26 Reactive Resonances and Angular Distributions in the Rotating Linear Model E D W A R D F. HAYES
and
1
National
1
Resonances Downloaded from pubs.acs.org by YORK UNIV on 12/14/18. For personal use only.
2
ROBERT
B.
WALKER
2
Science Foundation, Washington, DC 20550
L o s Alamos National Laboratory, L o s Alamos, NM 87545
We use the Bending-Corrected Rotating Linear Model (BCRLM) to investigate in detail the way in which resonances may affect the angular distribution of reaction products. Using a lifetime matrix method, we separate the resonant and direct parts of the S matrix, and from the direct part we obtain angular distributions in the absence of the resonance. When applied to the F+H(v=0)->HF(v'=2)+H reaction on the M5 surface, at an energy for which the angular distri bution is strongly sideways peaked, we find the reso nance enhances the intensity of the sideways scat tering, and shifts the sideways peak toward the forward direction. We also describe conditions for which angular distributions have a significant forward scattering component at the reaction threshold. For the F+H(v=0)->HF(v'=2)+H reaction on an improved potential surface, there is forward scattering at threshold be cause a resonance builds in at large partial waves. For the He+H (v=3)->HeH(v'=0)+H reaction, there are many overlapping resonances in all partial waves, and the reaction proceeds without a barrier. Reactivity from many partial waves at the reaction threshold results in significant forward scattering. 2
2
+
+
2
I n t h i s paper, we w i l l p r e s e n t a d e t a i l e d a n a l y s i s of t h e way i n which resonances may a f f e c t t h e a n g u l a r d i s t r i b u t i o n of t h e p r o d u c t s of r e a c t i v e c o l l i s i o n s . To do t h i s , we have used an approximate t h r e e - d i m e n s i o n a l (3D) quantum t h e o r y of r e a c t i v e s c a t t e r i n g ( t h e B e n d i n g - C o r r e c t e d R o t a t i n g L i n e a r Model, o r BCRLM) t o generate t h e d e t a i l e d s c a t t e r i n g i n f o r m a t i o n (S m a t r i c e s ) needed t o compute t h e a n g u l a r d i s t r i b u t i o n of r e a c t i o n p r o d u c t s . We a l s o employ a v a r i e t y of t o o l s , n o t a b l y l i f e t i m e m a t r i x a n a l y s i s , t o c h a r a c t e r i z e t h e importance of a resonance mechanism t o t h e dynamics of r e a c t i o n s . As a r e s u l t , we hope t o g a i n i n s i g h t I n t o how the resonant component of t h e s c a t t e r i n g mechanism i s m a n i f e s t e d i n t h e a n g u l a r d i s t r i b u t i o n of r e a c t i o n p r o d u c t s . A p p l i c a t i o n s of these t e c h n i q u e s t o two r e a c t i v e systems, F+H and He+H^, w i l l be reviewed. 2
0097-6156/84/0263-0493506.50/0 © 1984 American Chemical Society
494
RESONANCES
The Bending-Corrected Rotating Linear Model The study of quantum effects such as resonances i n atom-molecule reactions has been largely confined to coupled-channel calculations for c o l l i s i o n s constrained to c o l l i n e a r geometries. Progress i n quantum reactive scattering techniques i s reviewed p e r i o d i c a l l y (1-4). A few 3D quantum calculations of simple reactions, some more approximate (5-17) than others (18-19), have been concerned with resonance features i n the reaction dynamics, and with the increasing s o p h i s t i c a t i o n and s e n s i t i v i t y of molecular beam experiments (20-23), i t has become evident that the angular d i s t r i b u t i o n of reaction products i s l i k e l y to be the most sensitive observable manifestation of resonant contributions to reaction mechanisms. Coupled channel methods for c o l l i n e a r quantum reactive calculations are s u f f i c i e n t l y well developed that calculations can be performed routinely. Unfortunately, c o l l i n e a r calculations cannot provide any insight into the angular d i s t r i b u t i o n of reaction products, because the impact parameter dependence of reaction p r o b a b i l i t i e s i s undefined. On the other hand, the best approximate 3D methods for atom-molecule reactions are computationally very intensive, and for this reason, i t i s impractical to use most 3D approximate methods to make a systematic study of the effects of potential surfaces on resonances, and therefore the effects of surfaces on reactive angular d i s t r i b u t i o n s . For this reason, we have become interested i n an approximate model of reaction dynamics which was proposed many years ago by Child (24), Connor and Child (25), and Wyatt (26). They proposed the Rotating Linear Model (RLM), which i s i n some sense a 3D theory of reactions, because the l i n e upon which reaction occurs i s allowed to tumble freely i n space. A f u l l three-dimensional theory would treat motion of the s i x coordinates ( i n the center of mass) associated with the two vectors r and R which specify the internuclear diatomic axis and the atom-molecule separation respectively. In a space-fixed frame, these vectors have polar coordinates ( r , ^ , ^ ) and (R,9,). In the RLM, two degrees of freedom are eliminated by requiring the 1
polar coordinates of the r and R vectors to coincide. The Hamiltonian for this system treats the four degrees of freedom associated with the coordinates (R,r,8,4>). As a model for angular d i s t r i b u t i o n s f o r reactive c o l l i s i o n dynamics, the RLM possesses two a t t r a c t i v e features. F i r s t , the angular degrees of freedom are handled i n a p a r t i a l wave expansion i n the t o t a l angular momentum index which introduces an impact parameter into the theory. Second, the RLM coupled-channel equations for each p a r t i a l wave, when expressed i n either Cartesian, polar, or hyperspherical coordinates, are i d e n t i c a l to those of a purely c o l l i n e a r formulat i o n , with the addition of an e f f e c t i v e centrifugal potential
R L M
2
2
2y(R +r )
to the c o l l i n e a r potential energy surface f o r reaction. Consequently, the solution of the reaction dynamics i n the RIM Is only as
26.
HAYES AND
Reactive Resonances & Angular Distributions
WALKER
495
d i f f i c u l t i n p r a c t i c e as s o l v i n g a f a m i l y of c o l l i n e a r problems, one f o r each p a r t i a l wave. I n e n f o r c i n g a s y m p t o t i c boundary c o n d i t i o n s , we use s p h e r i c a l B e s s e l f u n c t i o n s and i g n o r e the c e n t r i f u g a l z e r o p o i n t motion l / ( R + r ) i n E q u a t i o n 1. An obvious d e f e c t of the RLM i s t h a t i t n e g l e c t s motion of the r v e c t o r r e l a t i v e to the R v e c t o r . A s y m p t o t i c a l l y , the n e g l e c t e d degrees of freedom d e s c r i b e the r o t a t i o n a l motion of the d i a t o m i c , and i n the i n t e r a c t i o n r e g i o n , they d e s c r i b e the i n t e r n a l bending of the c o l l i s i o n complex. S i n c e the model o n l y samples the c o l l i n e a r p r o j e c t i o n of the e n t i r e p o t e n t i a l h y p e r s u r f a c e , one would expect the RU1 to be most r e l i a b l e f o r those r e a c t i o n s w h i c h proceed through l i n e a r c o l l i s i o n i n t e r m e d i a t e s w i t h s t r o n g l y h i n d e r e d bending motion. I n o r d e r to improve the q u a n t i t a t i v e a s p e c t s of the dynamics, e s p e c i a l l y i n the r e a c t i o n t h r e s h o l d r e g i o n , we have added a bending c o r r e c t i o n to the RLM, i n the same s p i r i t as d e s c r i b e d e a r l i e r (27-30) f o r o t h e r models. The model thus generated i s c a l l e d the B e n d i n g - C o r r e c t e d R o t a t i n g L i n e a r Model (BCRLM), and the r e s u l t s we d e s c r i b e here w i l l a l l be d e r i v e d from t h i s model. The d e t a i l s of the bending c o r r e c t i o n are d e s c r i b e d i n an e a r l i e r p u b l i c a t i o n (14). I n a s e r i e s of r e c e n t papers (14-17), we have used the BCRLM t o examine the m a n i f e s t a t i o n of resonances f o r s e v e r a l r e a c t i o n s , including 2
2
F+H (v) > HF(v') + H 2
H+H (v) 2
H (v') + H 2
and s e v e r a l of t h e i r i s o t o p i c v a r i a n t s . I n these papers, we have c o n s i d e r e d the importance of quantum e f f e c t s , e s p e c i a l l y resonances, upon i n t e g r a l and d i f f e r e n t i a l c r o s s s e c t i o n s and upon r a t e cons t a n t s f o r these r e a c t i o n s . The hope i s t h a t these approximate r e s u l t s c o n t a i n many of the i m p o r t a n t f e a t u r e s of more a c c u r a t e t h e o r e t i c a l methods. A t any t o t a l s c a t t e r i n g energy E, elements of the m u l t i c h a n n e l S m a t r i x i n the RLM are l a b e l l e d by the t o t a l a n g u l a r momentum i n d e x i and by the i n i t i a l and f i n a l v i b r a t i o n a l quantum numbers v and v*. E q u a t i o n s f o r p h y s i c a l o b s e r v a b l e s i n the BCRLM have been g i v e n p r e v i o u s l y (24-26), and we o n l y summarize the f i n a l r e s u l t s here, i n o r d e r to e s t a b l i s h a common n o t a t i o n . The o p a c i t y f u n c t i o n g i v e s the impact parameter dependence of the r e a c t i o n p r o b a b i l i t i e s , 9
P , ( E ) , a t f i x e d E, so t h a t V
V
P*, (E) = |s;, (E)| V
2
,
v
(2)
where the impact parameter i s r e l a t e d to the a n g u l a r momentum i n d e x by the s e m i c l a s s l c a l e x p r e s s i o n bk * (£+1/2), and k i s the t r a n s l a t i o n a l wavenumber. The a n g u l a r d i s t r i b u t i o n I ^ i ( 9 ) of products y
v
Is g i v e n by the d i f f e r e n t i a l c r o s s s e c t i o n
da
. ( e ; E ) / d f l = ( k . / k ) I f . ( 6;E) 1
2
v > v
v
v
v
v
= I
v > v
. ( 6)
(3)
496
RESONANCES
where the s c a t t e r i n g a m p l i t u d e i s
210JU/ I 12
f
v'v
( 9 ; E )
•
(
2
M
)
(
S
v ' v
(
E
)
- V v
)
P
(
) l
c
0
8
e
)
( 4 )
The i n t e g r a t e d c r o s s s e c t i o n i s
v
A l l a n g u l a r d i s t r i b u t i o n s r e p o r t e d i n t h i s paper a r e c a l c u l a t e d u s i n g E q u a t i o n s 3 and 4 above. However, i n i n t e r p r e t i n g f e a t u r e s of the a n g u l a r d i s t r i b u t i o n , i t i s o f t e n i n s t r u c t i v e t o a p p e a l t o the elements of the c l a s s i c a l f o r m u l a f o r a n g u l a r d i s t r i b u t i o n s (35) b P , (b)
I n E q u a t i o n 6, 6(b) i s the c l a s s i c a l d e f l e c t i o n f u n c t i o n , and s p e c i f i e s the a n g l e 8 a t which the p a r t i c l e s s e p a r a t e a f t e r a c o l l i s i o n a t an i n i t i a l impact parameter b. The d e f l e c t i o n f u n c t i o n has the quantum a n a l o g ( 3 5 ) dArg
If we substitute Equation 9 Into Equation 11 and make the simplifying assumption that S i s independent of energy, we obtain a direct expression for Q i n the v i c i n i t y of the resonance Q
fcl^V
0
2 (E-y
2
__fcr
2
2
2
+ T /4
2 2
,
2
—
'
( 1 2 )
2
(E-E ) +r /A R
where the unit vector u> i s
2-r"
1 / 2
aS
/ 2
i
•
( 1 3 )
498
RESONANCES
E q u a t i o n 12 t e l l s us three t h i n g s about the l i f e t i m e m a t r i x near an INR when the energy dependence of S i s n e g l i g i b l e : ( i ) the t r a c e of Q has a L o r e n t z i a n form ~" Q
T r a c e (Q)
^
—
,
(14)
and ( i i ) a l l the e i g e n v a l u e s [q^] of Q a r e z e r o e x c e p t f o r one (Q i s a m a t r i x of rank 1 ) , and ( i l l ) , the e i g e n v e c t o r of Q c o r r e s p o n d i n g to the nonzero e i g e n v a l u e i s the u n i t v e c t o r a) d e f i n e d i n Equat i o n 13. Combining E q u a t i o n s 13 and 10 g i v e s a d i r e c t e x p r e s s i o n f o r S i n terms of the a p p r o p r i a t e e i g e n v e c t o r of Q, namely —R —
S
R
— E-E_ + R
im
(15)
ir/2
Combining E q u a t i o n 15 w i t h E q u a t i o n 8 a l l o w s a d e t e r m i n a t i o n of the background S m a t r i x S , and from S a t each p a r t i a l wave one can Q
Q
c a l c u l a t e the a n g u l a r d i s t r i b u t i o n i n the absence of a resonance, E q u a t i o n 3. I n p r a c t i c e , the energy dependence of compromises the p r a c t i c a l a p p l i c a t i o n of the p r e c e d i n g d i s c u s s i o n , but as we hope to show, the scheme o u t l i n e d n e v e r t h e l e s s seems q u i t e u s e f u l i n a n a l y z i n g resonances. Resonance E f f e c t s On Quantum D e f l e c t i o n F u n c t i o n s I n a r e c e n t paper (16) we e x p l o r e d the e f f e c t s of resonances on the phase b e h a v i o r of i n d i v i d u a l elements of the S m a t r i x , w i t h p a r t i c u l a r a t t e n t i o n p a i d to the quantum d e f l e c t i o n f u n c t i o n , d e f i n e d i n E q u a t i o n 7. F o l l o w i n g i n the s p i r i t of C h i l d ' s (35) a n a l y s i s , we assume the p a r t i a l wave dependence of the resonance energy to be E («
= E (0) + B*(*+l)
R
R
(16)
and f u r t h e r assume the resonance w i d t h depends q u a d r a t i c a l l y on I r
a "
r 0
(
1 + a i l + b
*
*
2 )
( 1 7 )
C o n s i d e r now the phase b e h a v i o r p r e d i c t e d by E q u a t i o n 9 f o r the elements of the S m a t r i x . F o r s i m p l i c i t y , we assume the background c o n t r i b u t i o n p r o v i d e d by i s weak compared to S, and we concent r a t e on o f f - d i a g o n a l t r a n s i t i o n s . I n t h i s case, the phase b e h a v i o r of i n d i v i d u a l S-matrlx elements i s i S*.
1
= IS .
|e
V
* v
,
(18)
26.
HAYES AND WALKER
\%
= v
Reactive Resonances & Angular Distributions
\ i ( b a c k g r o u n d ) + n (resonant)
,
v
tan n (resonant) =
E ^ O - E
*
499
(19)
^
2 0
^
E q u a t i o n s 18-20 resemble t h e s i n g l e - c h a n n e l c a s e , b u t d i f f e r by a f a c t o r o f two, s i n c e we a r e concerned here o n l y w i t h o f f - d i a g o n a l elements. Note t h a t i t a l s o f o l l o w s from E q u a t i o n 9 t h a t t h e r e s o n a n t p a r t of the phase s h i f t i s independent of the channel l a b e l s v and v*. E q u a t i o n s 16-20 then l e a d t o the f o l l o w i n g e x p r e s s i o n f o r the b e h a v i o r of the quantum d e f l e c t i o n f u n c t i o n near a resonance, .
n
v
v
v
2
r (a+2b£)(E -E) - BT (2A+1) (E («-E) R
2
+
I n an e a r l i e r paper ( 1 6 ) , we showed t h a t E q u a t i o n 21 ( w i t h a=b=0) was remarkably good i n modeling the r e s o n a n t b e h a v i o r of the deflection function. A p p l i c a t i o n to Angular
Distributions
I n t h i s s e c t i o n , we p r e s e n t an a p p l i c a t i o n o f the t e c h n i q u e s d e s c r i b e d i n the p r e v i o u s s e c t i o n s t o the a n g u l a r d i s t r i b u t i o n f o r the r e a c t i o n F+H (v=0) • HF(v'=2)+H 2
A s e r i e s of c a l c u l a t i o n s , u s i n g the BCRLM, was performed on t h e M5 s u r f a c e ( 4 0 ) , as r e p o r t e d e a r l i e r ( 1 6 ) . Here we w i l l c o n c e n t r a t e on the a n g u l a r d i s t r i b u t i o n a t a f i x e d t o t a l energy E-1.807 eV [measured from the minimum o f the HF v i b r a t i o n a l p o t e n t i a l f o r asymp t o t i c H+HF g e o m e t r i e s ] . The i n i t i a l r e l a t i v e k i n e t i c energy o f ground s t a t e r e a c t a n t s a t t h i s t o t a l energy i s 0.162 eV [ o r 3.73 k c a l / m o l ] . We show the impact parameter dependence o f the magnitudes and phases o f the a p p r o p r i a t e elements o f the S m a t r i x i n F i g u r e s 1 and 2. F i g u r e 1 shows the o p a c i t y f u n c t i o n , P20 v s . I [see E q u a t i o n 1 ] , and F i g u r e 2 shows the quantum d e f l e c t i o n f u n c t i o n ©20 » * [see E q u a t i o n 7 ] . The presence of a r e s o n a n t c o n t r i b u t i o n v s
to the r e a c t i o n mechanism i s e v i d e n t as a peak i n t h e o p a c i t y f u n c t i o n near £=14 and as a d i p i n the d e f l e c t i o n f u n c t i o n near I = 16. The d i p i n the d e f l e c t i o n f u n c t i o n i s a consequence o f the enhanced l i f e t i m e of the r e s o n a n t complex, w h i c h r o t a t e s toward more f o r w a r d a n g l e s b e f o r e i t decays. The a n g u l a r d i s t r i b u t i o n w h i c h r e s u l t s from these c a l c u l a t i o n s i s shown i n F i g u r e 3. L e t us now a n a l y z e the resonance c o n t r i b u t i o n t o t h i s a n g u l a r d i s t r i b u t i o n more c l o s e l y . S i n c e F i g u r e 2 shows t h a t a t E-1.807 eV the r e s o n a n t c o n t r i b u t i o n t o the d e f l e c t i o n of p r o d u c t s i s g r e a t e s t near £=16, we show i n F i g u r e 4 a p l o t of the e i g e n v a l u e s of the £=16 l i f e t i m e m a t r i x [ E q u a t i o n 11] as a f u n c t i o n of t o t a l energy E. Over
500
RESONANCES
F i g u r e 2. Quantum d e f l e c t i o n f u n c t i o n , 0(Jt), as d e f i n e d by E q u a t i o n 7, f o r the r e a c t i o n F+H (v=0) HF(v =2)+H a t t o t a l E = 1.807 eV. ,:
2
26.
HAYES A N D WALKER
Reactive Resonances & Angular Distributions
501
0.03
0.00
-0.03
-0.06
-
1.70
1.85
1.80
1.75
E (eV) F i g u r e 4. E i g e n v a l u e s of the c o l l i s i o n l i f e t i m e m a t r i x Q v s . t o t a l energy f o r the £=16 p a r t i a l wave of the F+H r e a c t i o n . ""The e i g e n v a l u e f o r the resonant e i g e n l i f e t i m e c h a n n e l i s drawn as a s o l i d c u r v e , and a l l the o t h e r e i g e n v a l u e curves a r e d o t t e d . 2
502
RESONANCES
t h i s range of t o t a l e n e r g i e s , t h e r e a r e a r e f i v e open channels i n the S m a t r i x [v=0 of r e a c t a n t s and v'=0,1,2,3 of p r o d u c t s ] . I t i s c l e a r i n F i g u r e 4 t h a t a L o r e n t z l a n shaped f e a t u r e i s indeed c e n t e r e d near E=1.807 eV i n one of the e i g e n l i f e t l m e s . I f t h i s f e a t u r e i s f i t t e d to the form of E q u a t i o n 16, w i t h a q u a d r a t i c background b e h a v i o r , the resonance energy ^ ( 1 6 ) and w i d t h r can be determined. V a l u e s of E (£) and f o r other I values are determined s i m i l a r l y . I n F i g u r e 5, we show a p l o t of the energy dependence of the magnitudes of the elements of the e i g e n v e c t o r of g 1 6
R
c o r r e s p o n d i n g to the e i g e n v a l u e w i t h the L o r e n t z l a n p r o f i l e . These a r e r e l a t e d t o the p a r t i a l w i d t h s by E q u a t i o n 13. F i g u r e s 4 and 5 g i v e an i n d i c a t i o n of the degree of v a l i d i t y of the assumpt i o n s d i s c u s s e d from E q u a t i o n s 8 to 15. A l t h o u g h one of the e i g e n l i f etimes shows the resonance f e a t u r e much more s t r o n g l y than the o t h e r s , the o t h e r e i g e n l i f e t i m e s a r e n e i t h e r z e r o over the w i d t h of the resonance, nor a r e they even c o n s t a n t . S i m i l a r l y , i n F i g u r e 5, we see t h a t the r e s o n a n t p a r t i a l w i d t h s a r e n o t n e c e s s a r i l y s l o w l y v a r y i n g w i t h energy over the w i d t h of the resonance. U s i n g the data of F i g u r e 5 t o generate the p a r t i a l w i d t h s , we c a l c u l a t e the r e s o n a n t p a r t of the S m a t r i x u s i n g E q u a t i o n 16, and the background S m a t r i x u s i n g E q u a t i o n 8. Because the elements of the a) v e c t o r I n E q u a t i o n 16 come from the n u m e r i c a l d i a g o n a l l z a t i o n of Q c a l c u l a t e d u s i n g E q u a t i o n 11, we o b t a i n u> w i t h an undetermined phase e~*+. P o s s i b l e c h o i c e s of a r e determined i t e r a t i v e l y by r e q u i r i n g the background S m a t r i x S be u n i t a r y [ i n a d d i t i o n to Q
b e i n g s y m m e t r i c ] . A t e n e r g i e s E = E ^ ( i l ) , o n l y one v a l u e of makes S u n i t a r y , and a t o t h e r v a l u e s of E, a u n i t a r y S Is o b t a i n e d Q
Q
from e i t h e r of two c h o i c e s of . The p h y s i c a l l y s a t i s f a c t o r y c h o i c e i s the one f o r w h i c h the r e s o n a n t b e h a v i o r of S^ i s e l i m i n a t e d ( t h e o t h e r c h o i c e tends to a c c e n t u a t e the resonance). An example of procedure i s demonstrated i n F i g u r e 6, where we have p l o t t e d
1
S
V S
E
T h e
s
o
l
i
d
l
i
n
e
s
h
o
w
s
t h e
this
20 ^ | * " magnitudes of the f u l l - m a t r i x elements, the s o l i d c i r c l e s show the background S - m a t r i x elements c o r r e s p o n d i n g to the p h y s i c a l r o o t , and the open c i r c l e s show background S - m a t r i x elements c o r r e s p o n d i n g to the n o n p h y s i c a l root. A s s e m b l i n g the magnitudes of the background S - m a t r i x elements f o r the p h y s i c a l r o o t s a t a l l p a r t i a l waves from £=0 t o 18, we c o n s t r u c t the background o p a c i t y f u n c t i o n shown as the s o l i d curve i n F i g u r e 7, a t E - 1.807 eV. The l a r g e d i p i n t h i s o p a c i t y f u n c t i o n near £=12 i s the r e s u l t of the c r o s s i n g of two e i g e n v a l u e s of the l i f e t i m e m a t r i x I n t h i s range of I and E. The c r o s s i n g e i g e n v a l u e s induce i n t e r a c t i o n s between the e i g e n v e c t o r s and p e r t u r b the c a l c u l a t i o n of the background S m a t r i x . C o n s e q u e n t l y , we have a l s o used the o p a c i t y f u n c t i o n g i v e n by the dashed l i n e i n F i g u r e 7 to produce an e s t i m a t e of the background a n g u l a r d i s t r i b u t i o n . Furthermore, because of these p r a c t i c a l d i f f i c u l t i e s w i t h the d e t e r m i n a t i o n of the magnitudes of the background S - m a t r i x elements, we e l e c t e d n o t to use the phases determined i n t h i s manner, but to use phases from the d e f l e c t i o n f u n c t i o n a n a l y s i s d e s c r i b e d e a r l i e r . The s e t of resonance e n e r g i e s i s r e a s o n a b l y d e s c r i b e d by the form of
26.
HAYES A N D WALKER
1.00
Reactive Resonances & Angular Distributions
-
0.75
3
>
0.50
-
0.25
-
0.00 1.70'
1.86
F i g u r e 5. Energy dependence of the magnitudes of the elements of the e i g e n v e c t o r of Q c o r r e s p o n d i n g to the r e s o n a n t e i g e n v a l u e . Near the r e s o n a n t energy E = 1.806 eV, the c h a n n e l s w h i c h p a r t i c i p a t e most i n the resonance dynamics a r e c l e a r l y V J ^ O of the H r e a c t a n t s and v =2 of the HF p r o d u c t s . 2
p
1.00
0.75
-
i 0.50
-
0.25
0.00 1.70
F i g u r e 6. Magnitudes of background S - m a t r i x elements f o r the r e a c t i o n F+H (v=0) HF(v'=2)+H, p a r t i a l wave £=16. The s o l i d curve shows the f u l l S - m a t r l x elements, and the open and f i l l e d c i r c l e s show two c h o i c e s of background elements c o r r e s p o n d i n g to the two phase c h o i c e s f o r the p a r t i a l w i d t h s d i s c u s s e d i n the t e x t . The open c i r c l e s a r e elements c o r r e s p o n d i n g to a n o n p h y s i c a l r o o t , the c l o s e d c i r c l e s c o r r e s p o n d to the p h y s i c a l r o o t . 2
504
RESONANCES
1
E q u a t i o n 18 w i t h E ( 0 ) - 1.7234 eV and B - 3.05X10" * eV, and the I dependence of the w i d t h s i s a d e q u a t e l y d e s c r i b e d by E q u a t i o n 17 w i t h T = 0.031 eV, and a - b = 3.11X10" . We then use E q u a t i o n 21 to produce the background d e f l e c t i o n f u n c t i o n , and we show r e s u l t s i n F i g u r e 8 as the s o l i d c u r v e . The d o t t e d curve i s the f u l l d e f l e c t i o n f u n c t i o n of F i g u r e 2, shown f o r comparison. Phases of the background S - m a t r i x elements a r e determined, up to an unimp o r t a n t c o n s t a n t , by i n t e g r a t i n g the background d e f l e c t i o n f u n c t i o n . H a v i n g determined a s e t of background S - m a t r i x elements, we c a l c u l a t e an a n g u l a r d i s t r i b u t i o n due to the background s c a t t e r i n g , shown i n F i g u r e 9 as the s o l i d c u r v e . The dashed curve shows the a n g u l a r d i s t r i b u t i o n of u s i n g the smoothed o p a c i t y f u n c t i o n of F i g u r e 7, and the d o t t e d curve reproduces the d i s t r i b u t i o n of F i g u r e 3 f o r comparison. The e f f e c t of the resonance c o n t r i b u t i o n to the a n g u l a r d i s t r i b u t i o n i n F i g u r e 9 i s t w o f o l d : (1) the resonance enhances the i n t e n s i t y of the sideways peak, and ( i i ) the p o s i t i o n of the s i d e way speak i s s h i f t e d toward the f o r w a r d d i r e c t i o n by a p p r o x i m a t e l y 20°, an a d d i t i o n a l d e f l e c t i o n which q u a n t i t a t i v e l y agrees w i t h the s i z e of the d i p i n the d e f l e c t i o n f u n c t i o n shown i n F i g u r e 8. There i s a l s o a s m a l l r e d u c t i o n i n the i n t e r f e r e n c e o s c i l l a t i o n s i n the f o r w a r d d i r e c t i o n . I t i s s i g n i f i c a n t to n o t e , however, t h a t the background a n g u l a r d i s t r i b u t i o n i s sideways peaked, as a consequence of the g e n e r a l l y I n c r e a s i n g b e h a v i o r of the o p a c i t y f u n c t i o n s of F i g u r e 7 a t low £. R
3
0
Forward Peaked A n g u l a r D i s t r i b u t i o n s I n the remainder of t h i s paper, we w i s h to c o n s i d e r the c o n d i t i o n s w h i c h may l e a d to broad, or even f o r w a r d peaked, a n g u l a r d i s t r i b u t i o n s of p r o d u c t s f o r e n e r g i e s near the r e a c t i o n t h r e s h o l d . Such a n g u l a r d i s t r i b u t i o n s have been observed i n r e c e n t F+H beam e x p e r i ments ( 2 3 ) , and w i t h i n the c o n t e x t of the BCRLM, we have observed t h i s phenomenon i n s e v e r a l systems. 2
F+H . We see t h i s s o r t of b e h a v i o r i n the r e a c t i o n F+H (v=0) HF(v*=2)+H on a m o d i f i c a t i o n (41) of the M5 p o t e n t i a l s u r f a c e . T h i s m o d i f i e d s u r f a c e i s c a l l e d s u r f a c e 3 i n r e f e r e n c e 41; i t d i f f e r s from the M5 s u r f a c e i n the f o l l o w i n g t h r e e q u a l i t a t i v e ways: ( i ) the new s u r f a c e has a l o w e r c o l l i n e a r b a r r i e r to r e a c t i o n , ( i i ) i t has a s o f t e r bending p o t e n t i a l i n the e n t r a n c e v a l l e y , and ( i l l ) has a much l o w e r a d i a b a t i c b a r r i e r i n the e x i t v a l l e y f o r r e a c t i o n i n t o the HF(v'=3) f i n a l s t a t e . We show i n F i g u r e s 10 and 11 a p l o t of the r e a c t i o n p r o b a b i l i t i e s f o r t h i s system, f o r r e a c t i o n s i n t o HF(v'=2) and HF(v'=3) r e s p e c t i v e l y . The q u a l i t a t i v e shape of the p r o b a b i l i t y curves f o r r e a c t i o n to H F ( v 3 ) resembles t h a t f o r the M5 p o t e n t i a l s u r f a c e , e x c e p t f o r a reduced t h r e s h o l d d e l a y a t low p a r t i a l waves [a consequence of the lower a d i a b a t i c b a r r i e r ] . There i s a much l a r g e r d i f f e r e n c e i n the dynamics l e a d i n g to H F ( v 2 ) p r o d u c t s . A t low p a r t i a l waves, the r e a c t i o n i n t o HF(v'=2) i s suppressed r e l a t i v e t o the M5 c a s e , and a t l a r g e r p a r t i a l waves, t h e r e i s an obvious onset of a resonance f e a t u r e . Presumably, the e x i t - v a l l e y a d i a b a t i c 9
2
,js
, =
26.
HAYES A N D WALKER
0
Reactive Resonances & Angular Distributions
10
20
505
30
TOTAL ANGULAR MOMENTUM I F i g u r e 7. Background o p a c i t y f u n c t i o n f o r the r e a c t i o n F+H (v=0) + HF(v'=2)+H a t E - 1.807 eV. The s o l i d c u r v e i s the d i r e c t r e s u l t of the e x t r a c t i o n procedure d i s c u s s e d i n the t e x t , and the dashed curve i s a smoothed v e r s i o n . The d o t t e d c u r v e reproduces the o p a c i t y f u n c t i o n of F i g u r e 1 f o r comparison. 2
0
10
20
30
TOTAL ANGULAR MOMENTUM / F i g u r e 8. Background d e f l e c t i o n f u n c t i o n f o r the r e a c t i o n F+H > HF(v'=2)+H a t E = 1.807 eV. The s o l i d c u r v e removes the resonance c o n t r i b u t i o n u s i n g E q u a t i o n 21. The d o t t e d curve reproduces the d e f l e c t i o n f u n c t i o n of F i g u r e 2 f o r comparison. 2
506
RESONANCES
ANGLE (deg) F i g u r e 9. Background a n g u l a r d i s t r i b u t i o n s f o r the r e a c t i o n F+H (v=0) HF(v'=2)+H a t E - 1.807 eV. The s o l i d curve i s based on the o p a c i t y f u n c t i o n shown i n F i g u r e 7 as a s o l i d c u r v e , and the smoother, dashed curve shows the a n g u l a r d i s t r i b u t i o n w h i c h r e s u l t s from the smoothed o p a c i t y f u n c t i o n of F i g u r e 7. The d o t t e d curve reproduces the f u l l a n g u l a r d i s t r i b u t i o n o f F i g u r e 3 f o r comparison. 2
1
1
!
y
Z=30 1=25
1=20
Z=15 Z=10 1=5 1=0
0 E
1
1
1
2
4
6
TRANS
8
(kcal/mol)
F i g u r e 10. R e a c t i o n p r o b a b i l i t i e s v s . r e l a t i v e t r a n s l a t i o n a l energy f o r the r e a c t i o n F+H (v=0) HF(v'=2)+H on s u r f a c e 3 o f r e f e r e n c e 41. 2
26.
HAYES A N D W A L K E R
Reactive Resonances & Angular Distributions
507
b a r r i e r which Is present In the M5 surface, but has been reduced i n this newer surface, i s replaced by a s i m i l a r [but centrifugal] barr i e r at intermediate p a r t i a l waves, thereby restoring the resonance mechanism. The e f f e c t on angular d i s t r i b u t i o n s i s obvious. Figure 12 shows opacity function plots at several energies, and Figure 13 shows the corresponding angular d i s t r i b u t i o n s . The resonant mechanism In this case Is considerably stronger than for the corresponding M5 c a l c u l a t i o n , and the e f f e c t on the angular distributions is to induce much stronger interference o s c i l l a t i o n s , since there are many fewer p a r t i a l waves contributing s i g n i f i c a n t l y to the reaction. In the case of the reaction to produce HF(v 3) on this surface, It is evident that the v'=3 state of products p a r t i c i pates more strongly i n the resonance mechanism, as can be seen i n the angular d i s t r i b u t i o n plots of Figure 14. The angular d i s t r i b u t i o n s h i f t s from backward to sideways peaked, and has noticeable interference o s c i l l a t i o n s , i n d i c a t i v e of resonance dynamics, at a l l energies. The F+H reaction on this newer potential surface demonstrates one way i n which the BCRLM w i l l produce an angular d i s t r i b u t i o n at the reaction threshold which is not smooth and backward-peaked. In this case, the absence of a s i g n i f i c a n t reaction p r o b a b i l i t y for low p a r t i a l waves, and the appearance of a resonance feature at larger p a r t i a l waves, combine to produce an opacity function which peaks at large p a r t i a l waves, and hence an angular d i s t r i b u t i o n which has a predominant forward d i s t r i b u t i o n of reaction products. We have seen results s i m i l a r to these (41) i n the angular d i s t r i b u t i o n f o r the ,sa
2
reactions F+D (v=0) 2
,ss
DF(v 3,4)+D on this same surface.
1
He+H?"". We performed a set of BCRLM calculations for the reaction He+H HeH +H using the DIM representation (42) of the p o t e n t i a l surface. A great many resonance features have been seen (43) i n the c o l l i n e a r reactive dynamics of this system, and many have been i d e n t i f i e d (44) with the a t t r a c t i v e well which i s present on this surface i n the entrance v a l l e y . Because the bending potential predicted by the DIM surface Is very weak, the BCRLM dynamics (for the £=0 p a r t i a l wave) resembles that of the c o l l i n e a r c a l c u l a t i o n . Reaction p r o b a b i l i t i e s for the reaction He+H (v=3) • HeH (v =0)+H are shown i n Figure 15 f o r several p a r t i a l waves. The predominance of many resonances i n each p a r t i a l wave i s evident In the figure. As written, this reaction i s endothermic by 0.81 eV, but there i s no b a r r i e r over and above the endotherm!city of reaction. Consequentl y , reaction occurs from many p a r t i a l waves at the reaction threshold. There i s l i t t l e or no evidence of a c e n t r i f u g a l b a r r i e r to reaction appearing i n the dynamics u n t i l the £=15 p a r t i a l wave. For this reason the opacity function, at the reaction threshold, contains contributions from a large number of p a r t i a l waves. The r e s u l t i n g angular d i s t r i b u t i o n s of products are therefore quite broad, and show the effects of the multitude of resonances through the very o s c i l l a t o r y nature of the d i s t r i b u t i o n s , as i s shown i n Figure 16. Results s i m i l a r to these, except for reaction from other i n i t i a l v i b r a t i o n a l states of the H + reactant molecule, are q u a l i t a t i v e l y the same — reaction from many p a r t i a l waves at threshold makes possible a very broad angular d i s t r i b u t i o n of products. +
2
+
2
2
+
,
RESONANCES
2 E
4
6
8
(kcal/mol)
TRANS
F i g u r e 11. As i n F i g u r e 10, e x c e p t v
J
1
i
3.
l_
A
J
Q_
'
1
, s s
eV
\E=4.65
E=3.73 eV
o — I O
A
E=2.81 eV
J
< Q_
O
E=1.88 eV
E=0.96 eV
A
1
F i g u r e 12. O p a c i t y r e a c t i o n F+H (v=0) 2
,
1
,
1
:
0
10
20
TOTAL
ANGULAR
1
,
1
30
40
MOMENTUM
I
f u n c t i o n s a t s e v e r a l e n e r g i e s f o r the HF(v'=2)+H on s u r f a c e 3 o f r e f e r e n c e
Reactive Resonances & Angular Distributions
HAYES A N D WALKER
i ii i ii i
0
iiiiii i i
60
120
180
ANGLE ( d e g ) F i g u r e 13. A n g u l a r d i s t r i b u t i o n s a t the same e n e r g i e s as F i g u r e 12 f o r the r e a c t i o n F+H (v=0) HF(v'=2)+H on s u r f a c e 3 of r e f e r e n c e 4 1 . 2
II
| i
iii i|iiiii |
E=1.88 eV
E=0.96 eV I
0
I,•,•,I
60
120
i
180
ANGLE ( d e g ) F i g u r e 14.
As i n F i g u r e 13, except
v
, = !
3.
510
RESONANCES
0.9
1.0 1.1
1.2 1.3 1.4 1.5
E (eV) F i g u r e 15. R e a c t i o n p r o b a b i l i t i e s v s . energy f o r the r e a c t i o n He+H (v=3) + HeH (v'=0)+H on the DIM s u r f a c e of r e f e r e n c e 42. T o t a l e n e r g i e s a r e measured from the minimum of the H entrance valley well. +
+
2
+
2
J
0
i
i
i
i
i—I
i—i—i
60
i—i—I—i—i—i—i—i—I—
120
180
ANGLE (deg) +
F i g u r e 16. A n g u l a r d i s t r i b u t i o n s f o r the r e a c t i o n He+H (v=»3) • HeH (v 0)+H. T o t a l e n e r g i e s a r e measured from the minimum o f the H entrance v a l l e y w e l l . 2
+
,s
+
2
26.
HAYES A N D WALKER
Reactive Resonances & Angular Distributions
511
Summary We have attempted t o d e s c r i b e here the way i n w h i c h resonances i n r e a c t i v e s c a t t e r i n g may a f f e c t the a n g u l a r d i s t r i b u t i o n of the p r o d u c t s o f r e a c t i o n . To do t h i s , we have employed a s i m p l e 3D model of r e a c t i o n s , the B e n d i n g - C o r r e c t e d R o t a t i n g L i n e a r Model, and have computed a n g u l a r d i s t r i b u t i o n s f o r s e v e r a l r e a c t i v e systems i n w h i c h resonances c o n t r i b u t e to the s c a t t e r i n g dynamics. The most s t r a i g h t f o r w a r d way to determine the e f f e c t o f r e s o nances on a n g u l a r d i s t r i b u t i o n s i s to d e f i n e a p a r t i t i o n of the a n g u l a r d i s t r i b u t i o n i n t o i t s d i r e c t and r e s o n a n t components. We d e s c r i b e d an a t t e m p t to do t h i s f o r the r e a c t i o n F+H (v=0) + H F ( v 2 ) + H a t an energy where the c a l c u l a t e d a n g u l a r d i s t r i b u t i o n i s d e c i d e d l y sideways peaked. I n t h i s a n a l y s i s , we found the e f f e c t of the r e s o n a n t p a r t of the s c a t t e r i n g was to enhance the i n t e n s i t y of the sideways peak and to s h i f t i t t o a more f o r w a r d a n g l e . Howe v e r , even w i t h o u t the r e s o n a n t c o n t r i b u t i o n , we f i n d the background a n g u l a r d i s t r i b u t i o n to be sideways peaked. T h i s o b s e r v a t i o n need n o t be s u r p r i s i n g , however, f o r i t has been observed f o r many y e a r s t h a t a d i r e c t s c a t t e r i n g mechanism can l e a d t o sideways peaked a n g u l a r d i s t r i b u t i o n s as the c o l l i s i o n energy i s i n c r e a s e d (45-52, 2
,s
15>ii>We have a l s o sought to d e s c r i b e the c o n d i t i o n s under w h i c h the a n g u l a r d i s t r i b u t i o n of r e a c t i o n p r o d u c t s c o u l d be forward-peaked a t the r e a c t i o n t h r e s h o l d , w i t h i n the c o n t e x t o f the BCRLM. Two s o u r c e s of t h i s e f f e c t have been seen i n our c a l c u l a t i o n s , and the e s s e n t i a l f e a t u r e w h i c h they have i n common i s t h a t the r e a c t i o n must, a t t h r e s h o l d , c o n t a i n c o n t r i b u t i o n s from s c a t t e r i n g a t l a r g e p a r t i a l waves. I n the example shown f o r t h e F+H r e a c t i o n on a m o d i f i c a t i o n (41) of the M5 s u r f a c e , a f o r w a r d peaked d i s t r i b u t i o n a t t h r e s h o l d was seen to r e s u l t from a r e s o n a n t mechanism w h i c h I s a b s e n t i n low p a r t i a l waves, and becomes s i g n i f i c a n t f o r l a r g e r p a r t i a l waves. I n the second example, f o r the H e + H r e a c t i o n , f o r w a r d peaked a n g u l a r d i s t r i b u t i o n s a t t h r e s h o l d r e s u l t from the f a c t t h a t the r e a c t i o n proceeds w i t h o u t a b a r r i e r ( o t h e r than t h a t due t o the o v e r a l l e n d o t h e r m i c i t y o f r e a c t i o n ) . I n the H e + H r e a c t i o n , there a r e i n d e e d many resonances w h i c h c o n t r i b u t e t o the dynamics, b u t I t i s p o s s i b l e t h a t the a n g u l a r d i s t r i b u t i o n would have been peaked i n the f o r w a r d d i r e c t i o n even w i t h o u t the resonances. 2
+
2
+
2
Literature Cited
1. Walker, R. B.; Light, J. C. Ann. Rev. Phys. Chem. 1980, 31, 401. 2. Schatz, G. C. In "Potential Energy Surfaces and Dynamics Calculation"; Truhlar, D. G., Ed.; Plenum: New York, 1981; Chap. 12. 3. Kuppermann, A. In "Theoretical Chemistry: Advances and Perspectives, Vol. 6A"; Academic: New York, 1981; p. 79-164. 4. Baer, M. Adv. Chem. Phys. 1982, 49, 191. 5. Wyatt, R. E. In "Horizons in Quantum Chemistry"; Fukui, K.; Pullman, B., eds.; Reidel: Dordrecht, 1980; p. 63. 6. Redmon, M. J.; Wyatt, R. E. Chem. Phys. Letters 1979, 63, 209. 7. Wyatt, R. E.; McNutt, J. F; Redmon, M. J. Ber. Bunsenges. Phys. Chem. 1982, 86, 437.
512
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40.
RESONANCES
Wyatt, R. E.; Redmon, M. J. Chem. Phys. Letters 1983, 96, 284. Bowman, J. M.; Lee, K. T. Chem. Phys. Letters 1979, 64, 291. Bowman, J. M.; Lee, K. T. J. Chem. Phys. 1980, 72, 5071. Baer, M.; Jellinek, J.; Kouri, D. J. J. Chem. Phys. 1983, 78, 2962. Shoemaker, C. L.; Kouri, D. J.; Jellinek, J.; Baer, M. Chem. Phys. Letters 1983, 94, 359. Schatz, G. C. Chem. Phys. Letters 1983, 94, 183. Walker, R. B.; Hayes, E. F. J. Phys. Chem. 1983, 87, 1255. Walker, R. B.; Hayes, E. F. J. Phys. Chem. 1984, 88, 1194. Hayes, E. F.; Walker, R. B. J. Phys. Chem., accepted. Walker, R. B.; Blais, N. C.; Truhlar, D. G. J. Chem. Phys. 1983, 80, 246. Schatz, G. C.; Kuppermann, A. Phys. Rev. Letters 1975, 35, 1266. Walker, R. B.; Stechel, E. B.; Light, J. C. J. Chem. Phys. 1978, 69, 2922. Sparks, R. K.; Hayden, C. C.; Shobatake, K.; Neumark, D. M.; Lee, Y. T. In "Horizons in Quantum Chemistry"; Fukui, K.; Pullman, B., Eds.; Reidel: Dordrecht, 1980; p. 91. Lee, Y. T. Ber. Bunsenges. Phys. Chem. 1982, 86, 378. Hayden, C. C. PhD. Thesis, Lawrence Berkeley Laboratory, LBL-13660, Berkeley, California, 1982. Neumark, D. M.; Wod tke, A. M.; Robinson, G. N.; Lee, Y. T. See contribution in this volume. Child, M. S. Mol. Phys. 1967, 12, 401. Connor, J.N.L.; Child, M. S. Mol. Phys. 1970, 18, 653. Wyatt, R. E. J. Chem. Phys. 1969, 51, 3489. Mortensen, E. M. J. Chem. Phys. 1968, 48, 4029. Mortensen, E. M.; Pitzer, K. S. Chem. Soc. Spec. Publ. 1962, 16, 57. Garrett, B. C.; Truhlar, D. G. J. Am. Chem. Soc. 1979, 101, 4534. Bowman, J. M.; Ju, G.-Z.; Lee, K. T. J. Phys. Chem. 1982, 86, 2232. Kuppermann, A. In "Potential Energy Surfaces and Dynamics Calculations"; Truhlar, D. G., Ed.; Plenum: New York, 1981; Chap. 16. Kaye, J.; Kuppermann, A. J. Phys. Chem. 1981, 85, 1969. Taylor, J. R. "Scattering Theory"; Wiley: New York, 1972; p. 407-417. Wu, T.-Y.; Ohmura, T. "Quantum Theory of Scattering"; Prentice-Hall: Englewood Cliffs, N.J., 1962; pp. 20-22, 427-429. Child, M. S. "Molecular Collision Theory"; Academic: New York, 1974; pp. 53-56, 73-75. Ashton, C. J.; Child, M. S.; Hutson, J. M. J. Chem. Phys. 1983, 78, 4025. Skodje, R. T.; Schwenke, D. W.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1984, 88, 628. Skodje, R. T.; Schwenke, D. W.; Truhlar, D. G.; Garrett, B. C. J. Chem. Phys. 1984, to be published. Smith, F. T. Phys. Rev. 1960, 118, 349. Muckerman, J. T. In "Theoretical Chemistry: Advances and Perspectives, Vol. 6A"; Academic: New York, 1981; p. 1.
26.
41.
42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.
HAYES A N D W A L K E R
Reactive Resonances & Angular Distributions
513
Steckler, R.; Truhlar, D. G.; Garrett, B. C.; Walker, R. B.; Blais, N. C., to be published. This modified surface is called new surface number 3; it is obtained by a slight modification of new surface number 2 of Truhlar, D. G.; Garrett, B. C.; Blais, N. C. J. Chem. Phys. 1984, 80, 232; the value for the Sato parameter is increased from 0.106 to 0.168. The new value removes the exit-channel adiabatic barrier for FD(v'=4)+D. Kuntz, P. J. Chem. Phys. Letters 1972, 16, 581. Adams, J. T. Chem. Phys. Letters 1975, 33, 275. Chapman, F. M., Jr.; Hayes, E. F. J. Chem. Phys. 1975, 62, 4400. Tang, K. T. Ph.D. Thesis, Columbia University, New York, 1965. Karplus, M.; Tang, K. T. Disc. Faraday Soc. 1967, 44, 56. Tang, K. T.; Karplus, M. Phys. Rev. A 1971, 4, 1844. Truhlar, D. G.; Dixon, D. A. in "Atom-Molecule Collision Theory"; Bernstein, R. B., Ed.; Plenum: New York, 1979; Chap. 18. Agmon, N. Chem. Phys. 1981, 61, 189. Suck, S. H.; Emmons, R. W. Phys. Rev. A 1981, 24, 129. Emmons, R. W.; Suck, S. H. Phys. Rev. A 1982, 25, 178. Salk, S. H. Suck; Emmons, R. W.; Klein, C. R. Phys. Rev. A 1984, 29, 1135.
RECEIVED
June 19, 1984