnium. From organic product distribution studies the insertion of CO into one of the metal-alkyl bonds could be identified as the first step. These unstable acyl intermediates are transformed into stable products in different ways. One of the reactions identified is the insertion of the initially formed ketones into the metal-alkyl bond of an unreacted R4M compound.

Introduction Reactions of organo transition-metal compounds with carbon monoxide continued to attract great attention in the recent years.'P2 One of the most interesting currents of this chemistry revealed that dicyclopentadienyltitanium mono- and dialkyls and mono- and diaryls react with CO leading to insertion and subsequent elimination of the acyl groups f ~ r m e d .Zirconocene ~ and hafnocene alkyl or aryl derivatives show a similar chemistry with more stable metal acyl derivatives.a4 The reactivity of the homoleptic RIM (M = Ti, Zr, Hf) compounds with exclusively ubonded organyl groups toward CO is of particular interest in this context. The surprisingly few papers dealing with this problem report the formation of oxygenated, unsatured,6 and other (unidentified6) organic products (with Ti and Zr) as well as very unstable titanium alkyl carbonyl and alkyl acyl derivatives that were characterized by IR spectroscopy.' The Ti(CH2COOR)4(R = alkyl, aryl) type8 stable titanium peralkyls showed much reduced reactivity toward COe9 We report here the first results of a study of the reaction of carbon monoxide with RIM (M = Ti, Zr, Hf; R = benzyl (Bz), 1-naphthylmethyl ( N a p h m e ) , 1-norbornyl (Nor)) compounds. Experimental Section All manipulations involving organometallics were performed by using the standard Schlenk techniques" (dried and deoxygenated solvents and Ar and CO gases). The reaction products were identified by gas chromatography (Hewlett-Packard 5830 A instrument, FID, 20 m X 0.3 m m glass capillary column, coated12with OV-1, temperature program was employed, started at 100 O C , heating speed 2 OC/min, to 300 "C; carrier gas Ar, detector FID)and/or mass spectrometry (JEOLIGO-BOK, JEOLIMS(O1) SG-2 instrument). The organic reaction producta were identifed by comparing the mass spectra with those of authentic compounds and/or literature spectra.l3?l4 The quantitative data were obtained from gas chromatography of the In this paper the periodic group notation in parenthesis is in accord with recent actions by IUPAC and ACS nomenclature committees. A and B notation is eliminated because of wide confusion. Groups IA and IIA become groups 1 and 2. The d-transition elements comprise groups 3 through 12, and the p-block elements comprise groups 13-18. (Note that the former Roman number designation is preserved in the last digit of the new numbering: e.g., I11 3 and 13.) Present address: Institute of General and Inorganic Chemistry, L. Eotvos University, H-1088Budapest, Mdzeum krt. 6-8,Hungary.

*

-

benzyl derivatives and from mass spectrometry16 of t h e (less volatile) 1-naphthylmethyl and 1-norbornyl compounds. (1)(a) Calderazzo, F.Angew. Chem. 1977,89,305.(b) Kuhlmann, E. J.; Alexander, J. J. Coord. Chem. Rev. 1980,33,195.(c) Flood, J. C. Top. Inorg. Organomet. Stereochem. 1981,12, 37. (d) Blackborrow, J. R.; Daroda, R. J.; Wilkinson, G. Coord. Chem. Reo. 1982, 43, 17. (e) Herrmann, W. A. Angew. Chem. 1982,94, 118. (f) Tkatchenko, I. In Comprehensiue Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982;Vol. 8, Chapter 50.3,pp 101-223. Sneeden, R. P. A. Ibid., Chapter 50.2,pp 19-100. (9) Pilyi, G.; UngvHry, F.; Galamb, V.; Mark6, L. Coord. Chem. Rev. 1984,53,37.(h) Galamb, V.; Pilyi, G. Corrd. Chem. Rev. 1984,59,203. (i) Horwitz, C. P.; Shriver, D. F. Adu. Organomet. Chem. 1984,23,219.(i) Erker, G. Acc. Chem. Res. 1984,17,103. (2)Some recent original papers indicating the main directions: (a) Gell, K. 1.; Schwartz, J. J. Organomet. Chem. 1978, 162, C11. (b) Threlkel, R. S.; Bercaw, J. E. J. Am. Chem. SOC.1981,103,2650. (c) Katahira, D. A.; Moloy, K. G.; Marks, T. J. Organometallics 1982,1,1723. (d) Brinkman, K. C.; Vaughn, G. D.; Gladysz, J. A. Organometallics 1982, 1, 1056. (e) Bodnar, T. W.; Cutler, A. R. J. Am. Chem. SOC.1983,105, 5926. (f) Gambarotta, S.;Floriani, C.; Chiesi-Villa, A,; Guastini, C. J. Am. Chem. SOC.1983,105,1690.(g) Moore, E. J.; Straus, D. A.; Armantrout, J.;Santarsiero, B. D.; Grubbs, R. H.; Bercaw, J. E. J. Am. Chem. SOC. 1983,105,2068.(h) Forschner, T. C.; Cutler, A. R. Organometallics 1985, 4,1247.(i) Crawford, E. J.; Lambert, C.; Menard, K. P. Cutler, A. R. J . Am. Chem. SOC.1985,107,3130. 6)Galamb, V.; PBlyi, G.; Ungviry, F.; Mark6, L.; Boese, R.; Schmid, G. J. Am. Chem. SOC.1986,108,3344.(k) Tso, C. C.; Cutler, A. R. Organometallics 1986,5. (1) Vaughn, G. D.; Gladysz, J. A. J. Am. Chem. SOC.1986,108,1473.(m) Bianconi, P. A.; Williams, I. D.; Engeler, M. P.; Lippard, S. J. J. Am. Chem. SOC.1986, 108, 311. (n) Webb, S. L.; Giandomenico, C. M.; Halpern, J. J . Am. Chem. SOC.1986,108,345.(0)Tatsumi, K.; Nakamura, A.; Hofmann, P.; Hoffmann, R.; Moloy, K. G.; Marks, T. J.J . Am. Chem. SOC.1986,108, 4467. (p) Koga, N.; Morokuma, K. J . Am. Chem. SOC.1986,108,6136. (3)(a) Masai, H.; Sonogashira, K.; Hagihara, N. Bull. Chem. SOC.Jpn. 1968,41, 750. (b) Fachinetti, G.; Floriani, C. J. Chem. SOC.,Chem. Commun. 1972,654,790. (c) Fachinetti, G.; Floriani, C.J . Organomet. Chem. 1974,71,C5. (d) McDermott, J. X.; Whitesides, G. M. J . Am. Chem. SOC.1974,96,947. (e) McDermott, J. X.; Wilson, M. F.; Whitesides, G. M. J. Am. Chem. SOC.1976,98,6529. ( f ) Demerseman, B.; Bouquet, G.; Bigorgne, M. J. Organomet. Chem. 1975,93,199. (g) de Boer, E. J. M.; ten Cate, L. C.; Staring, A. G . I.; Teuben, J. H. J . Organomet. Chem. 1978,181,61.(h) Dormond, A.;Dahchour, A. J . Organomet. Chem. 1980,193,321.(i) Teuben, J. H.; de Boer, E. J. M.; Klazinga, A. H.; Klei, E. J . Mol. Catal. 1981,13,107. (4)(a) Bertelo, C.A.; Schwartz, J. J. Am. Chem. SOC.1975,97,228. (b) Fachinetti, G.; Floriani, C.; Marchetti, F.; Merlino, S. J . Chem. SOC., Chem. Commun. 1976,522.(c) Fachinetti, G.;Fochi, G.; Floriani, C. J . Chem. SOC.,Dalton Trans. 1977, 1946. (d) Erker, G.; Rosenfeldt, F. Angew. Chem. 1978,90,640. (e) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. SOC.1978,100, 2716. (f) Lappert, M. F.; Luong-Thi, N. T.; Milne, C. R. C. J. Organomet. Chem. 1979,174,C35. (g) Erker, G.; Rosenfeldt, F. J. Organomet. Chem. 1980, 188,C1. (h) Erker, G.; Kropp, K. J. Organomet. Chem. 1980,194,45.(i) Baldwin, J.C.; Keder, N. L.; Strouse, C. E.; Kaska, W. C. 2.Naturforsh. B: Anorg. Chem., Org. Chem. 1980,35B,1289. (i) Wolczanski, P.T.; J. E. Acc. Chem. Res. 1980, 13, 121. (k) Jeffrey, J.; Lappert, M. F.; Luong-Thi, N. T.; Webb, M.; Atwood, J. L.; Hunter, W. E. J. Chem. SOC., Dalton Trans. 1981,1593. (1) Bristow, G. S.; Lappert, M. F.; Martin, T. R.; Atwood, J. L.; Hunter, W. E. J . Chem. Soc., Dalton Trans.

0276-7333/87/2306-2290$01.50/0 0 1987 American Chemical Society

Organometallics, Vol. 6, No. 11, 1987 2291

Reaction of Metal Tetraorganyls with CO Table I. Products of R,M/CO Reactions ( M = Ti. Zr. Hfl" RAM primary product subsequent products R \ /R /M \ R R

Bz-C-Bz

Bz,Ti

/I

Bz4Hf

t

CO

-

1-

Scheme I

["\ML:o 'CB.

R'

1

R, / MR, 2 , R \ reductive wR-C-R

3

2

t;

[RIM]

4

5

B~-CHOH-BZ Bz-Bz, BzH ( N a ~ h m e ) ~ T i Naphme-C-Naphrne ll 0

Naphme, Naphme

,c=c

,NaDh

H '

M : Ti, Hf, R : Bz, Naphrne

Zr

R : Nophrne, Nor

Naphme >CH-C-Naphme 11 Naphrne

(Naphme),Zr

Scheme I1

0

Naphme-CHOH-Naphme Naphme-Naphme, NaphmeH (l-Nor),Ti (l-Nor),Zr

no reaction

1

6

7

8

Nor-CHOH-Nor Nor-Nor, NorH 9 rl

M: Ti, Hf,

2r

Naph

Q;

i :Ph, Noph

R: B r , Nophrne, R : Nnphme

,

R': Noph

Naphrne = QCti2-. Scheme I11

T h e group IV (4)peralkyls (l),used as starting materials, were prepared by published procedures: Bz4Til8 (la), Bz4Hf1' (lb), ( 1 - N a ~ h m e ) ~(M M = T i (IC), Zr (ld), Hf (le),ls (l-Nor),Tilg (10,

(5) (a) Attridge, C. J.; Dobbs, B.; Maddock, S. J. Organomet. Chem. 1973,57, 255. (b) Demin, E. A.; Tshalganov, E. M.; Kurtshenko, E. H. Zh. Obshch. Khim. 1976,46, 2561. (6) Calderazzo, F. Pure Appl. Chern. 1973, 33, 453. (7) m e r , A.; Thiele, K.-H.; PHlyi, G.; MarkB, L. J. Organornet. Chern. 1980, 193, C31.

(8) Sorkau, A.; Thiele, K.-H.; Galamb, V.; Payi, G. 2. Allg. Anorg. Chem. 1986,532,47. (9) The comparison of the reactivity of early- (Ti, Zr, Hf) and late(Co) transition-metal alkyl derivatives toward CO is one of the main goals of the cooperation between o w laboratories. Compare ref lh, 2j, 7,8, and 10.

(IO)(a) Nagy-Magos, Z.; Bor, G.; MarkB, L. J. Organornet. Chem. 1968, 14, 205. (b) PHlyi, G.; Galamb, V.; RBder, A. Atti Accad. Sci. Bologna, Cl. Sci. Fis. 1981, 269(13/8), 67. (c) Galamb, V.; Payi, G.; Cser, F.; Furmanova, M. G.; Struchkov, Yu. T. J. Organomet. Chem. 1981,209, 183. (d) Galamb, V.; Pilyi, G.; J.Chern. Soc., Chem. Commun. 1982,487. (11) (a) Herzog, S.; Dehnert, J. 2. Chem. 1964, 4, 1. (b) Shriver, D. F. 'Manipulation of Air-Sensitive Compounds"; McGraw-Hill: New York; 1969. (12) (a) Simon, A.;Otvos, I.; Payi, G. KQm.Kozl. 1972, 37, 81. (b) Alexander, G.; Garzb, G.; PHlyi, G. J. Chromatogr.' 1974, 91, 25. (13) (a) Eight Peak Index of Mass Spectra; Publishing Mass Spectrometry Data Centre, AWRE Reading, Aldermaston, 1970; Vols. I, Ii. (b) Atlas of Mass Spectral Data; Stenhagen, E., Abrahamsson, S., McLafferty, F. W.; Eds., Interscience: New York, 1969; Vols. 1-3. (14) Leading references. Benzyl derivatives: (a) Grubb, H. M.; Meyerson, S. In Mass Spectrometry of Organic Zons; McLafferty, F. W., Ed.; Academic: New York, 1963; pp 453-527. (b) Smith, D. H. Anal. Chem. 1972, 44, 536. (c) Gillis, R. G. Org. Mass Spectrom. 1971, 5, 79. Naphthylmethyl compounds: (d) Alpin, R. T.; Safe, S. Chem. Commun. 1967, 140. (e) Schwarz, H.; Bohlmann, F. Org. Mass Spectrorn. 1973, 7, 23. Norbornyl compounds: (0 Goto, F.; Tetematsu, A.; Hata, Y.; Muneyuki, R.; Tanida, H.; Tori, R. Tetrahedron 1966,22, 2213. ( 9 ) Meyerson, S.; Weitkamp, A. W. Org. Mass. Spectrom. 1968, 1, 659. (h) Golovkina, L. S.; Rusinova, G. V.; Sokolova, I. M.; Matveeva, I. A.; Gervita, A. S. Org. Mass Spectrom. 1979, 14, 629. (i) Matveeva, I. A.; Sokolova, I. M.; Golovkina, L. S.; Belikova, N. A.; Rusinova, G. V.; Kovalenko, L. I., Zzu. Akad. Nauk SSSR,Ser. Khim. 1981,2, 319. (15) See, for example: Beynon, J. H. Mass Spectrometry and its Applications to Organic Chemistry; Elsevier: Amsterdam, 1960; pp 424-432. (16) Zdunneck, P.; Thiele, K.-H. J. Organomet. Chem. 1970,22,659. (17) Felten, J. J.; Andersen, W. P. J. Organomet. Chem. 1972,36,87. (IS)Scholz, J.; Thiele, K.-H. 2.Anorg. Allg. Chem. 1986, 541, 116. (19) Bower, B. K.; Tennent, H. G. J. Am. Chem. SOC.1972,94, 2512.

'I3

1

1

??

14

R~MO-C-C-OMR~

R3Mk IC, IC,

]

H"o-C-[-O ?? RH ..

J

+

16

8

18

M : T i , H f , R . 8 2 , Naphme,

M: Zr, R Nophrne, Nor

and (l-Nor),Zrm (lg). Other materials were of commercial origin or prepared by standard procedures. Reaction of R4MCompounds with Carbon Monoxide. T h e RIM compound (1.1 mmol) was dissolved in 30 m L of toluene under Ar. Then the solution was transferred into a thermostated reaction vessel equipped with a magnetic (external) stirrer and a gas burette. T h e atmosphere was changed t o CO and the solution was stirred for 40 h at 25 "C. Subsequently the reaction mixture was cooIed to -40 "C, and 5-10 m L of dry, cold methanol was added ( p r o t o l y ~ i s )still ~ ~ under , ~ ~ ~ exclusion ~~ of air. (The Ti-containing reaction mixtures were brown and discolored upon protolysis. T h e others were colorless already before addition of the methanol.) T h e n t h e reaction mixture was left t o warm t o room temperature, the solvents were evaporated at reduced pressure, and t h e solid residue was analyzed as described above. T h e mass spectral data are tabulated in Table I11 (supplementary material).

(20) Dimitrov, V.; Thiele, K.-H.; Schenke, D. Z. Anorg. Allg. Chem. 1985, 527, 85. (21) (a) Zucchini, U.; Giannini, U.; Albizzati, E.; DAngelo, R. J. Chem. SOC.,Chem. Commun. 1969,1174. (b) Zucchini, U.; Albizzati, E.; Giannini, U. J. Organornet. Chem. 1971,26,357. (c) Bower, B. K.; Tennent, 1972,94, 2512. (d) Collier, M. R.; Lappert, M. H. G. J. Am. Chem. SOC. F.; Pearce, R. J. Chem. Soc., Dalton Trans. 1973,445. (e) Lappert, M. F.; Patil, D. S.; Pedley, J. B. J. Chern. Soc., Chem. Commun. 1975,830. (0 Basso-Bert, M.; Gervais, D. J. Organornet. Chern. 1979, 165, 209.

Thiele et al.

2292 Organometallics, Vol. 6, No. 11, 1987 Table 11. Distribution of t h e Main Reaction Products of RdM products”eb% R2CH-C-R

c

R-C-R

M Ti Hf Ti Zr Hf Zr

R PhCHZdse PhCH,‘ Naphmef Naphmef Naphme’ Nore

il

8-11 3 48 53 42 50

R?C=C