12 Effects of Metal Ions on Imidazole Catalysis of the Mutarotation of Glucose NORMAN C. LI and LUCY JEAN University, Pittsburgh,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
Duquesne
Pa.
The rates of mutarotation of glucose in the absence and presence of imidazoles and metal ions have been measured at 25° and pH 4 to 7. Under the experimental conditions, only the imidazole free bases serve as catalysts, and the rate constants of mutarotation obey the equations k = 0.0104 + 1.14 (imidazole) and k = 0.0104 + 0.14 (benzimidazole). The difference in catalytic coefficients is related to the difference in pK's. In the presence of metal ions which complex with the imidazoles, the rates of mutarotation decrease because of decrease in the concentration of imidazole free base. The concentrations of the latter derived from kinetic data, agree with values calculated from equilibrium pH data. Glucosamine hydrochloride is glucose with a hydroxyl group replaced by -NH +. From pH 4 to 7, the basic amino group in glucosamine serves as an intramolecular catalyst. In the presence of metal ions, rates of mutarotation decrease; the effect of metal complexation is smaller for glucosamine than for intermolecular catalysis by imidazole. A mechanism for the intramolecular catalysis of mutarotation is proposed. 3
p u r d et al.
(8)
h a v e m e a s u r e d t h e r e a c t i v i t y o f i m i d a z o l e k i n e t i c a l l y b y its a b i l i t y
to c a t a l y z e t h e h y d r o l y s i s o f p - n i t r o p h e n y l a c e t a t e i n t h e a b s e n c e a n d p r e s e n c e o f Zn(II)
or
Cu(II)
determined
of m e a s u r i n g A
ion.
The
interaction
the
c o n c e n t r a t i o n of i m i d a z o l e
s i m i l a r s t u d y is r e p o r t e d h e r e o n t h e
catalyze the Cd(II),
between
imidazole
and
f r o m the rate d a t a a n d f r o m e q u i l i b r i u m p H values;
and
mutarotation Ca(II)
ions.
mutually
was
methods
compatible.
ability of i m i d a z o l e a n d b e n z i m i d a z o l e
of D - g l u c o s e The
free b a s e are
m e t a l ions the two
in the
metal
ions
absence
and
themselves
at
presence a
of
concentration
0 . 0 2 M d o not c a t a l y z e the m u t a r o t a t i o n a n d the d e c r e a s e i n the rate of c a t a l y s i s i n t h e p r e s e n c e o f m e t a l i o n s is d u e to i n t e r a c t i o n
Ni
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
of
imidazole
between imidazole
174
to
(II),
and
LI AND JEAN metal ions. lated
175
Metal Ion Effect on Imidazole Catalysis
T h e concentrations
f r o m the
rate d a t a
are
of i m i d a z o l e a n d b e n z i m i d a z o l e free base
i n satisfactory
derived f r o m equilibrium p H data.
agreement
with
the
calcu-
concentrations
T h e results of a n i n t r a m o l e c u l a r catalysis
m u t a r o t a t i o n a n d of t h e m e t a l i o n effects are
of
presented.
Experimental Materials. obtained
Imidazole, benzimidazole, and
from
the
Eastman
Kodak
Co., and
glucosamine
used
without
hydrochloride
after d r y i n g for several d a y s over a n h y d r o u s c a l c i u m c h l o r i d e . nickel nitrate
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
glyoxime.
and nickel chloride were
Stock solutions of
analyzed b y precipitation with
S t o c k solutions of c a d m i u m nitrate
were
were
further purification, dimethyl-
analyzed gravimetrically
by
c o n v e r s i o n to c a d m i u m s u l f a t e . Measurement.
Rotations were measured with a R u d o l p h
electric polarimeter operating f r o m a s o d i u m v a p o r l a m p . through 20-cm. 0.1°.
The
on
the
mutarotation
over two half lives.
h y d r o c h l o r i d e i n the presence m e t a l salt,
200
was
photo-
circulated
t u b e s w i t h g l a s s e n d p l a t e s , f r o m a b a t h m a i n t a i n e d at 2 5 . 0 °
runs
dependence
Model
Water
it w a s n e c e s s a r y
D-glucose showed
of
In studies o n the
mutarotation
of v a r y i n g c o n c e n t r a t i o n s
to a d d t h e
alkali
first,
excellent of
±
first-order
glucosamine
of s o d i u m h y d r o x i d e a n d
then the
metal
salt,
to
avoid
precipitation.
Results and
Discussion
T h e r a t e c o n s t a n t , k, o f m u t a r o t a t i o n is g i v e n b y t h e e q u a t i o n
*
t
=
° (RT^RZ)
l o g ,
w h e r e t is t i m e i n m i n u t e s , a n d R , R ( )
final
, and R
œ
(
are t h e initial a n g l e of rotation,
t
e q u i l i b r i u m a n g l e , a n d t h e a n g l e at t i m e f, r e s p e c t i v e l y .
Roo) vs.
t g i v e straight lines a n d the rate constant,
k,
is r e p r o d u c i b l e t o
T h e rates of m u t a r o t a t i o n of g l u c o s e , i n the p r e s e n c e zole a n d of 0 to 0 . 2 3 0 M stant d a t a are g l u c o s e vs.
P l o t s of l o g
1
)
the
{R
t
—
±2 /c r
of 0 to 0 . 2 3 8 M
imida-
b e n z i m i d a z o l e at 2 5 ° , h a v e b e e n m e a s u r e d ; t h e r a t e c o n -
g i v e n i n T a b l e I.
L i n e a r plots of the
o b s e r v e d rate constants
the m o l a r i t y of i m i d a z o l e or b e n z i m i d a z o l e ( I m or B I m )
for
are o b t a i n e d .
T h e straight lines f o l l o w the equations k = ko + k
where k and k
are i n m i n .
0
free bases,
1
and
k
+
0
fc
* B i
(2
(BIm)
m
and k
Ini
(Im)
lm
(3)
are the catalytic coefficients of the
m m
imidazole a n d benzimidazole, respectively,
T h e values of k
im
A
-
=
k
and
fc
BIm
i n liters p e r m o l e m i n u t e .
a r e l i s t e d i n T a b l e I.
p l o t of the o b s e r v e d rate constants
for glucose w i t h T
tration of i m i d a z o l e , does not y i e l d a straight line.
I
m
, the total
concen-
T h i s is s h o w n b y t h e v a l u e s o f
k' l i s t e d i n T a b l e I, w h e r e k' = T h e constancy of the values of
(k — k )/T 0
k
lm
and
(4)
lm
k , BIm
rather than the values of
T a b l e I s u g g e s t s t h a t t h e b a s i c f o r m o f i m i d a z o l e o r b e n z i m i d a z o l e is t h e s p e c i e s , a n d t h a t t h e i m i d a z o l i u m o r b e n z i m i d a z o l i u m i o n is n o t . t i o n is i n a g r e e m e n t
w i t h t h a t of G u r d
(8)
This
in
interpreta-
a n d of B r u i c e a n d S c h m i r (3)
c a t a l y z e d hydrolysis of p - n i t r o p h e n y l acetate b y i m i d a z o l e .
k',
catalytic
on
the
Bronsted and Guggen-
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
ADVANCES IN CHEMISTRY SERIES
176 Table I.
Imidazole Catalysis of Mutarotation of D-Glucose, 0.27Μ, 25° A.
(Im), M
(Him*),
0.000 0.030 0.040 0.050 0.080
Imidazole, p K
M
A
= 7.08 k'
k
0.000 0.150 0.079 0.150 0.158
0.0104 0.0458 0.0568 0.0667 0.0977 Av.
Β.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
(BIm)
Benzimidazole, p K
0.000 0.075 0.0375 0.150 0.150
A
1.14
= 5.53
k
^Blm
k'
0.0104 0.0138 0.0161 0.0171 0.0125
0.14 0.14 0.13 0.14
0.03 0.08 0.03 0.05
(HBIm^)
0.000 0.025 0.0375 0.050 0.080
Av.
heim
(2)
in the a c i d dissociation constant, K . =
10- , k 5
A
— 2 X 10~ .
Since the values of K
3
zole are m u c h smaller, 8 X
-
8
A
of glucose b y
increases w i t h
increase
for imidazole a n d benzimida
A
10
k,
T h e s e authors list f o r t r i m e t h y l a c e t i c a c i d :
A
A
0.14
h a v e g i v e n values for the catalysis of the mutarotation
acids a n d h a v e s h o w n that t h e a c i d catalytic constant,
K
0.20 0.39 0.28 0.37
1.18 1.16 1.13 1.09
and 3 X
10
_ G
, respectively, their a c i d
constants w o u l d b e e x p e c t e d to b e s m a l l e r t h a n 1 0
_ 3
.
catalytic
A n y catalysis b y the i m i d a -
z o l i u m or b e n z i m i d a z o l i u m i o ntherefore w o u l d b e undetected. Bruice tives, k
îm
and Schmir
(3)
have
s h o w n that
f o r a series
mate measure of base strength, the value of k pK . A
T a b l e I s h o w s t h a t t h i s is i n d e e d t h e c a s e .
Brônsted k
H
constant
eight
times
and Guggenheim
andp K
A
larger
(2)
than
that
A
is a n a p p r o x i -
should increase w i t h increase in
îm
catalytic
of imidazole deriva
d e p e n d s o n the base strength of the catalyst a n d since p K
Imidazole, p K
A
=
7.08, has a
of b e n z i m i d a z o l e , p K
A
=
5.53.
have obtained a linear relationship between l o g
f o r a series o f c a r b o x y l i c a c i d s i n t h e p K
A
range of 2 to 5, w h e r e k
]{
is
the carboxylate anion basic catalytic constant for the mutarotation of glucose a n d K
A
is t h e a c i d d i s s o c i a t i o n c o n s t a n t
of the a c i d .
O u r results f o r i m i d a z o l e a n d
b e n z i m i d a z o l e fit f a i r l y w e l l i n t o t h e B r ô n s t e d p l o t . F o r t h e m u t a r o t a t i o n o f g l u c o s e i n a q u e o u s m e d i a a n d at 2 5 ° , L i et al. obtained the equation k — 0.0102 + tion (9)
is k =
4- 0 . 2 5 8
(H+).
0.0104 +
0.283
( H + ), w h i l e K u h n a n d Jacob's
0 . 3 3 4 ( H + ) a n d H u d s o n ' s e q u a t i o n (6)
is k =
(12) equa-
0.0096
T h e p H r a n g e o f t h e e x p e r i m e n t a l s o l u t i o n s l i s t e d i n T a b l e I is
f r o m 4 . 8 5 t o 6 . 8 , a n d it is o b v i o u s t h a t t h e c a t a l y t i c e f f e c t o f h y d r o g e n i o n i n o u r experiments
is e n t i r e l y n e g l i g i b l e .
Using
i m i d a z o l e a n d b e n z i m i d a z o l e as c a t a -
lysts, o u r e q u a t i o n s a r e : k = 0.0104 +
1.14 ( I m )
(5)
k = 0.0104 + 0.14 ( B I m )
(6)
A s c h e m e f o r the i m i d a z o l e catalysis of t h e m u t a r o t a t i o n of glucose, similar to the " c o n c e r t e d " m e c h a n i s m p r o p o s e d b y S w a i n a n d B r o w n
(13),
is s h o w n b e l o w ,
i n w h i c h a p r o t o n is t r a n s f e r r e d f r o m t h e υ - g l u c o s e t o i m i d a z o l e o r b e n z i m i d a z o l e a n d f r o m the H
2
0 ( r e p r e s e n t e d as a n a c i d ) t o t h e D - g l u c o s e i n t h e r a t e - d e t e r m i n i n g
step.
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
LI AND JEAN
177
Metal Ion Effect on Imidazole Catalysis
H
OH
H
lm
HIm
Ο
+
G H — C — O H
H — G — O H
HO—G—Η
Ο
+
H
2
O H -
HO—G—Η
0
H — G — O H
H — G — O H .J
H—G
H — G — O H
(7)
GH OH
GH OH
2
2
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
H o w e v e r , t h e m e c h a n i s m g i v e n i n E q u a t i o n 7 is n o t n e c e s s a r i l y t h e c o r r e c t one.
E i g e n arid M a a s s
i m i d a z o l e to y i e l d stant o f 1 0 sec.
M~
1
5
M
_
sec.
1
(4,
5)
h a v e f o u n d that the reaction b e t w e e n glucose a n d
imidazolium - 1
a n d glucose
anion has a second-order
rate
con
, w h i l e t h e r a t e c o n s t a n t f o r t h e r e v e r s e r e a c t i o n is 2 X
10
1 0
T h u s t h e i o n i z a t i o n e q u i l i b r i u m is e s t a b l i s h e d b e f o r e m u t a r o t a t i o n o f
- 1
g l u c o s e c a n o c c u r , a n d i t is p o s s i b l e t h a t t h e c a t a l y t i c a c t i o n o f i m i d a z o l e i n v o l v e s the p r e - e q u i l i b r i u m between glucose a n d imidazole, f o r m i n g the i m i d a z o l i u m ion
a n d glucose
anion, a n d the subsequent
reaction
between
them
cat
How
(7).
ever, the reaction of glucose anion w i t h i m i d a z o l i u m i o n cannot b e distinguished stoichiometrically f r o m a reaction between glucose a n d imidazole. The
effects
mutarotation
of m e t a l
ions o n i m i d a z o l e a n d b e n z i m i d a z o l e catalysis
o f g l u c o s e a r e s h o w n i n T a b l e s II a n d I I I , r e s p e c t i v e l y .
centration of i m i d a z o l e ( I m ) or b e n z i m i d a z o l e ( B I m ) free base two ways: and
f r o m p H of the experimental solution a n d the p K
f r o m the rate constants
columns
6
and 7
using
Equation 5
o f T a b l e s II a n d III, t h a t
o r 6.
A
of the
T h e con
is c a l c u l a t e d i n of the imidazole,
It is s e e n ,
the concentration
b y comparing
of i m i d a z o l e or
b e n z i m i d a z o l e f r e e b a s e c a l c u l a t e d f r o m t h e r a t e d a t a is i n g o o d a g r e e m e n t the
concentration
from
rate data,
zole) +
2
calculated from the equilibrium
i t is a s s u m e d t h a t t h e m e t a l
complexes d o not catalyze
p H data.
ions, M +
the mutarotation
2
, a n d the
of glucose.
s u m p t i o n w a s tested b y m e a s u r i n g the rate of mutarotation Ni(N0 ) , 3
and in 0 . 0 1 M C a ( N O
2
: i
) . 2
T h e rate
F r o m t h e increase i n p H a n d rate constant
(metal-imida-
T h e f o r m e r as
of glucose in 0 . 0 1 M
constants
i n these
0 . 0 1 0 4 a n d 0 . 0 1 0 5 , r e s p e c t i v e l y , e s s e n t i a l l y t h e s a m e as i n p u r e
(Im)]
with
In the calculation
media
are
water.
[with c o n s e q u e n t increase i n free
i n g o i n g f r o m e x p e r i m e n t 1 t o 4 i n T a b l e I I , i t is s e e n t h a t t h e s t a b i l i t y o f
the imidazole complexes
is i n t h e o r d e r :
Ni+
>
2
Cd+
2
»
Ca+ . 2
agreement w i t h the order of f o r m a t i o n constants of these complexes t h e f i n d i n g (11) imidazole.
(1),
This
t h a t t h e r e is n o a p p r e c i a b l e i n t e r a c t i o n b e t w e e n c a l c i u m i o n a n d
M o r e o v e r , i n a solution w i t h a n initial c o m p o s i t i o n of 0 . 2 3 8 M
zole a n d 0 . 1 5 8 M
is i n
and with
H C 1 , k w a s f o u n d to b e 0 . 0 9 7 7 m i n . -
i n c r e a s e i n k f o r this s o l u t i o n i n t h e p r e s e n c e o f 0 . 0 2 0 M
1
imida
( T a b l e I ) , so t h a t t h e
C a ( N 0 ) 3
2
(experiment
4
i n T a b l e II) a m o u n t s to o n l y 3.6%. T a b l e s II a n d III d e m o n s t r a t e constant free
a n d p H decrease
a b u n d a n t l y that i n a g i v e n m e d i u m the rate
(with a c c o m p a n y i n g decrease i n the concentration
imidazole or b e n z i m i d a z o l e )
with
increase
i n concentration
of
of metal i o n .
T h i s is as e x p e c t e d , b e c a u s e t h e r e is g r e a t e r c o m p l e x a t i o n i n a g i v e n m e d i u m w h e n the concentration of the m e t a l i o n increases. The ing
m e t a l c o m p l e x o f b e n z i m i d a z o l e is m u c h less s t a b l e t h a n t h e c o r r e s p o n d
complex of imidazole.
experiment
T h u s a comparison of experiment
1 i n T a b l e III shows that starting
1 i n T a b l e II a n d
w i t h e q u a l concentrations
u n c h a r g e d l i g a n d , t h e ratios o f the c o m p l e x e d l i g a n d p e r m o l e o f N i ( I I )
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
of the
are e q u a l
ADVANCES IN CHEMISTRY SERIES
178 Table II.
Effects of Metal Ions on Imidazole Catalysis of Mutarotation of Glucose at 25°
Initial Total Concn. Expt. No.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
1 2 3 4 5 6 7 8
Metal salt Ni(N0 NiCl Cd(N0 Ga(N0 NiCl , Gd(N0 Ni(N0 Ni(N0
)
3
2
3
2
2
3
3
3
2
2
2
Table III.
From H
From rates
0.025 0.026 0.037 0.079 0.061 0.066 0.008 0.013
0.025 0.027 0.037 0.080 0.060 0.066 0.010 0.015
P
0389 0413 0532 1013 0785 0851 0223 0273
0 0 0 0 0 0 0 0
6.28 6.29 6.45 6.78 6.67 6.70 5.90 6.11
158 158 158 158 158 158 120 120
0 0 0 0 0 0 0 0
k, Min.-'
pH
HCl
0.238 0.238 0.238 0.238 0.238 0.238 0.150 0.150
0.020ΛΤ 0.020 ) , 0.020 ) 0.020 0.006 ) 0.006 ) 0.010 ) 0.007 2 )
3
2
(Im)
Imida zole
Effect of Ni(ll) on Benzimidazole Catalysis of Mutarotation of Glucose at 2 5 °
Initial Total Molar Concn. Expt. No. 1 2 3 4 5 6
Ni(N0 )
3 2
HCl
0.230 0.230 0.200 0.200 0.150 0.120
0.150 0.150 0.150 0.150 0.100 0.090
0.020 0.010 0.020 0.010 0.010 0.020
to 2 . 7 5 a n d 1 . 1 5 , r e s p e c t i v e l y , L a n e a n d Q u i n l a n (10)
k, Min.-'
H
P
From rates
0.056 0.070 0.031 0.040 0.042 0.016
0.057 0.069 0.032 0.043 0.040 0.018
P
0.0184 0.0200 0.0149 0.0164 0.0160 0.0129
5.10 5.20 4.84 4.95 5.15 4.78
From H
for the imidazole a n d benzimidazole
complexes.
carried out p H titration of b e n z i m i d a z o l e i n the presence
of N i ( I I ) , a n d reported
that they
hydrolysis of the metal ion. that t h e N i (II)
(BIm)
Benzimi dazole
could not study the complexation
In our experiments
ion d i d not hydrolyze.
because of
t h e p H v a l u e s a r e l o w e n o u g h so
T h e weaker
complex-forming ability of
b e n z i m i d a z o l e , as c o m p a r e d w i t h i m i d a z o l e , m a y b e a s c r i b e d t o t h e s m a l l e r p K
A
a n d possible steric h i n d r a n c e i n the f o r m e r l i g a n d . G l u c o s a m i n e h y d r o c h l o r i d e is g l u c o s e atom 2 replaced b y —N H + . 3
with the hydroxyl group
o n carbon
W h e n a n a l k a l i is a d d e d t o a n a q u e o u s s o l u t i o n o f
g l u c o s a m i n e h y d r o c h l o r i d e , g l u c o s a m i n e is p r o d u c e d , a n d t h e b a s i c a m i n o a c t s as a n i n t r a m o l e c u l a r c a t a l y s t f o r t h e m u t a r o t a t i o n o f g l u c o s e . shown in Table I V .
T h e rate constant of mutarotation
group
T h e results are
o f g l u c o s a m i n e is a l i n e a r
function of the s o d i u m h y d r o x i d e concentration; i n each r u n 0.500 g r a m of glucos a m i n e h y d r o c h l o r i d e is a d d e d t o 1 0 m l . o f t h e a l k a l i s o l u t i o n .
T h e p H values
for t h e e x p e r i m e n t a l solutions v a r y f r o m 3.8 to 6.6 a n d , i n this range, h y d r o g e n or h y d r o x y l i o n catalysis
should b e negligible.
T h e basic
amino group
i n glucos
a m i n e t h e r e f o r e is t h e i n t r a m o l e c u l a r c a t a l y s t a n d t h e d a t a s h o w t h a t t h e — N H + 3
is n o t a c a t a l y t i c
species.
A mechanism for the intramolecular
catalysis
m a y be
represented b y E q u a t i o n 8: H
H
O H \
G I
H—G—ΝΗ·2
ι
HO—G—Η
I
H—G—OH I
H—G
Ο
\
/
I
ι
I
Ο
G
S
H—G—NH +
H
2
0
3
2
(8)
HO—G—H ! H—G—OH
I
H—G—OH
GH OH
+
I
OH"
I
CH OH 2
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
LI AND JEAN It is e a s y
to see f r o m E q u a t i o n 8 w h y — N H +
i o n does
3
mutarotation :
T h e positively charged
hydroxyl
group
0.0114M
Cd(N0 ) >,
same
179
Metal Ion Effect on Imidazole Catalysis
on carbon 3
1.
i o ncannot
When
no N a O H
t h e rate constant
L
as i n t h e a b s e n c e
extract
is a d d e d ,
of mutarotation
of the metal.
n o t catalyze the
the proton
from the
i n the presence of
is 0 . 0 1 2 2 , p r a c t i c a l l y t h e
T h i s is as e x p e c t e d ,
since n o glucosamine
c o m p l e x is p r e s e n t .
Table IV.
Mutarotation of Glucosamine at 2 5 °
(0.500 g r a m of glucosamine h y d r o c h l o r i d e in 10 m l . of s o d i u m h y d r o x i d e solution)
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
c
NaOH
—C i K
k, MlTl.
U C 0 8 a m i n e
0.0000 M 0.0202 0.0364 0.0479 The
1
0.0125 0.0221 0.0302 0.0382
catalysis of m u t a r o t a t i o n o f g l u c o s a m i n e h y d r o c h l o r i d e involves a n intra
m o l e c u l a r m e c h a n i s m , a n d s o t h e c a t a l y t i c c o e f f i c i e n t o f g l u c o s a m i n e . £Γ,ΙΝΗ > m u s t 2
have thedimension, m i n . kT where
- 1
,
instead of liters/mole m i n .
= 0.0125 (GlNHa-O
Τ is t o t a l c o n c e n t r a t i o n
glucosamine ( G 1 N H ) . 2
^GINH
2
is 0 - 1 3 m i n .
- 1
(G1NH )
(9)
2
of complexing metal
i o n , is
of glucosamine hydrochloride ( G l N H
: i
+)
In T a b l e I V , Τ = 0 . 2 3 1 9 M a n d the average value of
W i t h t h i s v a l u e o f k \xn i
.
2
a n d , i n the absence
e q u a l to the s u m of the concentrations and
+ *G,NH
T h e t o t a l r a t e is t h e n
G
2
0.0125 ( Τ - (GINHo))
Equation 9 becomes
0.13 (G1NH ) + ψ 2
τ
(10) -
0.0125 +
°·
1
2
(
^
1
Ν
Η
2
)
F o r the data of T a b l e I V , t h e values of k calculated f r o m E q u a t i o n 10 agree w i t h t h e o b s e r v e d k w i t h i n a b o u t 3%. stant s o d i u m h y d r o x i d e c o n c e n t r a t i o n
E q u a t i o n 10 f u r t h e r p r e d i c t s that at c o n (T >
NaOH),
a n increase
in Τ would be
a c c o m p a n i e d b y a d e c r e a s e i n k, a n d t h i s h a s b e e n e x p e r i m e n t a l l y o b s e r v e d . If t h e last s o l u t i o n i n T a b l e I V c o n t a i n s i n a d d i t i o n 0 . 0 2 2 9 M NiCL>, t h e rate constant d r o p s to 0 . 0 3 1 7 a n d 0 . 0 2 7 8 m i n . - , 1
Equation
10, it c a n b e c a l c u l a t e d that i n t h e p r e s e n c e
C d ( N 0
respectively.
of 0 . 0 2 2 9 M
)
3
or
2
Using
Cd(II) and
N i ( I I ) , the concentration o f g l u c o s a m i n e free base d r o p s f r o m 0 . 0 4 7 9 M to 0.0371 and
0.0296 M , respectively.
A c o m p a r i s o n of these d a t a w i t h experiments
2 and
3 o f T a b l e II s h o w s c l e a r l y that t h e effects o f m e t a l ions o n i n t r a m o l e c u l a r catalysis o f t h e m u t a r o t a t i o n o f g l u c o s a m i n e h y d r o c h l o r i d e a r e less t h a n t h e c o r r e s p o n d i n g effects o n t h e i n t e r m o l e c u l a r i m i d a z o l e c a t a l y s i s o f t h e m u t a r o t a t i o n o f g l u c o s e . By for
a p H titration m e t h o d , w e h a v e o b t a i n e d l o g Κ = 2.0 a n d 2.5, respectively, λ
t h e f o r m a t i o n constants
of the 1 to 1 C d a n d N i complexes
of glucosamine.
These values are about 0.7 l o g unit lower than the corresponding metal
complexes
o f i m i d a z o l e ( 1 ) , so t h a t t h e m e t a l i o n s w o u l d b i n d g l u c o s a m i n e less s t r o n g l y t h a n i m i d a z o l e , a n d h e n c e w o u l d exert a smaller effect.
Moreover, i n intramolecular
catalysis,
of t h e glucose
the catalytic
a m i n o g r o u p is a l r e a d y
part
m o l e c u l e , so
t h a t t h e c a t a l y t i c i n f l u e n c e w o u l d p r o b a b l y b e r e l a t i v e l y less a f f e c t e d b y t h e p r e s ence o f a m e t a l i o n t h a n i n t h e case o f intermolecular catalysis.
O u r data
also
s h o w that N i (II) h a s a greater effect o n i n t r a m o l e c u l a r catalysis t h a n C d ( I I ) , a n d t h i s is t h e s a m e o r d e r as h a s b e e n o b s e r v e d f o r i n t e r m o l e c u l a r c a t a l y s i s .
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.
ADVANCES IN CHEMISTRY SERIES
160 Acknowledgment
The authors are deeply grateful to M . E i g e n , Max-Planck-Institut fur Physikalische Chemie, Gottingen, Germany, for reading the manuscript a n d making valuable suggestions, and to I. S. K i m for carrying out some of the polarimetric measurements.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: January 1, 1962 | doi: 10.1021/ba-1963-0037.ch012
Literature Cited (1) Bjerrum, J., Schwarzenbach, G., Sillén, L. G., "Stability Constants," Spec. Pub. 6, Part I, "Organic Ligands," Chemical Society, London, 1957. (2) Brönsted, J. N., Guggenheim, Ε. Α.,J.Am. Chem. Soc. 49, 2554 (1927). (3) Bruice, T.C.,Schmir, G. L., Ibid., 79, 1663 (1957). (4) Eigen, M., Baker Lectures 1961/62, Cornell University, Ithaca, Ν. Y. (5) Eigen, M., Maass, G., private communication. (6) Hudson, C. S., Sawyer, H. L.,J.Am. Chem. Soc. 39, 470 (1917). (7) Kilde, G., Wynne-Jones, W. F. K., Trans, Faraday Soc. 49, 243 (1953). (8) Koltun, W. L., Dexter, R. N., Clark, R. E., Gurd, F. R. N.,J.Am. Chem. Soc. 80, 4188 (1958). (9) Kuhn, R., Jacob, P., Z. physik. Chem. 113, 389 (1924). (10) Lane, T. J., Quinlan, K. P.,J.Am. Chem. Soc. 82, 2994 (1960). (11) Li, N.C.,Chu, T. L., Fujii, C. T., White, J. M., Ibid., 77, 859 (1955). (12) Li, Ν.C.,Kaganove, Α., Crespi, H. L., Katz, J. J., Ibid., 83, 3040 (1961). (13) Swain, C. G., Brown, J. F., Ibid., 74, 2534, 2538 (1952). RECEIVED August 27, 1962. Work supported by the U. S. Atomic Energy Commission through Contract No. AT(30-1)-1922.
Busch; Reactions of Coordinated Ligands Advances in Chemistry; American Chemical Society: Washington, DC, 1962.