Chapter 27
of
Reactions of Model Compounds Biomass-Pyrolysis Oils over ZSM—5 Zeolite Catalysts
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
Le H . Dao, Mohammed Haniff, André Houle, and Denis Lamothe Laboratoire de Recherche Sur les Matériaux Avancés, INRS-Energie, Institut National de la Recherche Scientifique, 1650, Montée Sainte—Julie, Varennes, Quebec J 0 L 2P0, Canada
The catalytic conversion of model compounds (e.g. cyclopentanone, cyclopentenone, furfural, glycerol, glucose, fructose and their derivatives usually found in the pyrolysis oils of biomass materials) to hydrocarbon products over H-ZSM-5, Zn-ZSM-5 and Mn-ZSM-5 zeolite catalysts have been studied in a fixed bed microreactor at temperatures ranging from 350°C to 500°C. Although the deoxygenation of cyclopentanone was completed at 400°C, low yields of hydrocarbons were obtained for furfural, glycerol and carbohydrate derivatives. This is due possibly to thermal polymerization at reaction temperatures of 400°C and higher. Increasing the (H/C) ratio of the feed with methanol increased significantly the hydrocarbon yield of furfural but not that of carbohydrates. Reaction mechanisms for deoxygenation and tar formation are proposed. eff
I t has been shown t h a t s y n t h e t i c z e o l i t e s such as ZSM-5 c a n be used t o c o n v e r t oxygenated compounds d e r i v e d from biomass m a t e r i a l s i n t o h y d r o c a r b o n s which c a n be used as f u e l s o r c h e m i c a l s f e e d s t o c k s (1,2,3,4). However, t h e p y r o l y s i s o i l s o b t a i n e d from biomass mater i a l s by d i f f e r e n t t h e r m a l and t h e r m o c h e m i c a l p r o c e s s e s (5,6) showed poor h y d r o c a r b o n y i e l d s and h i g h t a r c o n t e n t when c o n t a c t e d o v e r ZSM-5 z e o l i t e c a t a l y s t s a t h i g h temperatures ( 7 , 8 ) . S i n c e the p y r o l y s i s o i l s a r e composed o f a wide v a r i e t y of oxygenated compounds s u c h as c y c l o p e n t a n o n e , c y c l o p e n t e n o n e , f u r f u r a l , p h e n o l , c a r b o h y d r a t e and c a r b o x y l i c a c i d d e r i v a t i v e s (9,10); i t i s d i f f i c u l t to p o i n t out e x a c t l y which f a m i l y o f compounds i s c o n t r i b u t i n g more t o the o b s e r v e d t a r and t o t h e r a p i d d e a c t i v a t i o n o f the c a t a l y s t s . C a t a l y t i c s t u d i e s on model compounds which a r e u s u a l l y found i n t h e biomass p y r o l y s i s o i l s a r e t h e r e f o r e p r i m o r d i a l i n o r d e r t o d e t e r m i ne t h e b e s t c a t a l y t i c system f o r the u p - g r a d i n g o f p y r o l y s i s o i l s t o u s e f u l h y d r o c a r b o n p r o d u c t s . The r e a c t i o n s of some p h e n o l i c , c a r b o n y l and c a r b o x y l i c a c i d d e r i v a t i v e s over ZSM-5 c a t a l y s t s a r e a l r e a d y
0097-6156/88/0376-0328$06.00/0 © 1988 American Chemical Society
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
27. DAO ET AL.
Model Compounds of Biomass-Pyrolysis Oils
329
reported (7,11). The p r e s e n t paper thus r e p o r t s t h e r e s u l t s f o r t h e conversion of cyclopentanone, cyclopentenone, furfural, glycerol, g l u c o s e and f r u c t o s e , and t h e i r i s o p r o p y l e n e d e r i v a t i v e s over H-ZSM5 and Zn and Mn-exchanged ZSM-5 z e o l i t e c a t a l y s t s a t temperatures r a n g i n g from 350°C t o 500°C. Some r e a c t i o n s a r e supplemented w i t h methanol i n t h e i r f e e d s , so as t o determine t h e e f f e c t of i n c r e a s e d (H/C) r a t i o ( s e e T a b l e 1 f o r d e f i n i t i o n ) on t h e d e o x y g e n a t i o n yields. e f f
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
Experimental P r e p a r a t i o n and c h a r a c t e r i z a t i o n o f t h e c a t a l y s t s . The s y n t h e s i s of t h e sodium form o f ZSM-5 was done a c c o r d i n g t o p r o c e d u r e #2 g i v e n i n t h e p a t e n t of Derouane and V a l y o c s i k ( 1 2 ) . The o n l y d i f f e r e n c e was t h e use of s i l i c a f i b e r (Strem C h e m i c a l s ) i n s t e a d o f s i l i c a g e l powder. The Na-ZSM-5 z e o l i t e was exchanged s e v e r a l times w i t h 10% aqueous s o l u t i o n o f Ν Η ^ Ν 0 (10 ml p e r g of z e o l i t e ) a t 80°C. The z e o l i t e was then d r i e d a t 100°C and c a l c i n a t e d a t 500°C so as t o o b t a i n t h e H-ZSM-5 c a t a l y s t . Mn-ZSM-5 c a t a l y s t was p r e p a r e d by h e a t i n g t h e ammonium exchanged z e o l i t e w i t h a 10% s o l u t i o n of manga nese n i t r a t e a t 80°C f o r 3 hours (10 ml p e r g z e o l i t e ) . A f t e r wash ing and d r y i n g , t h e c a t a l y s t was c a l c i n a t e d a t 500°C. Zn-ZSM-5 c a t a l y s t was p r e p a r e d i n a s i m i l a r f a s h i o n t o t h a t of t h e manganese f o r m u s i n g a 10% s o l u t i o n of z i n c n i t r a t e . The X-ray d i f f r a c t i o n p a t t e r n o f the z e o l i t e i s s i m i l a r t o those r e p o r t e d i n t h e l i t e r a t u re. The c h e m i c a l c o m p o s i t i o n i s shown i n T a b l e 1. 3
P r e p a r a t i o n o f t h e c a r b o h y d r a t e i s o p r o p y l e n e d e r i v a t i v e s ( 1 3 ) . 20 g of the c a r b o h y d r a t e was mixed w i t h 250 ml of acetone and 10 ml o f cone. I1 S0^. The m i x t u r e was s t i r r e d a t room temperature f o r about 24 hours and then f i l t e r e d t o remove any u n r e a c t e d s o l i d . The f i l t r a t e was n e u t r a l i z e d w i t h s o l i d NaHC0 d r i e d o v e r MgSO^, f i l t e r e d and t h e excess acetone was removed on a r o t a r y e v a p o r a t o r t o y i e l d the y e l l o w s o l i d d e r i v a t i v e s . 2
3
Apparatus. The c a t a l y t i c c o n v e r s i o n was s t u d i e d i n a c o n t i n u o u s f l o w q u a r t z m i c r o r e a c t o r w i t h a f i x e d - b e d o f d i l u t e d c a t a l y s t s . The r e a c t i o n c o n d i t i o n s a r e r e p o r t e d i n T a b l e 1. A f t e r an e x p e r i m e n t a l r u n (about 3 t o 4 h o u r s ) , t h e t a r on t h e c a t a l y t i c bed was d e t e r m i ned by t a k i n g the d i f f e r e n c e i n weight of t h e r e a c t o r b e f o r e and a f t e r p l a c i n g i t i n a f u r n a c e s e t a t 500°C i n t h e p r e s e n c e o f a i r . The r e a c t i o n p r o d u c t s were a n a l y z e d by GC and GC/MS ( T a b l e 1 ) . Results F i g u r e 1 shows the y i e l d s o f c o n v e r s i o n and the p r o d u c t s d i s t r i b u tion (Cj'Cg h y d r o c a r b o n s , a r o m a t i c , p o l y a r o m a t i c s and t a r ) as a f u n c t i o n of r e a c t o r temperature f o r pure c y c l o p e n t a n o n e over H-ZSM5 / b e n t o n i t e (80/20 Wt.%) c a t a l y s t . The c o n v e r s i o n i s completed a t 350°C. The main r e a c t i o n i s a t h e r m a l d e c a r b o n y l a t i o n of c y c l o p e n tanone, g i v i n g h y d r o c a r b o n fragment t h a t r e a c t s f u r t h e r on t h e c a t a l y t i c bed t o produce a l i p h a t i c , a r o m a t i c and p o l y a r o m a t i c h y d r o carbons. C y c l o p e n t e n o n e which i s p a r t i a l l y deoxygenated (32%) over H-ZSM-5/bentonite (80/20 Wt.%) a t 450°C, c a n be c o m p l e t e l y c o n v e r t e d
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
330
PYROLYSIS OILS FROM BIOMASS TABLE 1 C h e m i c a l c o m p o s i t i o n o f ZSM-5 samples Component (WT%) Na 0 Al 0~ 2
o
sio
2
3
MnO ZnO Ti0 L.O.I.*
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
2
Zn-ZSM-5
H-ZSM-5
Mn-ZSM-5
0.55 2.25 86.86
0.69 2.33 91.05 0.78
0.59 7.02
0.64 3.26
0.26 0.38 6.68
65.47 0.40
66.32 0.49
70.80 0.38
0.49 2.10 87.62
Molar Ratio
sio M i o 2
Na 0/Al 0 2
2
3 3
* L.0.1. means l o s s on i g n i t i o n o f sample w e i g h t . REACTION CONDITIONS C a t a l y s t weight Temperature Pressure I n e r t gas WHSV ** R e a c t i o n time **
The weight h o u r l y
10 g ( 8 0 % ZSM-5 + 20% b e n t o n i t e ) 350-560°C atmospheric pressure h e l i u m (~ 3 mfc/min) variable 3 hours
space v e l o c i t y (WHSV) i s d e f i n e d a s : WHSV
β
g o f i n j e c t e d feed per hour g of c a t a l y s t
ANALYTICAL CONDITIONS •
Gas chromatography: HP 5890 GC w i t h DB-5 (SE-54) column (30m χ 0.25mm, 1.0 μ ) For l i q u i d : 70°C (4 m i n ) , t h e n 4°C/min t o 160°C t h e n 20 m i n a t 160°C Gas : 33°C ( i s o t h e r m a l ) • GC/MS : HP 5890 GC and MS d e t e c t o r Pona column and DB-5 column HYDROGEN/CARBON EFFECTIVE RATIO ( l i a ) The e f f e c t i v e hydrogen i n d e x (EHI) i s d e f i n e d a s : EHI
(H/C) e f f
H
20 - 3N
2S
where H, C, 0, Ν and S a r e atoms p e r u n i t weight o f sample of* hydro gen, carbon, oxygen, n i t r o g e n and s u l f u r , r e s p e c t i v e l y .
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
27. DAO ET AL. to hydrocarbons
Model Compounds of Biomass-Pyrolysis Oils
331
by the a d d i t i o n of methanol t o the f e e d ( c y c l o p e n t e -
none /methanol 70/30 Wt.%). T a b l e 2 shows the r e a c t i o n of pure f u r f u r a l ( ( H / C ) =* 0) o v e r v a r i o u s c a t i o n exchanged ZSM-5 c a t a l y s t s a t 400°C. The h y d r o c a r b o n y i e l d s range from 6.6 t o 9.4% and the oxygenated compounds y i e l d s v a r y from 25.6 t o 50%. These v a l u e s r e f l e c t the poor performance of a l l the t h r e e c a t a l y s t s i n d e o x y g e n a t i n g f u r f u r a l . The l a r g e quant i t i e s of f u r a n and CO o b s e r v e d a r e m a i n l y due t o the t h e r m a l d e c a r b o n y l a t i o n of f u r f u r a l . H i g h e r t a r c o n t e n t s were o b t a i n e d f o r the m e t a l exchanged c a t a l y s t s (21.2 and 25.9%) than the H-ZSM-5 form (14.2%). The low water c o n t e n t s ( r a n g i n g from 2.7 t o 7.0%) produced f r o m t h e s e d i f f e r e n t r e a c t i o n s i n d i c a t e poor c a t a l y t i c d e o x y g e n a t i o n of f u r f u r a l . C0 which i s produced from p y r o l y t i c r e a c t i o n i s obt a i n e d i n low y i e l d s . The y i e l d s f o r the a l i p h a t i c (9.0%) and o l e fin (8.5%) a r e r e l a t i v e l y s m a l l e r than those f o r the a r o m a t i c (47.7%) and p o l y a r o m a t i c . e f f
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
2
F i g u r e 2 shows the p r o d u c t d i s t r i b u t i o n s f o r the r e a c t i o n of various f u r f u r a l / m e t h a n o l mixtures o v e r H-ZSM-5/bentonite (80/20 Wt.%) a t 450°C.; o n l y the major components i n the p r o d u c t s a r e shown. The a b s c i s s a i n F i g u r e 2 i s g i v e n i n both i n c r e a s i n g p e r c e n t a g e of methanol and i n c r e a s i n g ( H / C ) f £ r a t i o f o r the f e e d . As the c o n t e n t of methanol i n c r e a s e s , the y i e l d s f o r h y d r o c a r b o n s and water i n c r e a s e w h i l e t h o s e f o r t a r , f u r a n and CO d e c r e a s e . The d r a s t i c augmentation of h y d r o c a r b o n s and water y i e l d s c o n j u g a t e d w i t h the d i m i n u t i o n of f u r a n w i t h i n c r e a s i n g methanol c o n c e n t r a t i o n i n d i c a t e that s i g n i f i c a n t c a t a l y t i c deoxygenation i s t a k i n g p l a c e . For a m i x t u r e o f 55/45 Wt.% m e t h a n o l / f u r f u r a l ( ( H / C ) - 0.85), f u r a n i s c o m p l e t e l y removed from the r e a c t i o n p r o d u c t s ana o n l y s m a l l q u a n t i t i e s of o t h e r oxygenated compounds were p r e s e n t (< 0.3%). The y i e l d s f o r the o t h e r p r o d u c t s were s i m i l a r t o t h o s e o b s e r v e d p r e viously for furfural. Only a t 70/30 Wt.% m e t h a n o l / f u r f u r a l m i x t u r e t h e r e was a s i g n i f i c a n t r e d u c t i o n i n the t a r c o n t e n t (6.7 o r 14.1% on carbon b a s i s ) . The average C 0 p r e s e n t was 0.3%. e
e i f
2
T a b l e 3 shows the p r o d u c t d i s t r i b u t i o n f o r r e a c t i o n s of f u r f u - , r a l / m e t h a n o l (30/70 Wt.%) o v e r v a r i o u s c o n c e n t r a t i o n of H-ZSM-5/supp o r t a t 450°C. By d i l u t i n g the c a t a l y s t w i t h b e n t o n i t e from 80 t o 18 Wt.%, the h y d r o c a r b o n s y i e l d s r a i s e d from 30.6 t o 41.4%. Changi n g the s u p p o r t m a t e r i a l from b e n t o n i t e to S i 0 - A l 0 caused a s m a l l r e d u c t i o n i n the h y d r o c a r b o n y i e l d ( 3 6 . 3 % ) ; however, t h e r e was l e s s t a r formed when compared t o the o t h e r c a s e s . The p r o d u c t s s e l e c t i v i t i e s were s i m i l a r t o those of p r e v i o u s c a s e s . T a b l e 4 shows the p r o d u c t s from the r e a c t i o n of glycerol [ ( H / C ) £ £ o f 0.67] o v e r v a r i o u s c a t i o n exchanged ZSM-5 z e o l i t e s a t 400°C. The r e a c t i o n w i t h Zn-ZSM-5 gave the b e s t y i e l d of h y d r o c a r bons (14.4%) and the lowest y i e l d of oxygenated compounds ( 1 1 . 5 % ) . The t a r and CO c o n t e n t s f o r the t h r e e c a t a l y t i c systems were h i g h ( t h e t a r ranged from 14.0 t o 19.3% and the carbon monoxide from 5.1 t o 7.8%). I t s h o u l d be noted t h a t the major component i n the oxygenated p r o d u c t s i s 2 - p r o p e n a l . T a b l e 5 shows the p r o d u c t s d i s t r i b u t i o n f o r the r e a c t i o n of a m i x t u r e g l y c e r o l / m e t h a n o l f e e d ( 5 5 / 4 4 Wt.%) w i t h ( H / C ) - 1.25 o v e r H-ZSM-5 at 400°C. Compared t o the r e s u l t s i n T a b l e 4, an i n c r e a s e i n h y d r o c a r b o n s y i e l d s and a d e c r e a s e i n t a r and oxygenated compounds y i e l d s were o b s e r v e d . By d i l u t i n g H-ZSM-5 w i t h b e n t o n i t e 2
2
3
e
e f f
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
PYROLYSIS OILS FROM BIOMASS
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
332
00
400
500
TEMPERATURE (°C)
Figure 1. Reaction of cyclopentanone over H-ZSM-5/bentonite (80/20) at a d i f f e r e n t reactor temperature.
Figure 2. Reaction of furfural/methanol mixtures over H-ZSM-5/bentonite (80/20g) at a reactor temperature of 400 °C and a WHSV of 0.238 ± 0.018 h r - . 1
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
333
Model Compounds of Biomass-Pyrolysis Oils
27. DAO ET AL.
TABLE 2 R e a c t i o n o f f u r f u r a l o v e r c a t i o n exchanged ZSM-5 a t 400°C and WHSV o f 0.281 hr~* Experimental conditions: Catalyst
composition:
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
T o t a l product
80% H-ZSM-5, 80% Zn-ZSM-5, 80% Mn-ZSM-5 20% b e n t o n i t e , 20% b e n t o n i t e , 20% b e n t o n i t e
distribution
(Wt.%)
Furan J Oxygenated hydrocarbons Tar CO C0 H 0 Hydrocarbons 2
2
Product
selectivity
Aliphatics, 0 - C Olefins, C - C Aromatics Polyaromatics χ
2
47.0 50.0 14.2 22.8 0.6 4.4 8.00
23.8 25.6 21.2 36.3 4.8 2.7 9.42
27.8 40.7 25.9 17.9 1.9 7.0 6.6
8.8 8.5 50.6 32.1
7.6 10.6 48.8 32.9
10.5 6.5 43.9 39.1
(Wt.%)
8
g
TABLE 3 R e a c t i o n o f f u r f u r a l / m e t h a n o l (30/70) f e e d { ( H / C ) over H-ZSM-5 a t 450°C
e f f
- 1.17}
Experimental c o n d i t i o n s : Catalyst WHSV
c o m p o s i t i o n : 80% H-ZSM-5, 18% 20% b e n t o n i t e , 82% (hr~l) 0.029
T o t a l product Oxygenated Tar CO
co
hydrocarbons* 6.7 9.4 0.5 52.7 h y d r o c a r b o n s 30.6
Deoxygenated
selectivity
Aliphatics, C - C Olefins, C - C Aromatics Polyaromatics 1
2
Mainly
H-ZSM-5 SiO - A l 0 o
i.zi
d i s t r i b u t i o n. (Wt.%)
2
Product
18% H-ZSM-5, b e n t o n i t e , 82% 1.26
g
Q
1.4 7.6 7.8 0.6 41.6 41.1
0.8 4.9 7.2 0.3 50.4 36.3
11.6 3.0 72.8 12.6
20.7 3.6 60.8 14.8
(Wt.%) 1.8 2.9 83.5 11.9
f u r a n and b e n z o f u r a n ,
d e r i v a t i v e s and d i m e t h y l e t h e r .
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
2
3
a
334
PYROLYSIS OILS FROM BIOMASS TABLE 4 R e a c t i o n of g l y c e r o l ( ( H / C ) ^ ^ = 0.67) over v a r i o u s c a t i o n exchanged ZSM-5 a t 400°C and a WHSV o f 0.228 h r " e
1
Experimental c o n d i t i o n s : Catalyst
c o m p o s i t i o n : 80% H-ZSM-5, 80% Zn-ZSM-5, 80% Mn-ZSM-5 20% b e n t o n i t e , 20% b e n t o n i t e , 20% B e n t o n i t e
T o t a l product
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
Oxygenated Tar CO
d i s t r i b u t i o n (Wt.%)
hydrocarbons*
co
2
Hydrocarbons Product
selectivity
A l i p h a t i c s , Cj - C Olefins, C - C Aromatics Polyaromatics 2
32.7 14.0 7.8 0.3 40.2 5.0
11,5 15.8 6.1 3.7 48.2 14.4
16,7 19.3 5.1 1.4 49.6 7.8
15.8 5.9 60.1 18.5
5.5 9.6 63.5 21.4
9.4 8.4 44.1 38.1
(Wt.%)
Q
6
Mainly 2-propenal
and t r a c e s o f a c e t o n e
TABLE 5 R e a c t i o n o f g l y c e r o l / m e t h a n o l (55/45) f e e d {(H/C) ~ - 1.25} o v e r H-ZSM-5 a t 400°C and WHSV o f 1.44 h r ^ Experimental c o n d i t i o n s : Catalyst
composition:
T o t a l product Oxygenated Tar CO
80% H-ZSM-5 20% b e n t o n i t e
d i s t r i b u t i o n (Wt.%)
hydrocarbons*
co t^o 2
Hydrocarbons Product
selectivity
Aliphatics, 0 - C > Olefins, C - C Aromatics Polyaromatic Q
χ
2
18% H-ZSM-5 82% b e n t o n i t e
g
Mainly 2-propenal,
18.0 11.8 4.9 0.9 45.4 19.1
25.6 5.9 1.1 0.6 50.6 16.2
15.2 8.9 56.8 19.0
16.0 11.7 59.2 13.0
(Wt.%)
and t r a c e s o f methanol and d i m e t h y l e t h e r
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
27. DAO ET AL. from
335
Model Compounds of Biomass-Pyrolysis Oils
80 t o 18%, l e s s
t a r was formed
(5.9%) but t h e y i e l d
of hydro
carbons a l s o d i m i n i s h e d . T a b l e 6 shows r e s u l t s f o r r e a c t i o n s o f g l u c o s e and g l u c o s e d e r i v a t i v e done over H-ZSM-5 a t 450°C. W i t h t h e a d d i t i o n o f metha n o l , t h u s a n i n c r e a s e o f ( H / C ) f £ , t h e r e was a n i n c r e a s e i n t h e hydrocarbon y i e l d s f o r the g l u c o s e / w a t e r / m e t h a n o l (20/50/30) and g l u c o s e d e r i v a t i v e / w a t e r / m e t h a n o l (27.6/12.2/60.2) c a s e s compared t o t h a t o f t h e g l u c o s e / w a t e r (20.3/79.7) c a s e . A l s o , t h e r e was a s i m u l t a n e o u s d e c r e a s e i n t a r c o n t e n t w i t h an i n c r e a s e i n ( H / C ) of the feed. However i n a l l cases t h e h y d r o c a r b o n y i e l d s a r e low and the t a r c o n t e n t s too h i g h f o r a v i a b l e c a t a l y t i c p r o c e s s . The h i g h w a t e r c o n t e n t o b s e r v e d i n a l l experiments (29.2 t o 66.1%) i s not o n l y due t o c a t a l y t i c d e o x y g e n a t i o n through l o s s o f water but a l s o due t o p o l y c o n d e n s a t i o n r e a c t i o n s o f g l u c o s e and i t s d e r i v a t i v e . These c o n d e n s a t i o n r e a c t i o n s produce p o l y m e r i c oxygenated compounds which are r e s p o n s i b l e f o r the h i g h t a r content observed. Oxygenated compounds, CO and C 0 a r e minor p r o d u c t s which a r e n o r m a l l y o b t a i n e d from t h e r m a l d e c o m p o s i t i o n o f biomass m a t e r i a l s ( 1 4 ) . The p r o d u c t s e l e c t i v i t y i n d i c a t e s a h i g h p e r c e n t a g e o f a l i p h a t i c (23.6 t o 50.5%) and a r o m a t i c (34.2 t o 53.2%). E x c e p t f o r the r e a c t i o n w i t h g l u c o se/water, t h e o l e f i n c o n t e n t s a r e low f o r t h e o t h e r two r e a c t i o n s . The p r o d u c t i o n o f p o l y a r o m a t i c s ( m a i n l y indene and naphthalene d e r i vatives) i s rather high. e
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
e f f
2
To t e s t t h e e f f e c t o f s u p p o r t and t h e c a t a l y s t efficiency, e x p e r i m e n t s were done w i t h 18% H-ZSM-5 ( i n s t e a d o f 80%) d i s p e r s e d i n 82% b e n t o n i t e . The c a t a l y t i c bed would have l e s s a c i d i c s i t e s which a r e known t o promote p o l y m e r i z a t i o n o f t h e c a r b o h y d r a t e s and hence t o reduce t h e h y d r o c a r b o n y i e l d s . T a b l e 7 shows t h e r e s u l t s f o r e x p e r i m e n t s done on t h e d i l u t e d c a t a l y t i c bed. Only i n t h e methanol added f e e d s t h e r e was a s i g n i f i c a n t i n c r e a s e i n t h e h y d r o c a r b o n y i e l d s and a d e c r e a s e i n t h e t a r c o n t e n t . Thus, r e d u c i n g t h e number o f a c i d i c s i t e s does not seem t o reduce t h e e x t e n t o f t h e p o l y m e r i z a t i o n of carbohydrates. When t h e c a t a l y t i c s u p p o r t m a t e r i a l was changed from b e n t o n i t e t o S i O - A 1 0 , t h e y i e l d s o f hydrocarbons i n c r e a s e d f o r both cases as shown i n T a b l e 8. Deoxygenation of g l u c o s e / w a t e r f e e d (20.3/79.7 Wt.%) w i t h Mn and Zn exchanged ZSM-5 a r e r e p o r t e d i n T a b l e 9. T h e r e was a r e d u c t i o n i n t h e h y d r o c a r b o n s y i e l d s when compared t o s i m i l a r r e a c t i o n s w i t h H-ZSM-5. The t a r c o n t e n t s were as h i g h as those r e a c t i o n s r e p o r t e d b e f o r e . 2
3
The d e o x y g e n a t i o n o f f r u c t o s e and i t s d e r i v a t i v e over ZSM-5 c a t a l y s t s a r e shown i n T a b l e 10. The r e s u l t s o b t a i n e d a r e s i m i l a r t o those r e p o r t e d b e f o r e f o r g l u c o s e and i t s d e r i v a t i v e . As t h e (H/C) r a t i o i n c r e a s e d , t h e h y d r o c a r b o n s y i e l d s i n c r e a s e d and the tar contents decreased. e f f
Discussion Cyclopentanone c a n be deoxygenated i n h i g h y i e l d t o h y d r o c a r b o n s o v e r H-ZSM-5 above 350°C. The main r e a c t i o n i s a t h e r m a l d e c a r b o n y l a t i o n o f c y c l o p e n t a n o n e t o g i v e CO and C^Hg fragment t h a t c a n r e a c t f u r t h e r on t h e c a t a l y t i c bed t o produce a l i p h a t i c , a r o m a t i c and polyaromatic hydrocarbons. Cyclopentenone with ( H / C ) f f 0.8 i s more d i f f i c u l t t o deoxygenated. The a d d i t i o n o f methanol r a i s e s t h e (H/C) r a t i o and p e r m i t s t h e complete d e o x y g e n a t i o n o v e r H-ZSM-5. β
e
f
f
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
336
PYROLYSIS OILS FROM BIOMASS TABLE 6 R e a c t i o n o f g l u c o s e and g l u c o s e d e r i v a t i v e o v e r 80% H-ZSM-5 and 20% b e n t o n i t e a t 450 °C
Experimental conditions: R e a c t a n t c o m p o s i t i o n : 20 .3% 79 .7% WHSV
(hr"l)
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
0i/O
g l u c o s e , 20.0% water, 0.062 0.0
e f f
27.6% g l u c o s e derivative 30.0% methanol, 60.2% methanol 12.2% water 50.0% water 0.313 0.195 1.59 1.36 glucose
T o t a l p r o d u c t d i s t r i b u t i o n (Wt.%) Oxygenated hydrocarbons Tar 65.1 CO 2.1 co 1.5 29.1 H6 Hydrocarbons 2.2
0.7 * 33.3 0.5 1.4 59.7 4.4
3.9 ** 14.1 0.2 0.9 66.1 14.8
P r o d u c t s e l e c t i v i t y (Wt.%) Aliphatics, - C 23.6 Olefins, C - C 41.6 Aromatics 34.8 Polyaromatics***
35.7 3.8 53.3 7.2
50.5 2.7 43.2 3.6
2
2
8
2
6
R e a c t i o n o f g l u c o s e and and 82% Experimental conditions: R e a c t a n t c o m p o s i t i o n : 20 .3%
TABLE 7 glucose d e r i v a t i v e over b e n t o n i t e a t 450°C
18% h-ZSM-5
glucose
27.6%
79 .7% water 1
WHSV (hr"" ) (H/C)
0.862 0.0
e f f
20.0%
glucose
glucose derivative 30.0% methanol 60.2% methanol 12.2% water 50.0% water 1.12 1.195 1.59 1.46
T o t a l p r o d u c t d i s t r i b u t i o n (Wt.%) Oxygenated hydrocarbons 0.6 * Tar 51.3 CO 3.8 co 2.8 39.4 H6 Hydrocarbons 2.1
1.0 * 21.0 1.8 0.3 57.9 18.1
4.2 ** 11.1 0.8 0.8 64.3 18.8
P r o d u c t s e l e c t i v i t y (Wt.%) Aliphatics, C - C 29.0 Olefins, C - C 7.3 Aromatics 45.2 Polyaromatics*** 18.3
43.6 1.2 45.3 10.0
17.5 14.0 55.8 12.7
2
2
Q
x
2
6
M a i n l y f u r a n and b e n z o f u r a n d e r i v a t i v e s ; ** M a i n l y acetone and furan derivatives; * * * M a i n l y indene and naphthalene derivatives
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
337
Model Compounds of Biomass-Pyrolysis Oils
27. DAO ET AL.
TABLE 8 R e a c t i o n o f g l u c o s e and g l u c o s e d e r i v a t i v e and 82% S i O ^ A L , 0
over
18% H-ZSM-5
?
Experimental conditions: Reactant composition:
WHSV
(hr"l)
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
(H/C)
eff
T o t a l product d i s t r i b u t i o n Oxygenated hydrocarbons Tar CO
co
2
H 0 Hydrocarbons 2
Product s e l e c t i v i t y Aliphatics, 0 - C Olefins, C - C Aromatics Polyaromatics χ
2
20.0% g l u c o s e 30.0% methanol 50.0% water 1.18 1.59
27.6% g l u c o s e d e r i v a t i v e 60.2% methanol 12.2% water 1.11 1.46
(Wt.%) 0.1 14.3 1.6 0.4 62.4 21.2
0.2 6.9 1.8 0.5 53.5 37.2
19.0 12.0 65.6 3.4
21.0 8.3 62.0 8.7
(Wt.%)
Q
6
TABLE 9 R e a c t i o n o f 20.3% g l u c o s e and 79.7% water o v e r and z i n c exchanged ZSM-5 Experimental conditions: Catalyst composition WHSV
0i/O
(hr~l) e f f
80% Mn-ZSM-5 20% b e n t o n i t e 0.046 0.0
T o t a l p r o d u c t d i s t r i b u t i o n (Wt.%) Oxygenated hydrocarbons Tar 72.3 CO 2.6 co 1.9 H 0 22.3 0.9 Hydrocarbons 2
2
Product s e l e c t i v i t y Aliphatics, C - C Olefins, C - C Aromatics Polyaromatics L
2
Q
g
manganes
80% Zn-ZSM-5 20% b e n t o n i t e 0.055 0.0
53.1 2.2 4.2 39.8 0.7
(Wt.%) 26.0 42.8 31.0
35.4 2.6 62.0
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
338
PYROLYSIS OILS FROM BIOMASS
TABLE 10 R e a c t i o n o f f r u c t o s e and f r u c t o s e d e r i v a t i v e o v e r v a r i o u s ZSM-5 a t 450°C Experimental
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
Reactant
conditions:
composition:
Catalyst composition:
80% H-ZSM-5 20% bentonite
WHSV ( h r ~ l ) (H/C)
0.06 0.0
e f f
T o t a l product
0.0 37.3 2.6 2.2 60.6 0.7
2
H6 2
Hydrocarbons Product
selectivity
Aliphatics C -C Olefins, C - C Aromatics Polyaromatic*** x
2
19.8% fructose 29.8% methanol 50.4% water
80% H-ZSM-5 20% bentonite 0.14 1.17
27.6% fructose derivative 60.2% methanol 12.2% water
80% H-ZSM-5 20% bentonite
80% Zn-ZSM-5 20% bentonite
80% Mn-ZSM-5 20% bentonite
0.22 1.49
0.19 1.49
0.157 1.49
0. 1* 28. 9 2. 8 2. 1 58. 5 7. 7
3.6** 14.91 0.8 1.2 46.2 33.4
0.6** 10.7 1.2 1.6 61.4 24.9
0.3** 13.2 1.3 1.0 58.7 25.5
21.5 14.1 52.1 12.3
33.2 5.6 54.8 6.3
9.8 8.1 70.7 11.4
8.6 9.7 71.4 10.2
d i s t r i b u t i o n (Wt.%)
Oxygenated hydrocarbons Tar CO
co
19.8% fructose 80.2% water
Q
6
(Wt.%)
17.4 18.8 48.5 15.3
M a i n l y f u r a n and b e n z o f u r a n d e r i v a t i v e s and d i m e t h y l e t h e r M a i n l y a c e t o n e and f u r a n d e r i v a t i v e s and benzofurane d e r i v a t i v e s and d i m e t h y l e t h e r M a i n l y indene and naphthalene d e r i v a t i v e s
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
27. DAO ET AL.
339
Model Compounds of Biomass-Pyrolysis Oils
Both f u r f u r a l and g l y c e r o l c a n undergo p y r o l y t i c r e a c t i o n s a t t h e temperature s t u d i e d . Both t h e p y r o l y t i c p r o d u c t s and t h e f e e d s c a n take p a r t i n the c a t a l y t i c d e o x y g e n a t i o n o v e r ZSM-5 t o produce h y drocarbons. The h i g h t a r c o n t e n t o b s e r v e d i n many of t h e r e a c t i o n s r e p o r t e d c a n be e x p l a i n e d by t h e p y r o l y t i c r e a c t i o n s . A t h i g h tem p e r a t u r e s , f u r f u r a l c a n undergo many t h e r m a l r e a c t i o n s . I t has been shown (15) t h a t f u r f u r a l , under a c i d i c c o n d i t i o n s , c a n p o l y m e r i z e d by an a l d o l - t y p e r e a c t i o n t o produce h i g h m o l e c u l a r r e s i n r e f e r r e d as f u r f u r a l b l a c k . The major p y r o l y t i c r e a c t i o n of f u r f u r a l i s d e c a r b o n y l a t i o n t o produce f u r a n and CO as r e p o r t e d i n t h e l i t e r a t u r e (16) and a l s o o b s e r v e d i n most of t h e r e a c t i o n s o f f u r f u r a l ( T a b l e s 2 and 3 ) . Under h i g h temperature and a c i d i c c o n d i t i o n s , f u r a n c a n p o l y m e r i z e d t o humin ( 1 6 ) . G l y c e r o l c a n undergo d e h y d r a t i o n a t h i g h temperature t o produce a c r o l e i n ( 2 - p r o p e n a l ) (17) w h i c h c a n r e a c t f u r t h e r t o form polymers ( p o l y a c r o l e i n ) (18) ( T a b l e s 4 and 5 ) . Once a l l t h e s e polymers a r e formed, they remain on t h e c a t a l y t i c bed c o n t r i b u t i n g t h e n t o t h e t a r c o n t e n t s and t h e d e a c t i v a t i o n o f t h e catalysts. T a b l e s 6 t o 10 show t h a t t h e y i e l d s o f h y d r o c a r b o n s obtained f o r most of t h e r e a c t i o n o f c a r b o h y d r a t e s over ZSM-5 c a t a l y s t s were low when compared t o t h e y i e l d s o f t a r formed on t h e r e a c t o r bed. The r e s u l t s a l s o i n d i c a t e t h a t t h e z e o l i t e c a t a l y s t s a r e not r e s p o n s i b l e f o r t h e h i g h t a r c o n t e n t s o b s e r v e d , s i n c e most of the t a r s were formed on t h e top o f t h e c a t a l y t i c bed. Two p o s s i b l e reasons f o r t h e h i g h t a r c o n t e n t a r e t h e low ( H / C ) f r a t i o i n t h e f e e d as a l s o r e p o r t e d by o t h e r a u t h o r s (11) and t h e p o l y m e r i z a t i o n of t h e c a r b o h y d r a t e s and t h e i r d e r i v a t i v e s a t temperatures above 150°C. F i r s t l y , i f the ( H / C ) i s lower than 1, t h e c o n v e r s i o n t o h y d r o c a r b o n w i l l be s m a l l because t h e main d e o x y g e n a t i o n r e a c t i o n i s the e l i m i n a t i o n o f water which i s dependant o f t h e a v a i l a b i l i t y o f t h e h y d r o g e n i n t h e o r g a n i c components of t h e f e e d (2,4,11). Glucose a n d f r u c t o s e a n d t h e i r d e r i v a t i v e s w i t h ( H / C ) ^ * r a t i o < 0.7 a r e t h e r e f o r e e x p e c t e d t o g i v e poor h y d r o c a r b o n s y i e l d s ( T a b l e s 6-10). However, s u p p l e m e n t i n g t h e s e c a r b o h y d r a t e s w i t h compounds w i t h h i g h (H/C) (e.g. methanol with ( H / C ) 2 . 0 ) , i t i s p o s s i b l e to i n c r e a s e the ( H / C ) of the feed. T a b l e s 6, 7 and 10 show t h e e f f e c t o f a d d i n g methanol t o t h e c a r b o h y d r a t e s f e e d s ; t h e r e was a simultaneous i n c r e a s e i n hydrocarbons y i e l d s with i n c r e a s e (H/C) ff· N e v e r t h e l e s s , as t h e i n c r e a s e i s s m a l l and t h e t a r c o n t e n t s t i l l t o o h i g h , t h e c a t a l y t i c u p g r a d i n g would be d i f f i c u l t i n a f i x e d - b e d reactor. T h e r e f o r e more c o s t l y p r o c e s s e s such as a f l u i d i z e d bed s y s t e m (11a) a r e n e c e s s a r y . The h i g h t a r c o n t e n t c a n be produced by t h e d e c o m p o s i t i o n and p o l y m e r i z a t i o n o f c a r b o h y d r a t e s . I t I s known t h a t g l u c o s e can undergo t h e r m a l p o l y m e r i z a t i o n and d e c o m p o s i t i o n a t temperatures h i g h e r than 150°C ( 1 9 ) . P o l y c o n d e n s a t i o n o f g l u c o s e c a t a l y z e d by a c i d produced polymers ( p o l y g l u c o s e ) w i t h a wide range of molecular weights. Other n o n - v o l a t i l e decomposition products which c o n t r i b u t e t o the t a r c o n t e n t a r e l e v o g l u c o s a n and 1,6-anhyd r o g l u c o f u r a n o s e ( 2 0 ) . One consequence o f t h e n o n - v o l a t i l e p r o d u c t s on t h e c a t a l y t i c bed i s t h a t they c a n b l o c k t h e pores of ZSM-5 and, hence, p r e v e n t i n g d e o x y g e n a t i o n of the v o l a t i l e compounds. Thermal d e c o m p o s i t i o n o f g l u c o s e c a n a l s o produce v o l a t i l e p r o d u c t s (5-hydroxymethyl f u r f u r a l , f u r f u r a l , f u r y l hydroxymethyl ketone) which c a n undergo d e o x y g e n a t i o n over ZSM-5 c a t a l y s t s t o y i e l d t h e s m a l l e
f
e f f
β
e f f
e f f
e f f
e
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
340
PYROLYSIS OILS FROM BIOMASS
amount of h y d r o c a r b o n s o b s e r v e d . The e x p e r i m e n t a l r e s u l t s s u g g e s t t h a t the r a t e of p r o d u c t i o n o f v o l a t i l e p r o d u c t s i s much s l o w e r than the r a t e of p r o d u c t i o n o f n o n - v o l a t i l e p r o d u c t s i n a f i x e d - b e d c a t a l y t i c system. Hence, t h e poor h y d r o c a r b o n y i e l d and the h i g h t a r content. The d e r i v a t i v e s o f g l u c o s e and f r u c t o s e g i v e b e t t e r h y d r o c a r b o n y i e l d s , p r o b a b l y b e c a u s e o f t h e i r h i g h e r R/C ff r a t i o and a l s o because most of the hydroxy groups r e s p o n s i b l e f o r the forma t i o n of p o l y g l u c o s e a r e blocked. However, t h e t a r c o n t e n t s f o r t h e s e d e r i v a t i v e s r e a c t i o n s a r e s t i l l too h i g h . e
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
Conclusion C y c l o p e n t a n o n e c a n be deoxygenated w i t h h i g h y i e l d t o h y d r o c a r b o n s o v e r ZSM-5 a t 400°C. The a d d i t i o n o f methanol t o c y c l o p e n t e n o n e p e r m i t s t o r a i s e t h e ( H / C ) f £ r a t i o o f t h e f e e d and, hence, i t s complete d e o x y g e n a t i o n . The r e a c t i o n o f f u r f u r a l and g l y c e r o l o v e r ZSM-5 c a t a l y s t s a t temperatures between 400°C and 500°C produces p y r o l y t i c p r o d u c t s o f d i f f e r e n t degree o f v o l a t i l i t y . The v o l a t i l e f r a c t i o n i s deoxygenated by t h e c a t a l y s t s t o produce h y d r o c a r b o n s w h i l e the n o n - v o l a t i l e f r a c t i o n remained on the c a t a l y t i c bed c a u s i n g the d e a c t i v a t i o n o f the z e o l i t e and the enhancement o f the t a r content. G l u c o s e and f r u c t o s e undergo t h e r m a l r e a c t i o n s which p r o duce a s i g n i f i c a n t amount o f t a r and a s m a l l amount o f v o l a t i l e products. The v o l a t i l e f r a c t i o n i s deoxygenatd by ZSM-5 c a t a l y s t s to produce h y d r o c a r b o n s . e
Acknowledgments T h i s work was s u p p o r t e d by g r a n t s from t h e N a t u r a l S c i e n c e s and E n g i n e e r i n g R e s e a r c h C o u n c i l o f Canada and from the Quebec M i n i s t r y of S c i e n c e s and T e c h n o l o g y . Literature
cited
1. Weiz, P.B., Hagg, W.O., Rodewald, P.G., Science, 1979, 206, 57. 2. Frankiewicz, T.C., U.S. Patent 4 308 411, 1981. 3. Dao, L.H., Haniff, Μ., Preprint tenth Canadian Symposium on Catalysis, 1986, p. 278. 4. Chen, N.Y., Koenig, L.R., U.S. Patent 4 503 273, 1985. 5. Hasnain, S., Editor Fifth Canadian Bioenergy R&D Seminar; Elsevier: London, 1984. 6. Chornet, E., Overend, R., Editor Compte-rendu de l'atelier de travail sur la liquefaction de la biomasse, 1983. 7. Chantal, P.D., Kaliaguine, S., Grandmaison, J.L., Applied Catalysis, 1985, 8, 133. 8. Dao, L.H., Canadian Patent 1.201.080, 1985. 9. Schirmer, R.E., Pahl, T.R., Eliot Fuel, 1984, 368. 10. Dao, L.H., Hebert, P., Houle, Α., Haniff, M., Proceeding of the Ninth Biennal Congress of the International solar Energy Society, 1986, Vol. 3, 1812. 11. a. Chen, N.Y., Walsh, D.E., Koenig, L.R., Preprint Amer. Chem. Soc. Div. Fuel Chem, 1987, 32(2), p. 264.; b. Chang, C.D., Silvestri, A.J., J. Catalysis, 1977, 47, 249; c. Chang, C.D., Silvestri, A.J., U.S. Patent 3,998,898, 1976.
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
27. DAO ET AL.
Model Compounds of Biomass-Pyrolysis Oils
341
Downloaded by EMORY UNIV on January 27, 2016 | http://pubs.acs.org Publication Date: September 30, 1988 | doi: 10.1021/bk-1988-0376.ch027
12. Derouane, E.G., Valyacsik, E.W., European Patent 157521, 1985. 13. Shafizadek, F., Fu, Y.J., Carbohydr. Res., 1973, 29, 113. 14. Neuth, F.H., Adv. Carbohydr. Chem, 1951, 6, 83. 15. Kraushaar, B., Kompa, H., Schrolliens, H., Schulz-Eskloff, G., Acta Phys. et Chim. (Szeged), 1985, 31, 581. 16. Acheson, R.M., An Introduction to the Chemistry of Heterocyclic Compounds, Johns Wiley and Sons, NY, 1976, p. 126. 17. Segur, J.B., In Glycerol, Miner C.S., Dalton N.M., Editor Reinhold: NY, 1953, p. 335. 18. Derouane, E.G., J. Catalysis, 1981, 70, 123. 19. Smith, P.C., Guehtlein, H.E., Converse, A.O., Solar Energy, 1982, 28, 41. 20. Houminer, Y., Patai, S., Israel J. Chem, 1969, 7, 513. RECEIVED March 31, 1988
In Pyrolysis Oils from Biomass; Soltes, Ed J., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.