Reactions of tetraborane (10) with mono-and dimethylamine

Reactions of tetraborane(10) with mono- and dimethylamine. Alan R. Dodds, and Goji. Kodama. Inorg. Chem. , 1977, 16 (11), pp 2900–2903. DOI: 10.1021...
2 downloads 0 Views 564KB Size
2900 Inorganic Chemistry, Vol. 16, No. 11, 1977 Table 111. Fundamental Vibrational Frequencies (cm-’) for Gaseous Perfluorovinyldifluoroborane and Perfluorovinyldichlorobomne

I

Approx description -

c=cstr CF str CF, antisym BX, antisym str CF, sym str B-C str BX, sym str CF, rock BX, scissors CF, scissors BX, rock CF bend CCB bend

F,CCFBF, A’ v 1 1725 v, 1410 up 1390 v4 1323 v 5 1179 v6 1040 v7 709 vg 679 v9 584

370 351 v I 2 248 v I 3 138 vlo vll

F,CCFBCI, V1 VZ v3 ’6

v4 v5 v7 ’8

v9 v10

v12 v11 ’13

1694 1290 1352 981 1128 1023 864 532 404 329 163 217 135

A“

CF, wag BX, wag CF bend CF, twist BX, torsion

v14

vI5 V16

vl, v18

682 596 335 123 (69)

VI4 ’16

V15 ’17

V18

632 245 323 90 (30)

0.237 cm-’ for VWFl an1 ‘fBCl?. . I. restwtivelv. f the torsional fundamental for VfBFz is 69 cm-l’, the tkofold barrier to internal rotation is near 7 kcal/mol, but if this frequency represents double jumps, the barrier would be close to 2 kcal/mol. For VfBC12 a torsional frequency of 30 cm-I corresponds to -2.7 kcal/mol.

Conclusion The vibrational spectra of perfluorovinyldifluoroborane and perfluorovinyldichloroborane indicate that both molecules have a plane of symmetry and are probably planar in the fluid and solid phases. It is difficult to determine directly from the vibrational frequencies whether there is R delocalization along the C-B bond. Unfavorable steric factors can be explained by invoking a degree of delocalization. Acknowledgment. The authors gratefully acknowledge the support of the National Science Foundation by Grants No. C H E 74-04805-A02 and No. MPS 74-12241-AO.

Alan R. Dodds and Goji Kodama Registry No. VfBF2, 1511-68-8; VfBC12,758-99-6.

References and Notes (1) J. R. Durig, R. 0. Carter, and J. D. Odom, Inorg. Chem., 13,701 (1974). (2) J. R. Durig, L. W. Hall, R. 0. Carter, C. J. Wurrey, V. F. Kalasinsky, and J. D. Odom, J. Phys. Chem., 80, 1188 (1976). (3) L. W. Hall, J. D. Odom, and P. D. Ellis, J . Am. Chem. SOC., 97,4527 ( 1975). (4) J. D. Odom, L. W. Hall, S. Riethmiller, and J. R. Durig, Inorg. Chem., 13, 170 (1974). ( 5 ) A. K. Holliday, W. Reade, K. R. Seddon, and I. A. Steer, J . Organomet. Chem., 67, 1 (1974). (6) A. Ford, B. Beagley, W. Reade, and I. A. Steer, J . Mol. Struct., 24, 131 (1975). (7) S. L. Stafford and F. G. A. Stone, Spectrochim. Acta, 17, 412 (1961). (8) H. D. Kaesz, S. L. Stafford, and F. G. A. Stone, J . A m . Chem. Soc., 82, 6232 (1960). (9) S. L. Stafford and F. G. A. Stone, J . A m . Chem. SOC.,82,6238 (1960). (10) D. F. Shriver, “The Manipulation of Air-Sensitive Compounds”, McGraw-Hill, New York, N.Y., 1962, p 91. (11) F. A. Miller and B. M. Harney, Appl. Spectrosc., 24, 291 (1970). (12) This instrument was purchased with funds from National Science Foundation Grant No. MPS-75-06296. (13) IUPAC, “Tables of Wavenumbers for the Calibration of Infrared Spectrometers”, Butterworths, Washington, D.C., 1961. (14) R. N. Jones and A. Nadeau, Spectrochim. Acta, 20, 1175 (1964). (15) R. T. Hall and J. M. Dowling, J . Chem. Phys., 47, 2454 (1967); 52, 1161 (1970). (16) J. R. Durig, B. M. Gimarc, and J. D. Odom in “Vibrational Spectra and Structure”, Vol. 2, J. R. Durig, Ed., Marcel Dekker, New York, N.Y.. 1973. Chauter 2. (17) J. R.’Durig, J. W. Thompson, J. D. Witt, and J. D. Odom, J . Chem. Phys., 58, 5339 (1973). (18) D. E. Mann, N. Acquista, and E. K. Plyler, J . C h e m Phys., 22, 1586 11954)

(19) D.-E.Mann, N. Acquista, and E. K. Plyler, J . Chem. Phys., 21, 1949 ( 1953). (20) D. E. Mann, N. Acquista, and E. K. Plyler, J . Chem. Phys., 22, 1199 (1954). (21) D. E. Mann, J. H. Mead, and E. K. Plyler, J . Chem. Phys., 24, 1018 (1956). (22) J. R. Durig, Y.S. Li, J. D. Witt, A. P. Zens, and P. D. Ellis, Specrrochim. Acta, Part A , 33, 529 (1977). (23) L. P. Lindemann and M. K. Wilson, J. Chem. Phys., 24, 242 (1956). (24) J. R. Durig, J. E. Saunders, and J. D. Odom, J . Chem. Phys., 54, 5285 (1971). (25) A. J. Banister, N. N. Greenwood, B. P. Straughan, and J. Walker, J . Chem. Soc., 995 (1964). (26) L. H. Jones and R. R. Ryan, J . Chem. Phys., 57, 1012 (1972). (27) A. H. Lowrey, P. D’Antonio, and C. George, J . Chem. Phys., 64,2884 (1976). (28) L. Trefonas and W. N. Lipscomb, J. Chem. Phys., 28, 54 (1958). (29) M. Atoji, P. J. Wheatley, and W. N. Lipscomb, J . Chem. Phys., 27, 196 (1957); K. Hedberg and R. Ryan, ibid.,41, 2214 (1964); 50,4986 (1969). (30) L. Pauling, “The Nature of the Chemical Bond”, 3rd ed,Cornell University Press, Ithaca, N.Y., 1960, p 260.

Contribution from the Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112

eactions of Tetraborane(IO) with Mono- and Dimethylamine A L A N R. DODDS and G O J I KODAMA*

Received May 5, 1977

AIC703221 The reactions of tetraborane( 10) with mono- and dimethylamine were found to give H2B(CH3NH2)*+B3Hs-and H2B[(CHJ2NH]Z+B3H