24 Recent Applications of Dynamic Membranes C R A I G A . B R A N D O N — C A R R E , Inc., Seneca, SC 29678
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
J. L E O GADDIS—Department of Mechanical Engineering, Clemson University, Clemson, SC 29631 H . G A R T H SPENCER—Department of Chemistry, Clemson University, Clemson, SC 29631
The systematic i n v e s t i g a t i o n o f dynamically-formed membranes began w i t h t h e formation of a salt r e j e c t i n g membrane in 1965 at the Oak Ridge N a t i o n a l Laboratory. ( l ) The dynamic hyperfiltration membrane most o f t e n used in subsequent a p p l i c a t i o n s has been prepared by s e q u e n t i a l d e p o s i t i o n s o f zirconium IV hydrous oxide f o l l o w e d by poly(acrylic acid) on a s u i t a b l e porous support under pressure and cross f l o w c o n d i t i o n s . Although not competitive w i t h t h e conventional hyperfiltration membranes f o r desalination, the resulting hyperfiltration (RO) membrane possesses p r o p e r t i e s d e s i r e d f o r some industrial a p p l i c a t i o n s . (2) It is s u i t a b l e f o r a p p l i c a t i o n s r e q u i r i n g high temperature during e i t h e r o p e r a t i o n , c l e a n i n g , or sterilization and for those in which a charged membrane is advantageous. Results from two s t u d i e s i n v o l v i n g high volume recovery of multicomponent process e f f l u e n t s are presented here as illustrat i o n s o f recent a p p l i c a t i o n s o f hyperfiltration membranes in a t u b u l a r c o n f i g u r a t i o n supported by porous s t a i n l e s s steel. The first is a l a b o r a t o r y s e p a r a t i o n o f dyes from a s a l i n e dye manufacturing process e f f l u e n t and t h e second a pilot renovation of wash water from a dye range f o r reuse. The general p r o p e r t i e s o f r e p r e s e n t a t i v e dynamically-formed membranes are provided in Table I . Separation o f Dye Manufacturing
Process E f f l u e n t
In a t y p i c a l dye s y n t h e s i s t h e dye i s s a l t e d - o u t o f t h e r e a c t i o n s o l u t i o n and captured on a f i l t e r press. The dye f i l t r a t e i s normally d i l u t e d w i t h f i l t e r washings and other water sources t o as much as (100:1) (water: dye f i l t r a t e ) , t r e a t e d , and discharged from t h e p l a n t . The authentic samples of dye f i l t r a t e used i n t h i s study were h i g h l y c o l o r e d , near n e u t r a l l i q u i d s w i t h high s a l t concentrations (5 t o 20 weight percent) and a t o t a l organic carbon (TOC) c o n c e n t r a t i o n o f about 0.5 percent.
0097-6156/81/0154-0435$05.00/0 © 1981 American Chemical Society
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
SYNTHETIC
436
Table I .
H F A N D U F USES
CARRE, Inc. Membrane S p e c i f i c a t i o n s
Flow Geometry Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
MEMBRANES:
Ultrafiltration ZOSS
Hyperfiltration ZOPA
Tubular
Tubular (3l6£)
stainless steel (3l6£)
Membrane Support
stainless steel
Membrane M a t e r i a l
zirconium
Method o f Replacement
i n place chemical solution
i n place chemical solution
Prefiltration Requirement
hO mesh screen
1+0 mesh screen
Pressure
g r e a t e r than 1000 psig
greater than 1000 psig
greater than 100°C (212°F)
greater than 100°C (212°F)
Limitation
Temperature Limitation pH Range
oxide
zirconium oxide polyacrylate
U-ll
2-13
P e r m e a b i l i t y with Test S o l u t i o n @ 100°F
0 . 1 t o O.k
0.05
8 200°F
O.k t o 1 . 2
0.2
S a l t Rejection"^
5 - 20%
80 - 90%
-
-
0.07
0.3
Test S o l u t i o n 1000 mg/l o f NaNO^ i n water Flux equals P e r m e a b i l i t y times pressure Examples: ( l ) ZOSS Membrane at 1000 p s i g at 100°F F l u x = 0 . 2 5 x 1000 = 250 g a l l o n s / d a y / f t (2) ZOPA Membrane at 1000 p s i g at 200°F Flux = 0 . 2 5 x 1000 = 250 g a l l o n s / d a y / f t ^ Flux with wastewater must be measured. c
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
24.
BRANDON
ET AL.
Dynamic Membranes
437
F o u r f l u i d s were s t u d i e d : f i l t r a t e s f r o m t h e m a n u f a c t u r e o f (a) "basic y e l l o w C I U 8 0 5 ^ , i n d o l e t y p e ; (b) a c i d y e l l o w C I 1 3 9 0 6 , a z o - t y p e ; ( c ) a c i d b l u e CI 6 2 0 5 5 a n t h r a q u i n o n e t y p e ; a n d (d) an e q u a l m i x t u r e o f t h e a b o v e , t e r m e d " c o m p o s i t e " . T a b l e I I i d e n t i f i e s the s t r u c t u r e s o f the product dyes. Test f l u i d s r a n g i n g i n d i l u t i o n f r o m 2 : 3 t o 1 0 0 : 1 were u s e d . A need e x i s t s t o f r a c t i o n a t e t h e s o l u t e s i n t h e dye f i l t r a t e i n t o r e t a i n e d o r g a n i c and p a s s e d i n o r g a n i c s a l t f r a c t i o n s . The passage o f simple e l e c t r o l y t e s occurs through u l t r a f i l t r a t i o n membranes a n d i o n - e x c l u s i o n h y p e r f i l t r a t i o n membranes a t a h i g h salt concentration. B o t h t y p e s o f dynamic membranes were t e s t e d . The dynamic u l t r a f i l t e r had b e e n o b s e r v e d t o r e t a i n c o l o r i n s p e n t dye s o l u t i o n s , b u t i t s c o l o r r e t e n t i o n u s i n g t h e s e d i l u t e d dye f i l t r a t e s ( 1 0 0 : 1 ) was n e g l i g i b l e and no q u a n t i t a t i v e r e s u l t s are presented. A d e s c r i p t i o n o f the experiments and p r e l i m i n a r y r e s u l t s u s i n g b a s i c y e l l o w C I U805^ a n d c o m p o s i t e f i l t r a t e s has been p u b l i s h e d . (3) R e s u l t s o b t a i n e d w i t h t h e h y p e r f i l t e r u s i n g a c i d y e l l o w C I 13906 and a c i d b l u e C I 62055 f i l t r a t e s are d e s c r i b e d here. T h e p r o p e r t i e s o f t h e dye f i l t r a t e s are p r o v i d e d i n Table I I I . The e f f e c t s o f p e r t i n e n t o p e r a t i n g p a r a m e t e r s on t h e s e p a r a t i o n p r o c e s s were m e a s u r e d . Most e x p e r i m e n t s were p e r f o r m e d a t 5 . 2 MPa (750 p s i ) . D e l i b e r a t e e x c u r s i o n s i n t e m p e r a t u r e were made t o measure t h i s e f f e c t and p r o v i d e a means o f c o m p e n s a t i n g t h e f l u x d a t a f o r t e m p e r a t u r e and r e p o r t i n g a l l c o m p a r i s o n d a t a a t U5°C. The s e p a r a t i o n o f s o l u t e s was a n t i c i p a t e d t o depend on c o n c e n t r a t i o n and pH and t h e s e e f f e c t s were d e t e r m i n e d systematically. Two e x p e r i m e n t a l p r o c e d u r e s were c a r r i e d o u t . In the f i r s t , a 1 0 0 : 1 ( w a t e r and dye f i l t r a t e ) d i l u t i o n was c o n c e n t r a t e d t o o n e - t e n t h i t s i n i t i a l v o l u m e . R e j e c t i o n b a s e d on c o l o r a b s o r b ance {hlO nm) and e l e c t r i c a l c o n d u c t i v i t y , f l u x , p r e s s u r e , t e m p e r a t u r e , a n d c r o s s f l o w r a t e were m e a s u r e d a t i n t e r v a l s during the concentration experiment. I n the second, a s l i g h t l y d i l u t e d dye f i l t r a t e ( 2 : 3 ) was u s e d and t h e h y p e r f i l t r a t i o n a t s t e a d y s t a t e was e v a l u a t e d a s i n t h e f i r s t p r o c e d u r e . The t e s t was r e p e a t e d a t d i l u t i o n s r e a c h i n g ( 1 0 0 : 1 ) , w i t h pH and t e m p e r ature excursions a t a d i l u t i o n o f 3 : 1 . The v a r i a t i o n o f f l u x w i t h t e m p e r a t u r e f o r a l l t h e f l u i d s i s shown i n F i g u r e 1 . Each t r e n d i s reasonably c o r r e l a t e d b y
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
5
J
= J
q
exp[-2,500 ( i - i )] o
[1]
where J Q i s t h e f l u x a t T = 3l8K ( i +5°C). T h e v a r i a t i o n o f f l u x and r e j e c t i o n s w i t h pH i s shown i n F i g u r e s 2 a n d 3 f o r t h e t w o fluids. Q
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
438
SYNTHETIC
Table I I .
MEMBRANES:
S t r u c t u r e s o f Product Dyes
Product Dye
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
H F A N D U F USES
Structure
Basic Yellow, CI hQ05k
CH
3
O^NJ-CHIN-N—^>-0C H I I C h U
C
H
C H S 0
3
3
4
3
Acid Yellow, CI 13906
S 0
2
N H
C O - N H - O
2
"
N a
f
A c i d Blue, CI 62055
0
N H
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
24.
BRANDON
ET AL.
Dynamic Membranes
439
Table I I I . P r o p e r t i e s o f Dye F i l t r a t e s Property
A c i d Y e l l o w , CI 13906
(mg/L)
A c i d B l u e , CI 62055
(mg/L)
CI"
116,000
12,600
TDS
217,000
111,000
COD
lU,200
Hl,900
6,l80
21,800
177,000
50,000
Alkalinity
E q u i v a l e n t NaCl
(by c o n d u c t i v i t y ) pH
9.1
9.3
Cr
0.3k
0.20
Cu
Q.kh
Ni
1.73
0.63
Zn
0.63
0.87
Hg
17.8
760.
13.8
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
SYNTHETIC
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
440
MEMBRANES:
HF
AND
UF
USES
3• 3
2- 9 103/T
Figure 1.
Effect of temperature on membraneflux:P = 5.2 MPa (750 psi)
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
24.
Dynamic Membranes
BRANDON E T A L .
H
1
.
1
1
441
A
I
•
A
•6 r
O 6° •
.4
° .2
•
O
I
9
conductivity
I
L
i
i
I
i
_l
I
I
I
1
L_
0 2
1 0 5 Jo (m/s)
PH
Figure 2. Rejection (r) and flux (J ) dependence on pH for the acid yellow CI 13906 filtrate: solid points at conductivity (LJ = 0.026 S/cm and open points at L = 0.06 S/cm; P = 5.2 MPa (750 psi). 0
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
442
SYNTHETIC
•
MEMBRANES:
HF
AND
UF
USES
•
pH
Figure 3.
Rejection (r) and flux (J ) dependence on pH for the acid blue CI 62055 filtrate: conductivity (L) = 0.042 S/cm; P = 5.2 MPa (750 psi). 0
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
24.
BRANDON
ET AL.
443
Dynamic Membranes
The dependence of the r e j e c t i o n s on the concentration i s o f primary i n t e r e s t . The r e j e c t i o n s and f l u x dependence on concent r a t i o n (represented by the c o n d u c t i v i t y of the feed) i s shown i n Figures h and 5 f o r the two f l u i d s . The most s i g n i f i c a n t feature i s the d i f f e r e n c e i n r e j e c t i o n based on absorbance (A) and t h a t based on c o n d u c t i v i t y ( L ) , i . e . , the d i f f e r e n c e i n r e j e c t i o n o f the c o l o r e d organic dye s a l t s and the simple s a l t s (the major c o n t r i b u t o r t o the c o n d u c t i v i t y ) . The membrane e f f e c t i v e l y concentrates the c o l o r w i t h r e j e c t i o n , r ^ , g r e a t e r than 0.9 ^or most data w h i l e passing simple s a l t s w i t h r e j e c t i o n , r ^ , l e s s than O.k at high c o n c e n t r a t i o n . This r e s u l t suggests the dependence of the s e p a r a t i o n f a c t o r , ajjj, where L a'A l
[2]
on c o n c e n t r a t i o n d i f f e r s f o r the two f l u i d s . As shown i n Figure 6, increases w i t h concentration f o r the a c i d y e l l o w CI 13906 f i l t r a t e but remains n e a r l y constant f o r the a c i d blue CI 62055 f i l t r a t e . The r e j e c t i o n o f c o l o r i s coupled w i t h t h a t of cond u c t i v i t y i n the l a t t e r f i l t r a t e but not i n the former. These r e j e c t i o n s are uncoupled i n the b a s i c y e l l o w CI kQO^h f i l t r a t e . (3_) I n c r e a s i n g i o n i c s t r e n g t h decreases the i o n - e x c l u s i o n e f f e c t i v e n e s s of charged membranes. The r e s u l t s i n d i c a t e t h a t the c o l o r e d components of the a c i d blue f i l t r a t e behave as a simple e l e c t r o l y t e , w h i l e the l a c k of a r e d u c t i o n i n the c o l o r r e j e c t i o n of the other two f l u i d s suggests the c o l o r e d species are e i t h e r l a r g e r or aggregated so t h a t t h e i r r e j e c t i o n s are independent of i o n i c s t r e n g t h . The dye f i l t r a t e s contained c o l o r e d species i n a d d i t i o n t o the product dye. This was determined by s e p a r a t i n g the c o l o r e d species by l i q u i d chromatography and comparing the e l e c t r o n i c s p e c t r a of each c o l o r e d e l u t i o n band w i t h the p u r i f i e d product dyes. Thus conclusions f o r the d i f f e r e n c e i n behavior cannot be based on the product-dye s t r u c t u r e s . I n summary, the dynamically-formed u l t r a f i l t e r d i d not separate c o l o r e d compounds from the s a l t . The dynamicallyformed h y p e r f i l t e r e f f e c t i v e l y r e t a i n e d the c o l o r e d compounds w h i l e p r o v i d i n g low r e j e c t i o n of the s a l t . Because the s a l t r e j e c t i o n was low i n the concentrated s o l u t i o n s r e s u l t i n g i n low osmotic pressure d i f f e r e n c e s , the f i l t r a t i o n of concentrated s o l u t i o n s w i t h high i o n i c strengths could be accomplished at the r e l a t i v e l y low o p e r a t i n g pressure o f 5-2 MPa (750 p s i ) . Renovation of Dye Range Wash Water f o r Reuse A p r o j e c t i s i n progress t o demonstrate the c l o s e d - c y c l e operation of a production dye range. The cooperative agreement w i t h LaFrance I n d u s t r i e s i n v o l v e s the Environmental P r o t e c t i o n
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
444
SYNTHETIC MEMBRANES:
A
>
1
A
1
k
HF
AND U F
USES
A
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
a b s o r b a n c e
%>
o
O O 0 O 1
1
1
conductivity
• •
•
•
•
•
i
0 0
.02
l .04 C o n d u c t i v i t y
Figure 4.
i .08
1
.0 6 (
.10
S/cm)
Rejection (v) and flux (J ) vs. conductivity for the acid yellow CI 13906 filtrate: P = 5.2 MPa (750 psi). 0
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
BRANDON
445
Dynamic Membranes
ET AL.
1.0
A .8 .6 r
O O
.4 .2
con ducti vity
I
l_
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
0 2
10° J
0
(m/s)
O
• o
0
.02
.04
.06
-08
(s/cm)
Conductivity
Figure 5. Rejection (r) and flux (J ) vs. conductivity for the acid blue CI 62055 filtrate:filledsymbols represent the concentration procedure; open symbols the dilution procedure; P = 5.2 MPa (750 psi). 0
30
I O
y e l l o w
A
blue
o
-
O
o
* \
A A i
D
Figure 6.
o
O
10
.1
I
.2
I
.3
L
Dependence of the separation factor « feed
A
>4
on the conductivity (L) of the
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981. FLUX, GAL/FT
/DAY
DIRECT ACRYLIC BLEACH
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 2, 2015 | http://pubs.acs.org Publication Date: May 27, 1981 | doi: 10.1021/bk-1981-0154.ch024
DIRECT ACRYLIC DISPERSED DIRECT ACRYLIC DISPERSED DIRECT ACRYLIC ACRYLIC ACRYLIC DIRECT AUTOMOTIVE ACRYLIC DIRECT ACRYLIC DIRECT DIRECT DIRECT AUTOMOTIVE ACRYLIC DIRECT ACRYLIC BLEACH DCRECT DIRECT DIRECT DIRECT ACRYLIC DIRECT ACRYLIC DISPERSED DIRECT REACTTVE DIRECT
S3Sn 3fl QNV 3H :S3NVHaiA[3P\[ 3U3H1NAS
9yJ7
In Synthetic Membranes: Volume II; Turbak, A.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
T Y P F