6 Receptor Mechanisms and Biochemical Rationales Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
B. B E L L E A U
1
Departments of Biochemistry and Chemistry, Faculties of Medicine and Science, University of Ottawa, Ottawa, Ontario, Canada
The following function
biochemical
are analyzed:
(b) kinetic
approaches,
biophysical linergic
and
adrenergic
systems,
relationships
regard
to
binding
do not modulate The cholinergic
receptor
be
provide
reduce
free
and
parameters
receptors
regulatory include
unit of
times of interact
entially
or quasi-symmetrical
or
accessory agonists,
sites for drugs.
these sites would
symmetrical
receptors.
analogous
cause of their topography, with
antagonists in
structurally
binding
conclu with
the diffusion
additional
or and
uninformative
and the anionic
would
allosteric
relationships
Agonists
Neurotransmitter
sites which
and which
specificities.
the
to cho
based on linear
to be
the same physical
acetylcholinesterase homologous.
are shown
from
as applied
The following
functions
and
approaches,
(d) receptor
in drugs.
additivity
energy
structure
approaches
standpoints
to structure—action
quasi-symmetry
sions are drawn:
control
(c) molecular
and biochemical
control sites in relation molecular
aspects of receptor
(a) extra-thermodynamic
Be
prefer molecules.
Τ T n t i l a b o u t 10 years ago ( I , 2 ) , n e u r o t r a n s m i t t e r - a n d d r u g - r e c e p t o r ^
interactions h a d b e e n t r e a t e d p h e n o m e n o l o g i c a l l y rather t h a n i n
terms of m o d e r n s t r u c t u r a l c h e m i s t r y .
Since t h e n , progress i n r e c e p t o r
c h e m i s t r y has b e e n too m o d e s t to a l l o w clear-cut p r e d i c t i o n s of i m m e d i a t e t a n g i b l e v a l u e i n the field o f d r u g d e s i g n . Nonetheless, hopes are h i g h p r e s e n t l y that t h e r a t i o n a l d e s i g n of n e w t h e r a p e u t i c agents m a y n o l o n g e r be a d r e a m — a n i m p r e s s i o n w h i c h c a n m a r k e d l y affect f u t u r e e x p e r i m e n t a l approaches to d r u g d i s c o v e r y . T h e s e hopes or expectations a r e b a s e d l a r g e l y o n extrapolations f r o m a v a r i e t y of e x t r a - t h e r m o d y n a m i c 1
Present address: Department of Chemistry, McGill University, Montreal, Canada. 141
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
142
DRUG DISCOVERY
r e l a t i o n s h i p s b e t w e e n substituent effects i n s m a l l m o l e c u l e s ( o r l i g a n d s ) a n d b i n d i n g o n m o d e l systems.
H o w e v e r , the s t r u c t u r a l c h e m i s t r y of the
receptors of e x c i t a b l e m e m b r a n e s is as y e t p o o r l y u n d e r s t o o d , a n d e v e n less is k n o w n a b o u t the m e c h a n i s m s u n d e r l y i n g t h e i r response to l i g a n d s . A t first, t h e n , the q u e s t i o n n a t u r a l l y arises as to w h a t q u a l i t a t i v e r e l e v a n c e h a v e studies w i t h m o d e l systems to the structure a n d r e g u l a t i o n of m e m b r a n e receptors? A l l e x p l a n a t i o n s of the effects of s t r u c t u r a l or substituent
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
changes o n b i n d i n g o r o n c h e m i c a l reactions are a l w a y s b a s e d o n some k i n d of c o m p a r i s o n w i t h m o d e l s , w h i c h m a y be s i m p l e or c o m p l e x .
In
the latter case, m a n y of the c o m p l e x i t i e s are, so to speak, a v e r a g e d o u t i n the c o m p a r i s o n s , thus a l l o w i n g f o r the g e n e r a t i o n of s i m p l e m e c h a n i s t i c p i c t u r e s . T h i s is the s i t u a t i o n , f o r instance, w h e n the h y d r o p h o b i c b o n d i n g t h e o r y ( 3 ) is u s e d to e x p l a i n the i n h e r e n t l y c o m p l e x k i n e t i c responses of e n z y m e s to o r g a n i c l i g a n d s (4,
5).
O n the other h a n d , the use
of
s i m p l e m o d e l s , s u c h as those f o r substituent effects o n h y d r o p h o b i c transfer forces, m a y o f t e n r e q u i r e m o r e c o m p l e x a n d m o r e e m p i r i c a l e x p l a n a tions because s e v e r a l a d d i t i o n a l s i m p l e m o d e l s ( f o r steric or e l e c t r o n i c effects, f o r e x a m p l e ) m u s t b e c o n s i d e r e d s i m u l t a n e o u s l y to a c h i e v e c o r r e lations w i t h effects o n a r e a l system (6).
I n a n y event, w h e n s t r u c t u r a l
or substituent effects are e x p l a i n e d i n terms of the same effects i n a m o d e l system, the parameters w h i c h are c o m p a r e d are a l w a y s of a t h e r m o d y n a m i c n a t u r e — u s u a l l y free energies i n the case of ligand—protein or d r u g r e c e p t o r i n t e r a c t i o n s — a n d so c a n n o t t e l l us a n y t h i n g a b o u t r e a c t i o n paths, as is w e l l k n o w n .
O n l y o c c a s i o n a l l y h a v e enthalpies a n d entropies b e e n
u s e d i n s u c h c o m p a r i s o n s (7, 8),
a n u n f o r t u n a t e o m i s s i o n since t h e y c a n
h e l p n a r r o w the c h o i c e of p o s s i b l e i n t e r p r e t a t i o n s .
It is clear, t h e n , that
the q u a l i t y of the answers w h i c h studies w i t h m o d e l systems c a n s u p p l y d e p e n d s c r i t i c a l l y o n the nature of the questions w h i c h are a s k e d of the model.
If n o n - s p e c i f i c questions are a s k e d , the p a r a m e t e r of s p e c i f i c i t y ,
w h i c h characterizes r e a l r e c e p t o r systems ( a n d a l l l i f e processes, f o r that m a t t e r ) c a n h a r d l y a p p e a r i n the answers, thus f o r c i n g the c o n c l u s i o n that specific d r u g s m a y not yet be d e s i g n e d r a t i o n a l l y t h r o u g h e x t r a p o l a tions f r o m m o d e l s w h i c h i n c o r p o r a t e o n l y w h a t is c o m m o n to a l l systems.
Extrothermodynamic Approaches O f t e n , s i m p l e a d d i t i v i t y r e l a t i o n s h i p s b e t w e e n one t h e r m o d y n a m i c p r o p e r t y or the other a n d some s u i t a b l e substituent p r o p e r t i e s are f o u n d (6),
b u t these r e l a t i o n s h i p s are not p a r t of t h e r m o d y n a m i c s p e r se
they are e x t r a - t h e r m o d y n a m i c ) .
(i.e.,
It is i n t e r e s t i n g that m a n y l i n e a r free
e n e r g y r e l a t i o n s h i p s b e t w e e n affinity f o r m o d e l systems a n d c e r t a i n s u b stituent p r o p e r t i e s c o u l d b e f o u n d (6).
H e n c e , the f o r m a l i n t e r a c t i o n
m e c h a n i s m s d e d u c e d f r o m s u c h m o d e l studies a p p e a r to h a v e a n exact
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
143
Mechanisms
c o u n t e r p a r t i n r e a l systems of v e r y c o m m o n o c c u r r e n c e .
Accordingly, the
m e a s u r e d a d d i t i v e effects of l i g a n d - s u b s t i t u e n t s i n r e a l c o m p l e x systems m u s t h a v e some f a i r l y c o m m o n p h y s i c a l d i m e n s i o n s w h i c h , at first a p p r o x i m a t i o n , are i d e n t i c a l to those c o n t r o l l i n g t h e b e h a v i o r of t h e s i m p l e m o d e l systems.
P a r t processes o f s u c h w i d e o c c u r r e n c e
can only be
d r i v e n b y c o m p o n e n t forces w h i c h are c o m m o n to m a n y systems. C l e a r l y , o n l y e x t e r n a l forces ( s u c h as solute—solvent i n t e r a c t i o n s ) a p p l y so i n d i s -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
c r i m i n a t e l y , w i t h t h e consequence that t h e l i g a n d - s u b s t i t u e n t s w i l l h a p p e n to p e r t u r b some p r o p e r t y w h i c h is c o m m o n to a l l t h e i r m a c r o m o l e c u lar partners
[ s u c h as p a r a l l e l changes i n t h e surface free e n e r g y o r t h e
v o l u m e s o f t h e systems
(see
below)].
I n other
words, non-specific
p e r t u r b a t i o n s w i l l b e i n d u c e d , as is t h e case i n g e n e r a l enzyme—receptor i n h i b i t i o n , b y h o m o l o g o u s series of substrate analogs
(9, JO). L i g a n d -
i n d u c e d losses of a specific r e c e p t o r o r e n z y m e p r o p e r t y ( s u c h as c a t a l y t i c a c t i v i t y ) c a n result f r o m m a n y k i n d s of u n p r o d u c t i v e p e r t u r b a t i o n s of t h e a c t i v e sites, so that p o t e n c y i n p r e v e n t i n g a n effector
molecule
f r o m i n i t i a t i n g a specific c o n f o r m a t i o n a l c h a n g e has o n l y t h e d i m e n s i o n of a r e l a t i v e free e n e r g y c h a n g e , w h i c h m a y b e subject t o m o d u l a t i o n s i m p l y b y c h a n g i n g t h e substituent i n t e r a c t i o n w i t h t h e m e d i u m . I t f o l l o w s that
the observation
of a d d i t i v i t y f u n c t i o n s b a s e d
o n l y o n AG
changes cannot serve to i d e n t i f y t h e b i n d i n g r e a c t i o n paths, w h i c h m u s t d i s t i n g u i s h o n e r e c e p t o r system f r o m another, a n d e v e n t h o u g h e x t r a p o lations of t h e f u n c t i o n s m a y serve to i m p r o v e o v e r - a l l s t r e n g t h o f b i n d i n g , n o n - s p e c i f i c interactions w i l l t e n d to d o m i n a t e t h e p i c t u r e . I n fact, i t is d e v i a t i o n s f r o m a d d i t i v i t y f u n c t i o n s w h i c h are i n d i c a t i v e of s p e c i f i c i t y effects, a measure of w h i c h is sometimes g i v e n b y t h e n u m b e r o f s e m i e m p i r i c a l parameters w h i c h m u s t b e c o n s i d e r e d s i m u l t a n e o u s l y t o a c h i e v e correlations w i t h r e a l systems ( 6 )
T h e b a s i c q u e s t i o n as to w h e t h e r t h e
r e s p e c t i v e effects of activators ( n e u r o e f f e c t o r s )
a n d inhibitors
(antago-
nists) measure t h e same t h e r m o d y n a m i c p r o p e r t y d i d n o t e v e n attention u n t i l r e c e n t l y ( 1 0 , 11; see below).
a l l o w i n g a n i n s i g h t i n t o t h e m o l e c u l a r m e c h a n i s m s of r e c e p t o r to
neuroeff ectors
a r e therefore
needed
attract
Other more suitable models badly
(see
below).
responses Before
e l a b o r a t i n g o n this subject i t w o u l d b e advantageous to d e s c r i b e b r i e f l y some recent advances i n k n o w l e d g e of t h e k i n e t i c b e h a v i o r o f t h e e x c i t a b l e m e m b r a n e receptors as i t bears o n t h e p r o b l e m of i n t e r a c t i o n specificities.
Kinetic Approaches L i t t l e a t t e n t i o n n e e d b e d e v o t e d here to t h e c l a s s i c a l k i n e t i c analyses of d r u g - r e c e p t o r interactions dose—response curves.
as b a s e d o n t h e g e n e r a l a p p e a r a n c e
of
T h i s a p p r o a c h to r e c e p t o r m e c h a n i s m s has b e e n
d o c u m e n t e d f u l l y , a n d n o s i g n i f i c a n t progress has b e e n m a d e since w h i c h
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
144
DRUG DISCOVERY
c a n h e l p a c h i e v e a n i m p r o v e d u n d e r s t a n d i n g i n s t r u c t u r a l terms.
This
a p p r o a c h has s e r v e d essentially to s h o w that the response c u r v e of c e r t a i n m e m b r a n e s to g r a d e d increases i n l i g a n d concentrations o f t e n obeys the L a n g m u i r i s o t h e r m (12)
a n d that s t r u c t u r a l l y r e l a t e d d r u g s c a n i n d u c e
different m a x i m a l responses ( a p h e n o m e n o n at the o r i g i n of the c o n c e p t of " i n t r i n s i c a c t i v i t y " ) (12). (13)
H o w e v e r , it has b e e n n o t e d i n r e c e n t years
that d e p e n d i n g o n the t y p e of e x c i t a b l e
membrane, the
dose-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
response curves c a n b e s l i g h t l y S - s h a p e d , a n d sometimes e x t r e m e l y s h a r p (as i n " a l l - o r - n o t h i n g r e s p o n s e s " ) .
T h e s e observations suggest a p r e v i -
o u s l y u n s u s p e c t e d p r o p e r t y of receptors a n d associated m o l e c u l e s .
By
e x t r a p o l a t i n g f r o m the k n o w n b e h a v i o r of r e g u l a t o r y e n z y m e s (14,
15),
a m o d e l was proposed where receptor protomers w o u l d display cooperat i v e responses t y p i c a l of h i g h l y o r d e r e d structures (16).
B a s e d o n the
a s s u m p t i o n that the r e c e p t o r c a n exist i n o n l y t w o c o n f o r m a t i o n a l states, a t h e o r e t i c a l treatment, u s i n g the m o l e c u l a r
field
approximation
(17)
of the c o o p e r a t i v e c o n f o r m a t i o n a l t r a n s i t i o n , a l l o w e d the c o n s t r u c t i o n of dose—response curves c l o s e l y a p p r o x i m a t i n g c e r t a i n r e a l situations. A s i n t h e case of the t h e o r e t i c a l t r e a t m e n t of r e g u l a t o r y e n z y m e b e h a v i o r
(15),
the b a s i c a s s u m p t i o n w a s m a d e that the r e v e r s i b l e c o n f o r m a t i o n a l changes of the p r o t o m e r pre-exist l i g a n d b i n d i n g .
H o w e v e r , recent e x p e r i m e n t a l
e v i d e n c e has a c c u m u l a t e d w h i c h casts serious d o u b t o n the v a l i d i t y of this free e q u i l i b r i u m m o d e l (18,
19).
It n o w seems m o r e e v i d e n t that
phase-transitions i n o r d e r e d structures r e q u i r e n u c l e a t i o n , a step w h i c h was also i n c o r p o r a t e d i n a recent t r e a t m e n t of o s c i l l a t i n g p h a s e transitions as r e l a t e d to c o o p e r a t i v e effects i n steady-state branes (20).
t r a n s p o r t across m e m -
N e v e r t h e l e s s , c o o p e r a t i v i t y of r e c e p t o r units is a n i m p o r t a n t
factor i n propagating m e m b r a n e depolarizations a n d nerve impulses and offers a r a t i o n a l basis f o r a l l - o r - n o t h i n g processes i n g e n e r a l . T h e r e a l i t y of c o o p e r a t i v e p h e n o m e n a at the r e c e p t o r l e v e l of m e m b r a n e
lattices
denies the existence of s i m p l e a d d i t i v i t y f u n c t i o n s b e t w e e n l i g a n d affinities a n d substituent p r o p e r t i e s a n d f u r t h e r suggests that those l i g a n d s w h i c h m a y a n t a g o n i z e receptors b y c o o p e r a t i v e m e c h a n i s m s
(assuming
that m o r e t h a n t w o r e c e p t o r c o n f o r m a t i o n s c a n d i s p l a y c o o p e r a t i v i t y ) s h o u l d be s o u g h t a c t i v e l y . T h i s aspect of d r u g r e s e a r c h is e m p h a s i z e d below.
Molecular Approaches Biophysical Aspects.
T h e n a t u r e of the m o l e c u l a r responses of re-
ceptors to activators ( or nucleators ) a n d i n h i b i t o r s ( or antagonists ) m u s t b e u n d e r s t o o d i n m o l e c u l a r terms i f s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s are to b e r a t i o n a l i z e d . P h e n o m e n o l o g i c a l l y , r e c e p t o r responses are r e v e a l e d w h e n the n a t u r e of the m e d i u m i n contact w i t h excitable m e m b r a n e s is
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
145
Mechanisms
v a r i e d b y a d d i n g salts, acids, o r v a r i o u s o r g a n i c l i g a n d s , thus l e a d i n g to a s u d d e n c h a n g e i n t h e p h y s i c o c h e m i c a l p r o p e r t i e s o f the m e m b r a n e s . s h a r p t r a n s i t i o n c a n best b e a s c r i b e d to c o n f o r m a t i o n a l changes m a y b e c o o p e r a t i v e ; see above)
This
(which
i n some s p e c i a l b i o p o l y m e r s , f r o m a
p h y s i c a l state w h i c h n o r m a l l y braces a s t r u c t u r e d m a t r i x o f l i p r o t e i n s to o n e w h i c h spurs a cascade o f b i o p h y s i c a l events u l t i m a t e l y p r o d u c i n g d e p o l a r i z a t i o n of the m e m b r a n e ,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
relaxation
of muscle
fibers.
a n d i n s e v e r a l cases c o n t r a c t i o n or
T h e receptors
f o r the n e u r o t r a n s m i t t e r s
a c e t y l c h o l i n e ( A C h ) a n d the c a t e c h o l a m i n e h o r m o n e s a r e t h e best k n o w n examples o f s u c h specific b i o p o l y m e r s . T h e y are g e n e r a l l y b e l i e v e d to b e proteins, a n d t h e phase
t r a n s i t i o n f r o m t h e " b r a c i n g " state Β to the
" s p u r r i n g " state S c a n b e n u c l e a t e d b y A C h a n d r e l a t e d q u a t e r n a r y salts or b y n o r e p i n e p h r i n e ( N E ) a n d some of its analogs.
B y analogy w i t h
the crystallites a n d other h i g h l y o r d e r e d p o l y m e r s , the r e v e r s i b l e phase t r a n s i t i o n B ^± S c a n g i v e rise to s i m p l e s i g m o i d s , w h o s e steepness o f slope d e p e n d s o n t h e degree o f c o o p e r a t i v i t y b e t w e e n t h e receptors
(see
above ). T h e p r i n c i p l e s at w o r k m a y b e i l l u s t r a t e d b y t h e c l a s s i c a l m o d e l of t h e h e l i x - c o i l t r a n s i t i o n i n p o l y p e p t i d e s a n d p r o t e i n s (21).
However,
f o r t h e case at h a n d , it is best to i m a g i n e that the r e c e p t o r t r a n s i t i o n involves a change
f r o m o n e o r d e r e d state to another
structured one,
rather than a r a n d o m coil w h i c h w o u l d h a r d l y allow for ready reversi bility.
O b v i o u s l y , nucleators o f t h e t r a n s i t i o n m a y b i n d o n b o t h t h e Β
a n d S states, a n d r e v e r s a l of t h e t r a n s i t i o n ( S —» Β ) m a y r e q u i r e n u c l e a t i o n b y other effectors receptors.
w h i c h m a y b e released
i n t h e S state o f t h e
W e n o w c o m e to t h e case w h e r e l a r g e g r o u p s o f l i g a n d s o r
drugs combine w i t h the receptor
w h i l e b e i n g u n a b l e to n u c l e a t e t h e
t r a n s i t i o n f r o m t h e Β to t h e S state.
M a n y of these l i g a n d s or d r u g s
p r e v e n t t h e a c t i o n of nucleators b y a process w h i c h often f o l l o w s the l a w of c o m p e t i t i v e k i n e t i c s (12),
so that the o b s e r v e d t h e r m o d y n a m i c p r o p
erty m e a s u r e d b y these m u t u a l e x c l u s i o n effects has t h e d i m e n s i o n o f a r e l a t i v e A G c h a n g e ( i n t h e absence o f c o o p e r a t i v i t y ) , w h i c h b e i n g s u b stituent sensitive m a y a l l o w t h e generation of e x t r a - t h e r m o d y n a m i c r e l a tionships (see
above).
H o w e v e r , the t r u l y i m p o r t a n t q u e s t i o n for t h e f u t u r e i s : w h a t t h e r m o d y n a m i c p r o p e r t y is m e a s u r e d b y t h e o b s e r v e d effects of n u c l e a t o r s o r agonists?
I n other w o r d s , d o nucleators a n d antagonists m o d u l a t e t h e
same p h y s i c a l v a r i a b l e s ? f o l l o w i n g reason.
A n e g a t i v e a n s w e r appears most l i k e l y f o r t h e
T h e seasoned
m e d i c i n a l c h e m i s t has f r e q u e n t l y o b
s e r v e d that a n increase i n t h e size o r h y d r o p h o b i c b u l k o f agonist s u b stituents w i l l often t r a n s f o r m t h e m i n t o antagonists
(10, 12), thus s u g
gesting s t r o n g l y that a n excess o f a p o l a r b u l k a l l o w s t h e p a r t i c i p a t i o n o f p h y s i c a l v a r i a b l e s w h i c h are n o t n o r m a l l y d i s t u r b e d b y the nucleators themselves.
A c c o r d i n g l y , agonists a n d antagonists
must produce
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
their
146
DRUG DISCOVERY
effects b y w a y of different p h y s i c a l i n t e r a c t i o n m e c h a n i s m s .
Hence, if
the m e a s u r e d t h e r m o d y n a m i c p r o p e r t y f o r antagonist effects is a r e l a t i v e AG change, this m a y n o t b e true f o r nucleators.
I n other w o r d s , agonist
potencies cannot b e a s i m p l e f u n c t i o n of affinity f o r t h e receptors, as is frequently implied
(12).
R a t h e r , a s s u m i n g that Β a n d S states a t t a i n
e q u i l i b r i u m , r e l a t i v e n u c l e a t o r potencies s h o u l d b e a d i r e c t f u n c t i o n o f the p o s i t i o n o f t h e c o n f o r m a t i o n a l e q u i l i b r i u m , so that p o t e n c y
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
h a v e the d i m e n s i o n of a c o n f o r m a t i o n a l free e n e r g y c h a n g e .
would
I t is clear,
t h e n , that agonist affinities f o r receptors or m o d e l systems [ s u c h as a c e t y l cholinesterase
(-22)] h a v e n o b e a r i n g o n t h e degree o f c o n f o r m a t i o n a l
shift i n d u c e d b y nucleators.
Much
confusion w o u l d be eliminated if
these considerations w e r e p r o p e r l y w e i g h t e d . I n contrast to t h e i n h i b i t e d p h y s i c a l state o f the receptor f o r w h i c h m a n y r e l a t i v e l y c h a o t i c , u n p r o d u c t i v e c o n f o r m a t i o n s are possible, i t seems p r o b a b l e that t h e s p u r r e d p h y s i c a l state s h o u l d possess e x c l u s i v e characteristics u n i q u e l y a l l o w i n g f o r c o o p e r a t i v e b e h a v i o r (16).
I d e a l l y , then, nucleators s h o u l d a l l m o d u
late q u a l i t a t i v e l y s i m i l a r p h y s i c a l v a r i a b l e s since o t h e r w i s e m o r e t h a n one s p u r r e d state w o u l d h a v e to b e p o s t u l a t e d .
O n e k e y factor
which
m a y c o n t r i b u t e i m p o r t a n t l y to the m a g n i f i c a t i o n of t h e u n i t a r y m o l e c u l a r response to nucelators is c o o p e r a t i v i t y b e t w e e n r e c e p t o r p r o m o t e r s above),
(see
a n d i f w e assume that besides t h e Β a n d S states, a d d i t i o n a l b u t
u n p r o d u c t i v e states c a n also d i s p l a y c o o p e r a t i v i t y , h i g h l y specific a n d potent t h e r a p e u t i c agents w o u l d b e c o m e accessible.
T h e r e a l i t y o f this
p o s s i b i l i t y appears to b e c o n f i r m e d , at least i n p r i n c i p l e , b y t h e m a n n e r i n w h i c h t h e c o l i c i n class o f a n t i b i o t i c s p r o d u c e t h e i r effects (16,
23).
O t h e r m o d e l s c a n b e c o n s t r u c t e d w h i c h l e a d to s i m i l a r conclusions regarding the divergence of interaction mechanisms antagonists.
f o r agonists a n d
It b e c o m e s o f c o n s i d e r a b l e interest, t h e n , t o d i s c o v e r w h i c h
measurable physical parameter(s)
m a y h a v e d i r e c t r e l e v a n c e to n u c l e a t o r
potencies at the r e c e p t o r l e v e l . A t m e m b r a n e surfaces
macromolecular
structures s u c h as receptors o c c u r at a n aqueous i n t e r f a c e . H e n c e , s o l u t e solvent interactions i n b o t h the i n i t i a l a n d final states o f t h e b i n d i n g partners w i l l c o n t r i b u t e to t h e r e l a t i v e t h e r m o d y n a m i c s t a b i l i t y o f t h e addition complex.
F o r a t i g h t l y p a c k e d g l o b u l a r l i p o p r o t e i n , s u c h as is
p o s t u l a t e d f o r t h e receptor, t h e u p t a k e o f a l i g a n d w i l l necessarily p r o duce a v o l u m e change w h i c h m a y be positive or negative.
T h e volume
c h a n g e w i l l result i n a p a r a l l e l c h a n g e i n t h e h y d r o p h o b i c o r h y d r o p h i l i c area o f t h e r e c e p t o r " m i c e l l e " w h i c h is e x p o s e d to t h e solvent a n d a d j a c e n t macromolecules.
T h e receptor-water
i n t e r f a c i a l tension w i l l
therefore
be c h a n g e d b y t h e l i g a n d , a n d it f o l l o w s that t h e surface f r e e e n e r g y o f the r e c e p t o r
protein must always be changed b y the ligands.
l i g a n d - i n d u c e d v o l u m e changes conformational perturbations.
These
m a y as w e l l b e l o o s e l y r e f e r r e d to as
F o r c o n v e n i e n c e , w e c a n easily c o n c e i v e
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Library American Chemical Society 6.
BELLEAU
Receptor
147
Mechanisms
that antagonists or i n h i b i t o r s penetrate the surface of the r e c e p t o r m i c e l l e , c a u s i n g a v o l u m e increase, w h e r e a s nucleators or agonists m a y cause, b y way
of d e s o l v a t i o n , a v o l u m e c o n t r a c t i o n w h i c h m u s t h a v e a m i n i m u m
v a l u e i n o r d e r that the d e s i r e d m a c r o s c o p i c effects m a y b e
observed.
T h i s m o d e l also p r e d i c t s that different p h y s i c a l v a r i a b l e s w o u l d c o n t r o l the s t a b i l i t y of the " c o n t r a c t e d " ( o r s p u r r e d ) a n d the " e x p a n d e d " ( u n productive)
states
respectively.
N o w , the
change
from
the
initial
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
" b r a c e d " state to a u n i q u e l y s p u r r e d state m u s t o c c u r b y w a y of
a
s t e r e o t y p e d b o n d - b r e a k i n g a n d b o n d - m a k i n g process i n w h i c h t h e a q u e ous i n t e r f a c e m u s t p a r t i c i p a t e a c t i v e l y . T h i s suggests that the e n t h a l p i e s a n d entropies of b i n d i n g s h o u l d b e m a r k e d l y sensitive to s t r u c t u r a l effects i n the nucleators b u t n o t the free-energies since the p o s t u l a t e d u n i q u e n e s s of the p h y s i c a l m e c h a n i s m u n d e r l y i n g the v o l u m e c o n t r a c t i o n s w i l l l e a d to c o m p e n s a t e d
fluctuations
i n the enthalpies a n d entropies of b i n d i n g .
These predictions have recently been experimentally verified t h r o u g h extensive t h e r m o d y n a m i c studies of q u a t e r n a r y salt b i n d i n g o n t h e e n z y m e acetylcholinesterase
(AChE)
as a m o d e l ( 7 ) .
Of
considerable
interest w a s the a d d i t i o n a l finding of a c o r r e l a t i o n b e t w e e n t h e enthalpies of salt b i n d i n g ( b u t n o t the free e n e r g i e s ) a n d the degree of c o n f o r m a t i o n a l response of the e n z y m e (11).
It w a s also n o t e d t h a t p h y s i c a l
changes at the aqueous i n t e r f a c e a p p e a r e d to d o m i n a t e the p i c t u r e , a n d e v i d e n c e was a d d u c e d that i n d e e d different p h y s i c a l v a r i a b l e s m a y b e m o d u l a t e d b y r e c e p t o r nucleators a n d antagonists q u i r e d b y t h e o r y (10).
r e s p e c t i v e l y , as re-
A s i t turns out, agonist potencies a p p e a r to b e a
f u n c t i o n of m o d u l a t i o n i n t e n s i t y ( o r degree of c o n f o r m a t i o n a l s t a b i l i z a t i o n of the S-state), w h e r e a s antagonist potencies are s i m p l e f u n c t i o n s of the t h e r m o d y n a m i c s t a b i l i t y of the u n p r o d u c t i v e a d d i t i o n P a r a l l e l studies w i t h
intact membrane
complexes.
preparations w i l l u n d o u b t e d l y
prove fruitful. L o o k i n g a h e a d , i t w o u l d seem that d r u g s c a p a b l e of i n d u c i n g rec e p t o r rearrangements
b y cooperative mechanisms w o u l d have m u c h
greater v a l u e i n t h e r a p e u t i c s .
T o a c h i e v e this, i n c r e a s e d a t t e n t i o n m a y
h a v e to b e p a i d to p r o t e i n t o p o g r a p h y i f d r u g structures are to b e d e s i g n e d w h i c h are c o m p a t i b l e w i t h l o w e n e r g y r e c e p t o r
conformations
d i s p l a y i n g c o o p e r a t i v i t y . I n this c o n n e c t i o n , it is not i n c o n c e i v a b l e t h a t one of the reasons w h y so m a n y h i g h l y a c t i v e d r u g s are f o u n d a m o n g the n a t u r a l p r o d u c t s ( s u c h as the a l k a l o i d s , f o r instance ) m a y b e r e l a t e d to the
f a c t that
as the
e n d p r o d u c t s of p r o t e i n actions
themselves,
they are necessarily e n d o w e d w i t h " b u i l t - i n k n o w l e d g e " a b o u t p r o t e i n t o p o g r a p h y . It m a y b e w o r t h w h i l e , t h e n , to use the a c c u m u l a t e d k n o w l edge a b o u t the t h r e e - d i m e n s i o n a l structures of p r o t e i n s as a s t a r t i n g p o i n t for d r u g d e s i g n .
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
148
DRUG DISCOVERY
B i o c h e m i c a l A s p e c t s . A l t h o u g h serious efforts h a v e b e e n m a d e over the past f e w years to isolate a n d c h a r a c t e r i z e t h e n e u r o t r a n s m i t t e r r e c e p tors b y t h e m e t h o d o f affinity l a b e l l i n g (24, 25),
t h e results h a v e thus f a r
been generally disappointing a n d ambiguous. T h e isolation of a muscar o n e b i n d i n g p r o t e i n f r a c t i o n f r o m e l e c t r o p l a x tissue a n d t h o u g h t to b e d i s t i n c t f r o m acetylcholinesterase
( A C h E ) has b e e n r e p o r t e d (26),
but
it is too e a r l y to assess t h e p o s s i b l e significance of these observations.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
N e v e r t h e l e s s , s i g n i f i c a n t advances i n t h e in situ s t r u c t u r a l c h e m i s t r y o f b o t h t h e c h o l i n e r g i c a n d a d r e n e r g i c systems h a v e b e e n m a d e i n r e c e n t years, a n d t h e observations m a y suggest n e w avenues t o d r u g research. CHOLINERGIC SYSTEMS: DIRECT AND M O D E L OBSERVATIONS. S i n c e the b a c k g r o u n d of this subject has r e c e n t l y b e e n c o v e r e d e l s e w h e r e o n l y some of t h e i m p o r t a n t n e w h i g h l i g h t s are d i s c u s s e d here.
(27), These
c o n c e r n t h e A C h r e c e p t o r of e l e c t r o p l a x tissue, of t h e m o u s e d i a p h r a g m a n d the f r o g t o e m u s c l e , e s p e c i a l l y i n r e l a t i o n to A C h E
as a m o d e l
receptor. N e w approaches
to t h e c h e m i s t r y of the e e l e l e c t r o p l a x
h a v e b e e n d e s i g n e d b y K a r l i n (24, 28).
receptor
I t w a s s h o w n that d i t h i o t h r e i t o l
( D T T ) r e d u c e s a d i s u l f i d e b o n d at or n e a r the A C h - r e c e p t o r l e v e l , a n d one of t h e l i b e r a t e d thiols c a n b e i r r e v e r s i b l y a l k y l a t e d b y a p p r o p r i a t e t h i o l reagents c a r r y i n g a q u a t e r n a r y m o i e t y . T h e p o s s i b i l i t y is therefore a v a i l a b l e of a c h i e v i n g selective affinity l a b e l l i n g of t h e D D T - g e n e r a t e d t h i o l g r o u p , a n d p r e l i m i n a r y e x p e r i m e n t s a l o n g this l i n e h a v e
already
b e e n c a r r i e d o u t (-29). O f c o n s i d e r a b l e interest w a s the o b s e r v a t i o n that the D T T - t r e a t e d e l e c t r o p l a x is a c t i v a t e d b y h e x a m e t h o n i u m i n s t e a d o f being blocked. T h e r e d u c e d receptor can be reconstituted functionally b y o x i d a t i o n w i t h E U m a n ' s reagent.
A p p a r e n t l y , these t h i o l reagents w e r e
w i t h o u t effect o n s o l u b i l i z e d A C h E (see below, h o w e v e r ) . It thus appears p o s s i b l e that n u c l e a t i o n of phase transitions b y agonists m a y n o r m a l l y b e t r a n s m i t t e d f r o m the r e c e p t o r
to t h e other m e m b r a n e
components b y
w a y of d i s u l f i d e b o n d s a c t i n g as p u l l e r s . T h i s suggests that n e w u s e f u l d r u g s m a y b e d e s i g n e d w h i c h w o u l d b e e n d o w e d w i t h specific i n t r i n s i c p o w e r to affect d i s u l f i d e l i n k s o r to e n g a g e i n d i s u l f i d e i n t e r c h a n g e tions at the r e c e p t o r l e v e l of e x c i t a b l e m e m b r a n e s .
reac-
T h i s area of m e d i c i n a l
c h e m i s t r y has h a r d l y b e e n e x p l o r e d , except i n t h e field o f r a d i o p r o t e c t i v e agents w h o s e m e c h a n i s m s of a c t i o n are s t i l l p o o r l y u n d e r s t o o d . I n r e c e n t years, m u c h attention has b e e n p a i d to t h e r o l e o f c a l c i u m i n r e c e p t o r p h e n o m e n a , besides its b e t t e r k n o w n i n v o l v e m e n t i n e n z y m e a c t i v a t i o n a n d c o n t r a c t i o n o f m u s c l e fibers. E a r l i e r observations b y C s i l l i k and Savay
(30)
a n d N a k a m u r a et al.
co-workers
(32)
to s t u d y c a l c i u m release at t h e m o t o r e n d plates o f
(31)
l e d Tazieff-Depierre and
m o u s e d i a p h r a g m i n r e l a t i o n to r e c e p t o r a c t i v a t i o n a n d i n h i b i t i o n .
Of
c o n s i d e r a b l e interest w a s the o b s e r v a t i o n that w h e r e a s m e m b r a n e d e -
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
polarizers
Receptor
(carbachol,
149
Mechanisms succinyldicholine, etc) liberate
c a l c i u m o n the
m o t o r e n d plates, n o n - d e p o l a r i z e r s s u c h as d - t u b o c u r a r i n e f a i l to d o so. It a p p e a r e d that t h e greater t h e d e p o l a r i z i n g p o t e n c y o f t h e effector, t h e l a r g e r w a s t h e a m o u n t o f c a l c i u m l i b e r a t e d . T h i s suggests a n e w a p p r o a c h to t h e e v a l u a t i o n of r e l a t i v e potencies t h r o u g h d i r e c t c h e m i c a l m e t h o d s rather t h a n c l a s s i c a l p h a r m a c o l o g i c a l p r o c e d u r e s .
It w a s also s h o w n t h a t
c a l c i u m l i b e r a t i o n leads to a c t i v a t i o n of v i c i n a l m e m b r a n e - b o u n d A C h E ,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
whereas c e r t a i n v e n o m toxins a n d p o t a s s i u m ions i n d u c e c a l c i u m release at t h e m u s c l e fiber l e v e l a n d n o t o n t h e m o t o r e n d plates.
Hence: i n
a c c o r d w i t h e a r l i e r concepts ( see below ), c a l c i u m appears to b e c r i t i c a l l y i n v o l v e d i n t h e s t a b i l i z a t i o n of receptor c o n f o r m a t i o n , a n d its l i b e r a t i o n b y nucleators w o u l d serve t h e d u a l p u r p o s e o f s t a b i l i z i n g t h e s p u r r e d p h y s i c a l state a n d o f a c t i v a t i n g e n z y m e s c o n t r o l l i n g g l y c o g e n o l y s i s a n d the c o n t r a c t i o n of t h e m u s c l e
fibers.
It w o u l d b e of interest,
therefore,
to d e s i g n d r u g s ( o r p r o t e i n r e a g e n t s ) w h i c h c a n s p e c i f i c a l l y i n f l u e n c e c a l c i u m interactions w i t h receptors.
U p to n o w , o n l y n o n - s p e c i f i c chelat-
i n g agents h a v e b e e n u s e d , a n d these m o s t l y as a n a l y t i c a l tools.
Interest-
ingly, the proposal was recently
receptor
advanced
inhibitors of the alkylating variety (quaternary b l o c k a c a l c i u m b i n d i n g site
(see
below),
that c e r t a i n
(33)
a z i r i d i n i u m salts) m a y
thus c r e a t i n g a p o t e n t i a l l y
v a l u a b l e p r e c e d e n t i n t h e field. I n o u r o w n laboratories, t h e w o r k i n g h y p o t h e s i s that t h e a n i o n i c s i t e - r i c h c h a i n of A C h E
m a y be conformationally homologous
to t h e
A C h r e c e p t o r (34, 35, 37) has n o w b e e n e x p l o r e d sufficiently to a l l o w a p a r t i a l r e s o l u t i o n of t h e l o n g s t a n d i n g controversies r e g a r d i n g t h e r e l a t i o n of the e n z y m e to the receptor. bearing i n mind.
T h e following highlights m a y b e w o r t h
T h e e n z y m e i n c l u d e s t w o p h y s i c a l l y different r e g i o n s ,
one w h i c h carries u n s p e c i f i c esteratic a c t i v i t y , a n d another w h i c h carries at least f o u r ( a n d p r o b a b l y m o r e )
a n i o n i c sites, t w o of w h i c h c a n b e
c o v a l e n t l y m a s k e d b y t h e a l k y l a t i n g agent N , N - d i m e t h y l - 2 - p h e n y l a z i r i dinium chloride ( D P A ) creased
(36, 37).
T h e D P A - m o d i f i e d e n z y m e has i n -
esteratic a c t i v i t y t o w a r d n e u t r a l substrates
i n d o p h e n y l acetate o r I P A — b u t none w h a t s o e v e r moles o f
1 4
(38,
39)—such
as
toward A C h . T w o
C - D P A r e a c t p e r active s u b u n i t , a n d o n e of t h e c o v a l e n t l y -
b o u n d D P A m o l e c u l e s is r e a d i l y r e m o v e d at p H 9 - 9 . 5 , thus l e a d i n g t o a m o n o - D P A e n z y m e species w h i c h has s t i l l h i g h e r a c t i v i t y t o w a r d I P A b u t n o n e at a l l t o w a r d A C h (36).
T h e b i s - D P A e n z y m e is c o n f o r m a -
t i o n a l l y u n r e s p o n s i v e to d e c a m e t h o n i u m a n d d - t u b o c u r a r i n e ( I P A a s s a y ) , b u t t h e m o n o - D P A species is as responsive as t h e n a t i v e e n z y m e to t h e latter d r u g , w h i l e b e i n g u n a f f e c t e d b y t h e f o r m e r ( 3 6 ) . H e n c e , d e p o l a r i z i n g a n d n o n - d e p o l a r i z i n g d r u g s i n t e r a c t w i t h different a n i o n i c sites o n the a n i o n i c c h a i n of A C h E , a t o p o g r a p h i c a l d i s t i n c t i o n w h i c h c o n c e i v a b l y u n d e r l i e s t h e i r d i f f e r e n t m o d e s of a c t i o n o n t h e m o t o r e n d p l a t e receptors
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
150
DRUG DISCOVERY
( F i g u r e 1 ). T h e postulate that d e p o l a r i z e r s a n d n o n - d e p o l a r i z e r s i n d u c e d i v e r g e n t c o n f o r m a t i o n a l responses
at t h e receptor l e v e l w a s c o n f i r m e d
u s i n g t h e c o n f o r m a t i o n a l responsiveness
o f the a n i o n i c c h a i n of A C h E
as a m o d e l . W h e n A C h E is exposed to m e t h a n e s u l f o n y l
fluoride
(MSF),
the esteratic site u n d e r g o e s i r r e v e r s i b l e s u l f o n y l a t i o n , t h e rate o f w h i c h is m a r k e d l y sensitive to q u a t e r n a r y c h a i n (40).
i o n interactions
changes i n i t i a t e d i n the a n i o n i c c h a i n (41),
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
w i t h the anionic
T h e s e k i n e t i c effects are thus i n d i c a t i v e o f c o n f o r m a t i o n a l a n d of c o n s i d e r a b l e
w a s t h e finding that w he re a s a l k y l m o n o q u a t e r n a r y (34)
interest
a n d bisquater-
n a r y d e p o l a r i z e r s s t r o n g l y s t i m u l a t e t h e rate of the M S F r e a c t i o n
(42),
n o n - d e p o l a r i z e r s s u c h as d - t u b o c u r a r i n e a n d g a l l a m i n e i n h i b i t t h e reaction b y a non-competitive mechanism
(42).
Moreover, the
strongest
k i n e t i c effects w e r e o b t a i n e d w i t h t h e best d e p o l a r i z e r s o f the m o t o r e n d p l a t e m e m b r a n e . T h e s e m o d e l studies p r o v e b e y o n d q u e s t i o n t h a t r e l a t i v e affinities as s u c h f o r A C h E (as m e a s u r e d b y the A C h assay) are i r r e l e v a n t w h e n the p u r p o s e is to establish the existence of s i m i l a r i t i e s o r differences b e t w e e n the a n i o n i c c h a i n of the e n z y m e a n d the A C h receptors.
I t is
true affinity a n d t h e degree as w e l l as n a t u r e of t h e response w h i c h h a v e a bearing
on drug-receptor
interactions,
as w a s p o i n t e d o u t a b o v e .
Recently, conclusive structural evidence for our anionic chain hypothesis w a s p r o v i d e d b y L e u z i n g e r (43), p r e p a r a t i o n (44)
w h o s h o w e d that h i s c r y s t a l l i n e A C h E
(65,000 daltons p e r a c t i v e s u b u n i t ) is a c t u a l l y m a d e u p
of t w o different chains of e q u a l m o l e c u l a r w e i g h t s a n d c h e m i c a l l y d i s -
Figure 1. Schematic of the probable physical structure of acetylcholinesterase. One physical region carries the esteratic site, which is proximal to one anionic site (Site I); the other region would carry at least four anionic sites, and would be homologous to the acetylcholine receptor of the motor end plate excitable membrane. Sites I and II are masked by DP A, but Site II can be regenerated at alkaline pH. Decamethonium (C ) would interact at least with Sites I and II whereas curare would bind at III and IV, and perhaps at II and III. Most quaternary salt suhstituents bind on the anionic chain [exo-binding (26, 36, 42, 3 5 ) ] , thus projecting away from the esteratic region. 10
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
151
Mechanisms
sociatable b y exposure to m e r c a p t o e t h a n o l i n u r e a s o l u t i o n . I n a g r e e m e n t w i t h h y p o t h e s i s , o n l y one of the separated chains carries l a b e l e d p h o s p h o r u s after t r e a t m e n t of the n a t i v e e n z y m e w i t h r a d i o a c t i v e d i i s o p r o p y l fluorophosphonate
(DFP).
T h e s e n e w observations
thus c o n f i r m o u r
h y p o t h e s i s that A C h E is a n o n - s p e c i f i c esterase o n w h i c h a c o n f o r m a t i o n a l l y r e s p o n s i v e a n i o n i c c h a i n a c t i n g as a n A C h - p r o t o r e c e p t o r has b e e n g r a f t e d (27),
(Figure 1).
I n d e e d , a s o m e w h a t analogous c o n f o r m a t i o n a l
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
responsiveness of the A C h r e c e p t o r has b e e n c h e m i c a l l y d e m o n s t r a t e d b y R a n g a n d R i t t e r (45).
I n a d d i t i o n , b o t h the e n z y m e a n d the r e c e p t o r
are m o d i f i e d b y t h i o l reagents (43, 46),
c o n t r a r y to e a r l i e r i m p r e s s i o n s .
F r o m the p o i n t of v i e w of d r u g research, these n e w advances are of p r a c t i c a l significance i n a n u m b e r of w a y s : the r e c e p t o r surface f o r A C h i n c l u d e s several a n i o n i c sites, a l l of w h i c h a p p e a r to b e i n v o l v e d i n the cooperative
n u c l e a t i o n of the
s p u r r e d p h y s i c a l state of the
receptor.
C l e a r l y these sites m u s t b e d i s t i n g u i s h a b l e b y t h e i r stereoelectronic
re
q u i r e m e n t s so that m a n y structures b e a r i n g o n l y a f o r m a l r e s e m b l a n c e to A C h m a y be a c c o m m o d a t e d , w h i c h accounts f o r the w i d e d i v e r s i t y of d r u g structures w h i c h are c a p a b l e of i n d u c i n g c u r a r i z a t i o n or d e p o l a r i z a tion.
T h e a l k a l o i d d - t u b o c u r a r i n e is c e r t a i n l y a distant r e l a t i v e of A C h ,
a n d it is d o u b t f u l that i t c o u l d h a v e b e e n d e s i g n e d r a t i o n a l l y u s i n g the A C h structure as a m o d e l . A s it turns out, i n fact, the m o d e l of the A C h i n t e r a c t i o n w i t h the esteratic c h a i n of the e n z y m e , o n w h i c h several i n t e r pretations
of
structure-activity
relationships
are
still
based
(48)
is
erroneous since m o s t A C h analogs i n t e r a c t m a i n l y w i t h the a n i o n i c c h a i n ( e x o - b i n d i n g ) (37, 41, 42)
( F i g u r e 1 ) , the t o p o g r a p h y of w h i c h has o n l y
b e g u n to b e e x p l o r e d (36, 45). ficities
U n t i l the d e t a i l e d t o p o g r a p h i e s a n d s p e c i
of s u c h large b i n d i n g surfaces are u n d e r s t o o d , n o v e l effector
inhibitor prototypes unpredictable.
endowed with
specificity w i l l
remain
or
essentially
It seems c l e a r that the c l a s s i c a l concept, w h i c h r e q u i r e s
antagonist m o l e c u l e s to o c c u p y the agonist b i n d i n g sites p r o p e r , s h o u l d b e u s e d w i t h extreme c a u t i o n i n v i e w of the m u l t i p l i c i t y of b i n d i n g sites a n d the w i d e o c c u r r e n c e of e x o - b i n d i n g at the a c t i v e site l e v e l
(11).
W e have recently established ( B . Belleau, A . Paturet, a n d M . Saucier, i n p r e p a r a t i o n ) that e r y t h r o c y t e - b o u n d A C h E behaves as a g e n u i n e a l l o steric e n z y m e d i s p l a y i n g " e x p l o s i v e " c o o p e r a t i v e b e h a v i o r w h i c h suggests that i t p r o b a b l y p l a y s a r o l e i n the c o n t r o l of m e m b r a n e c o n f i g u r a t i o n . A phase t r a n s i t i o n m u s t be first n u c l e a t e d b y a p p r o p r i a t e effectors
before
the esteratic center c a n a c c e p t the substrate A C h . W e c o n c l u d e t h a t the r e g u l a t o r y units of m e m b r a n e - b o u n d A C h E possess the b i o p h y s i c a l q u a l i fications
for a receptor-like role on excitable membranes.
ADRENERGIC SYSTEMS. O v e r the past f e w years, s i g n i f i c a n t advances i n o u r u n d e r s t a n d i n g of the in-situ
c h e m i s t r y of b o t h the a- a n d β-recep-
tors for c a t e c h o l a m i n e s h a v e b e e n m a d e .
W e s h a l l e x a m i n e b r i e f l y some
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
152
DRUG DISCOVERY
of the h i g h l i g h t s as t h e y p e r t a i n to the s t r u c t u r a l a n d c o n f o r m a t i o n a l p r o p e r t i e s of these receptors. The
It appears m o r e a n d m o r e l i k e l y that c e r t a i n classes
α-Receptor.
o f C N S d r u g s m a y act p a r t l y b y i n f l u e n c i n g the α-receptors ( 4 9 ) .
Hence,
the n e e d to a c h i e v e b e t t e r c o m p r e h e n s i o n of d r u g a c t i o n at this l e v e l . B e c a u s e m e m b r a n e - b o u n d A T P a s e s are s o m e h o w i n v o l v e d i n a c t i v e trans p o r t across
membranes
(such
as the
Na ,K -activated ATPase) +
much
+
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
s p e c u l a t i o n o n the p o s s i b l e i n v o l v e m e n t of A T P a n d A T P a s e s as c o m p o n e n t s of the α-receptor system has b e e n m a d e (2, 41, 5 0 ) .
T h e tempta
t i o n to v i s u a l i z e A T P as f o r m i n g p a r t of the b i n d i n g sites f o r c a t e c h o l a m i n e s has n o d o u b t b e e n r e i n f o r c e d b y the k n o w n r o l e of A T P i n the b i n d i n g of c a t e c h o l a m i n e s
i n the storage granules
(51),
as w e l l as its
i n v o l v e m e n t as substrate f o r the h o r m o n e - s e n s i t i v e a d e n y l c y c l a s e s the c o n t r a c t i l e p r o t e i n s . stereochemistry
A tentative c o n n e c t i o n b e t w e e n
and
catecholamine
a n d receptor-bound A T P was envisaged several
years
ago ( 2 ) , b u t the first d e t a i l e d m o l e c u l a r t h e o r y of c a t e c h o l a m i n e a c t i o n as b a s e d o n the " A T P - r e c e p t o r " p i c t u r e was a d v a n c e d b y B l o o m a n d Goldman
(50).
A s f a r as the w r i t e r is a w a r e , t h e y w e r e the
first
to
present cogent a r g u m e n t s f o r the c e n t r a l r o l e of c a l c i u m as a l i n k b e t w e e n r e c e p t o r responses
a n d m e t a b o l i c events, a n i d e a w h i c h has since l e d
others to suggest that c a l c i u m m a y i n d e e d act as a s e c o n d u n i v e r s a l messenger
(besides c y c l i c A M P ) o f m e m b r a n e events
(52).
I n spite of the elegance of B l o o m a n d G o l d m a n ' s p r o p o s a l , v a r i o u s aspects of t h e i r m o d e l s m a y b e q u e s t i o n e d .
F o r instance, the a s s u m e d
c e n t r a l r o l e of A T P as a p r i m a r y r e a c t i o n site f o r c a t e c h o l a m i n e s
denies
a p r i m a r y i n v o l v e m e n t of the r e c e p t o r p r o t e i n itself. A s f a r as is k n o w n , e n z y m e i n h i b i t o r s a n d activators ( w i t h the e x c e p t i o n of m e t a l i o n chelat i n g agents ) act o n p r o t e i n b i n d i n g sites rather t h a n t h e i r cofactors. drug N-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline ( E E D Q )
selective p r o t e i n reagent d e v o i d of c h e m i c a l affinity f o r n u c l e o t i d e s i n f a c t behaves (55).
as a selective i r r e v e r s i b l e i n h i b i t o r of the
The
(53),
a
(54),
α-receptors
P a r t l y f o r these reasons w e h a v e c o n c e i v e d a n a l t e r n a t i v e m o d e l
w h e r e b o t h c a l c i u m a n d p r o t e i n g r o u p s w o u l d serve as b i n d i n g sites f o r catecholamines
and inhibitors (56).
It w a s p r o p o s e d that the c a l c i u m
site w o u l d b e essential o n l y f o r c a t e c h o l a m i n e b i n d i n g a n d n o t f o r an tagonists.
Recent experimental evidence was obtained w h i c h
this h y p o t h e s i s ( 5 7 ) .
supports
H o w e v e r , o u r m o d e l also s p e c i f i e d that the r e c e p t o r
m i g h t be a c a l c i u m - m a g n e s i u m d e p e n d e n t A T P a s e o n w h i c h the t e r m i n a l p h o s p h a t e of A T P w o u l d c o m e i n contact w i t h the a m m o n i u m f u n c t i o n of c a t e c h o l a m i n e s so that catalysis of A T P c l e a v a g e w o u l d b e s o m e h o w i n v o l v e d i n the n u c l e a t i o n of a phase t r a n s i t i o n as w e l l as c a l c i u m trans l o c a t i o n at the m e m b r a n e l e v e l .
[ T h i s p a r t of the m o d e l m a y
appear
unnecessary, a n d p e r h a p s too s p e c u l a t i v e , b e c a u s e the n u c l e a t i o n of a
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
153
Mechanisms
phase t r a n s i t i o n n e e d not b e a n A T P - r e q u i r i n g process.]
In
contrast,
r a p i d r e p o l a r i z a t i o n m a y d e p e n d o n e n e r g y s u p p l i e s i n the m e m b r a n e , b u t this c a n h a r d l y c o n c e r n the c a t e c h o l a m i n e receptors p e r se.
What
m a y a p p e a r w o r t h r e t a i n i n g , h o w e v e r , is the m o d e l of the c a l c i u m - p r o t e i n c o m p l e x i n c a t e c h o l a m i n e n u c l e a t i o n of phase transitions i n v i e w of the n e w l y e s t a b l i s h e d p a r t i c i p a t i o n of c a l c i u m i n the d e p o l a r i z a t i o n of the m o t o r e n d p l a t e receptors.
I n d e e d , it c o u l d b e s h o w n that c a l c i u m is
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
r e q u i r e d f o r n o r e p i n e p h r i n e ( N E ) to n u c l e a t e the s p u r r e d state of t h e receptor, a p h y s i c a l f o r m w h i c h is c h e m i c a l l y less r e a c t i v e t h a n the r e s t i n g conformation
toward phenoxybenzamine
(an
alkylating
agent)
(57).
M o r e o v e r , i n the absence of c a l c i u m , N E c o u l d not p r o t e c t against i n a c t i v a t i o n of the r e c e p t o r b y the latter a l k y l a t i n g d r u g , i n a c c o r d w i t h the model
(57).
T h e reverse s i t u a t i o n , w h e r e the s p u r r e d state w o u l d b e c h e m i c a l l y m o r e r e a c t i v e t h a n the b r a c e d r e s t i n g state, thus b e c o m e s e q u a l l y p l a u s i b l e since the r e a c t i v i t y of a b i n d i n g site m a y as easily b e i n c r e a s e d b y a c h a n g e of c o n f o r m a t i o n .
I n fact, this has b e e n o b s e r v e d f o r A C h E
w e l l as the m o t o r e n d p l a t e receptor.
Therefore,
evidence could
as be
o b t a i n e d w h i c h c l e a r l y confirms this e x p e c t a t i o n as regards the a d r e n e r g i c α-receptor. K a l s n e r d i s c o v e r e d that E E D Q , w h i c h i n d u c e s the f o r m a t i o n of an e x t r e m e l y stable a m i d e b o n d at the a c t i v e site l e v e l of the r e c e p t o r (55),
has its p o t e n c y m a r k e d l y e n h a n c e d b y l o w concentrations of v a r i o u s
p h e n e t h y l a m i n e s i n c l u d i n g N E , as w e l l as s e r o t o n i n a n d e v e n h i s t a m i n e (58). motor
It seems e v i d e n t that as for the A C h E p r o t o r e c e p t o r c h a i n a n d the e n d p l a t e receptor,
some
additional anionic binding
sites
for
agonist structures m u s t b e present o n the α-receptor surface so t h a t i n t e r actions w i t h these sites s t r o n g l y enhance the r e a c t i v i t y of the
EEDQ
target site b y w a y of a n i n d u c e d c o n f o r m a t i o n a l c h a n g e i n the r e c e p t o r (Figure 2).
Independent
e v i d e n c e f o r the presence
of at least
two
a n i o n i c sites o n the α-receptor w a s p r o v i d e d b y the f o l l o w i n g o b s e r v a tions: (a)
the b i s a l k y l a t i n g agent I was r e c e n t l y s h o w n t o act as a v e r y
p o t e n t i r r e v e r s i b l e b l o c k e r of the α-receptor (59),
this b e i n g the first t i m e
that a b i s q u a t e r n a r y " c u r a r e a n a l o g " is f o u n d to d i s p l a y h i g h affinity f o r this r e c e p t o r system, a n d ( b )
v e r y l o w concentrations of t h e a l k y l a t i n g
agent D P A , w h i c h h a v e no i n f l u e n c e o n the tissue response to N E , w i l l nevertheless
m a r k e d l y alter
benzamine action, receptor
the
c h e m i c a l characteristics
of
phenoxy
recovery being strongly accelerated
D P A is i n i t i a l l y present o n the surface (33).
when
T h i s also suggests that D P A
alkylates a n accessory a n i o n i c site a n d as a result, the r e c e p t o r c o n f o r m a t i o n is a l t e r e d i n a m a n n e r w h i c h renders the p h e n o x y b e n z a m i n e — r e c e p t o r b o n d m u c h m o r e h a b i l e ( a l t e r n a t i v e l y , the D P A r e c e p t o r species
may
expose a different a c t i v e site to p h e n o x y b e n z a m i n e ). It is of c o n s i d e r a b l e significance t h e n that l i k e the A C h E p r o t o r e c e p t o r c h a i n a n d the e n d
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
154
DRUG DISCOVERY
p l a t e receptor, the a d r e n e r g i c α-receptor s h o u l d also possess m o r e t h a n one a n i o n i c site c a p a b l e of i n t e r a c t i n g w i t h a d r e n e r g i c amines a n d other modifiers so that c o n f o r m a t i o n a l changes
m a y be
i n d u c e d as c a n
r e a d i l y r e v e a l e d b y the c h e m i c a l a c c e s s i b i l i t y a n d r e a c t i v i t y of specific sites.
be
other
O n e is t e m p t e d to c o n c l u d e that these three r e c e p t o r sys
tems are b i o p h y s i c a l l y r e l a t e d .
This conclusion m a y be more
sensible
t h a n i t appears since i t accounts r a t h e r w e l l f o r the p u z z l i n g f a c t that
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
d r u g s ( m o s t l y r e c e p t o r antagonists ) d o n o t d i s c r i m i n a t e too w e l l b e t w e e n the A C h - a n d the c a t e c h o l a m i n e α-receptors.
T h e s e n e w advances
cer
t a i n l y offer m o r e r e a l i s t i c g u i d e l i n e s t h a n the o l d e r m o d e l s i n t h e g e n e r a l area of s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s ( see below ).
The
β-receptor.
T h a t the e n z y m e a d e n y l cyclase is i n t i m a t e l y asso
c i a t e d w i t h b i o g e n i c a m i n e a n d p e p t i d e h o r m o n e a c t i o n o n ^-receptors is now
firmly
e s t a b l i s h e d , a n d there is n o d o u b t that c y c l i c A M P is the
m e d i a t o r r e s p o n s i b l e f o r the a d a p t i v e responses of a v a r i e t y of target cells (60, ence
61). of
E v i d e n c e has also a c c u m u l a t e d that cyclase is u n d e r t h e i n f l u regulatory
subunits
d e p e n d e n t specificities (60,62).
or
discriminators endowed
with
tissue-
A role f o r c a l c i u m , p o s s i b l y as a s e c o n d
messenger of s i g n a l r e c e p t i o n , at the m e m b r a n e l e v e l has b e e n d e m o n strated (52).
W e h a v e r e c e n t l y s h o w n that b r a i n a d e n y l c y c l a s e m a y b e
c a l c i u m d e p e n d e n t , a l t h o u g h it suffers i n h i b i t i o n at h i g h (63).
concentrations
H e n c e , it appears that c a l c i u m is p r o b a b l y a n essential c o m p o n e n t
of a l l the r e c e p t o r systems f o r n e u r o t r a n s m i t t e r s . I n the l i g h t of these n e w d e v e l o p m e n t s , it b e c o m e s m o r e a n d m o r e e v i d e n t t h a t t h e earlier v i s u a l i zations of a d i r e c t i n t e r a c t i o n of c a t e c h o l a m i n e s w i t h c y c l a s e - b o u n d A T P as a m o d e l f o r β-receptor a c t i v a t i o n (2, 50, 64)
m a y not be applicable
since r e g u l a t o r y subunits p r o b a b l y constitute the sites of b i n d i n g a n d p r e s u m a b l y the receptors
themselves.
r e l a t i o n s h i p s a m o n g β-receptor
Consequently, structure-activity
antagonists are n o l o n g e r r e a d i l y i n t e r
p r é t a b l e i n terms of the o l d e r m o d e l s a l t h o u g h i t r e m a i n s to b e p r o v e d that antagonists interact w i t h the agonist b i n d i n g sites themselves. v i e w of o u r
finding
In
that e x o - b i n d i n g p r e d o m i n a t e s i n other systems, i t
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLE AU
Receptor
ι
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
155
Mechanisms
π
Figure 2. The receptor surface for norepinephrine (NE) is shown to include two anionic sites (A); phenethylamines and related structures (including hista mine) interact at Site II and thus induce a conformation change (B) favoring NE binding at Site I, which in turn leads by way of another conformation change to the active, spurred state of the receptor (C). In the Β state, the reac tion at Site I with EEDQ is facilitated by the increased proximity of a surface nucleophile (-NH ) to the mixed anhydride intermediate (D E). Carbamylation of this nucleophile as in Ε leads to irreversible inactivation of the receptor. 2
appears l i k e l y that t h e same c o n c e i v a b l y a p p l i e s to β-receptor antagonists; o t h e r w i s e F i s h e r ' s l o c k - a n d - k e y fit p r i n c i p l e w o u l d b e m e a n i n g l e s s since b o t h agonists a n d antagonists w o u l d h a v e to share i d e n t i c a l b i n d i n g sites. B e c a u s e β-receptors are m a i n l y c o n c e r n e d w i t h a c t i v a t i o n a n d i n h i b i t i o n of a d a p t i v e m e t a b o l i c responses r a t h e r t h a n w i t h t h e d i r e c t g e n e r a t i o n o f a c t i o n p o t e n t i a l s , i t is p r o b a b l e that those b i o p h y s i c a l p a r a m e t e r s w h i c h i n t e r v e n e u n i q u e l y i n n e u r o t r a n s m i t t e r actions o n e x c i t a b l e m e m b r a n e s m a y n o t b e a p p l i c a b l e to t h e β-receptors. T h i s c o u l d a c c o u n t f o r t h e f a c t that most n o n - d i s c r i m i n a t i n g d r u g s w h i c h are k n o w n to i n h i b i t t h e r e sponses of e x c i t a b l e m e m b r a n e s h a v e little, i f a n y , effect o n t h e β - r e c e p tors. R e c e n t l y , h o w e v e r , i t has b e e n c l a i m e d t h a t c e r t a i n antidepressants ( w h i c h a r e potentiators of a d r e n e r g i c amines ) i n f l u e n c e t h e u r i n a r y levels of c y c l i c A M P b y a m e c h a n i s m p r e s u m a b l y i n v o l v i n g c y c l i c A M P - p h o s phodiesterase i n h i b i t i o n ( 6 5 , 66).
H o w e v e r , i t is d i f f i c u l t to see h o w t h e
a c c u m u l a t e d b r a i n c y c l i c A M P c o u l d traverse t h e c e l l m e m b r a n e s , t h e blood-brain
b a r r i e r , t h e l i v e r a n d k i d n e y s a m o n g o t h e r tissues, a n d
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
156
DRUG DISCOVERY
a p p e a r i n the u r i n e as b r a i n c y c l i c A M P w h i c h has e s c a p e d t h e a c t i o n of p h o s p h o d i e s t e r a s e as a result of a n t i d e p r e s s a n t i n h i b i t i o n of the latter. T h e firm c o n c l u s i o n is r e a c h e d that t h e c a t e c h o l a m i n e b i n d i n g surfaces of the a- a n d /^-receptors are d i f f e r e n t since m o s t antagonists of the f o r m e r d o not i n h i b i t the latter.
It w i l l b e i n t e r e s t i n g to see w h e t h e r
m o l e c u l a r m a n i p u l a t i o n s of the c y c l i c A M P s t r u c t u r e w i l l l e a d to n e w u s e f u l d r u g s . T h e prospects m a y a p p e a r g o o d since c y c l i c A M P is i n -
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
v o l v e d i n g l y c o g e n o l y s i s , l i p o l y s i s , steroidogenesis, m e m b r a n e
permea-
b i l i t y , t r a n s l a t i o n , t r a n s c r i p t i o n , a n d as a n a c t i v a t o r of specific p r o t e i n kinases (67).
T h i s latter p r o p e r t y suggests that i t m a y b e i n v o l v e d at
some m e t a b o l i c stage i n the p h e n o m e n o n of m e m o r y
fixation.
I n v i e w of
the s e n s i t i v i t y of v a r i o u s /^-receptors to p e p t i d e h o r m o n e s , m u c h m o r e attention m a y h a v e to b e d e v o t e d to the synthesis of p e p t i d e agonists a n d antagonists since i m p r o v e d s p e c i f i c i t y of a c t i o n m a y b e e x p e c t e d .
The Theory of Sequential Control Sites I n a p r o j e c t e d p a p e r , a c o m p r e h e n s i v e d i s c u s s i o n of the n a t u r e a n d r o l e of w h a t w e t e n t a t i v e l y define as s e q u e n t i a l c o n t r o l sites o n r e c e p t o r surfaces ( a n d some r e g u l a t o r y e n z y m e s ) w i l l be p r e s e n t e d . W e s h a l l here b e c o n c e r n e d o n l y w i t h those g e n e r a l aspects w h i c h are e s p e c i a l l y relev a n t to the p r o b l e m of s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s a m o n g d r u g s . R e c e n t e v i d e n c e s u m m a r i z e d a n d i n t e g r a t e d a b o v e makes i t clear that at least three r e c e p t o r systems f o r c a t i o n i c n e u r o t r a n s m i t t e r s i n c l u d e on t h e i r e x p o s e d surfaces s e v e r a l a n i o n i c b i n d i n g sites w h e r e c o n f o r m a t i o n a l changes m a y be i n i t i a t e d or b l o c k e d . T h e s e findings are at v a r i a n c e w i t h the p r e v i o u s i d e a that o n l y one a c t i v e center is r e s p o n s i b l e f o r the o b s e r v e d effects i n d u c e d b y n e u r o t r a n s m i t t e r s .
T h e systems s t u d i e d i n -
c l u d e the m o t o r e n d p l a t e r e c e p t o r a n d the p u t a t i v e p r o t o r e c e p t o r c h a i n of A C h E , w h i c h b o t h c a r r y at least f o u r d r u g - b i n d i n g a n i o n i c sites p e r a c t i v e u n i t , a n d the N E r e c e p t o r , w h i c h carries at least t w o ( a n d p r o b a b l y m o r e s u c h sites, i n v i e w of its a p p a r e n t b i o p h y s i c a l k i n s h i p to the other two
systems).
critical w i t h
I n a n y event, the exact n u m b e r of a n i o n i c sites is n o t r e g a r d to
the
basic
mechanistic
implications.
The
first
q u e s t i o n w h i c h comes to m i n d i s : w h y s h o u l d there b e s e v e r a l t o p o g r a p h i c a l l y d i s t i n c t a n i o n i c sites f o r n e u r o t r a n s m i t t e r s w h e n o n l y one s h o u l d be necessary to n u c l e a t e the s p u r r e d p h y s i c a l state of these receptors?
C o n s i d e r a t i o n s of a b i o p h y s i c a l n a t u r e m a y p r o v i d e the basis of
an a n s w e r to this q u e s t i o n .
F i r s t , i t c a n b e a g r e e d that the v e l o c i t y of
n e r v e i m p u l s e t r a n s m i s s i o n across t h e s y n a p t i c g a p s h o u l d o c c u r at the m a x i m u m s p e e d a t t a i n a b l e , w h i c h i d e a l l y w o u l d r e q u i r e the t r a n s m i t t e r to t r a v e l at a rate a p p r o a c h i n g that of d i f f u s i o n - c o n t r o l l e d processes. H e n c e , the t r a n s m i t t e r s h o u l d b e m i n i m a l l y h i n d e r e d b y the n a t u r a l d i f -
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
157
Mechanisms
f u s i o n b a r r i e r s to its k e y sites of a c t i o n o n the p o s t - s y n a p t i c surface.
receptor
N e a r the r e c e p t o r surface the p r o b l e m of t i m i n g a n d efficiency
of p r o d u c t i v e captures c a n b e h a n d l e d s i m p l y b y r e d u c i n g the d i m e n s i o n a l i t y i n w h i c h d i f f u s i o n takes p l a c e , f r o m t h r e e - d i m e n s i o n a l to t w o w h i c h has
been
g i v e n a s o l i d q u a n t i t a t i v e t h e o r e t i c a l basis b y A d a m a n d D e l b r i i c k
d i m e n s i o n a l surface
d i f f u s i o n , a f u n d a m e n t a l process
(68).
T h e s e authors p o i n t e d out that " i n the i n t e r m e d i a t e r a n g e of
distances
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
of a f e w m i c r o n s a n e w p r i n c i p l e m a y be i n v o l v e d i n that the d i f f u s i n g m o l e c u l e s r e a c h t h e i r d e s t i n a t i o n area not d i r e c t l y b y free d i f f u s i o n i n t h r e e - d i m e n s i o n a l space b u t b y s u b d i v i d i n g the d i f f u s i o n process
into
successive stages of l o w e r s p a t i a l d i m e n s i o n a l i t y . " A c c o r d i n g l y , i f
the
effector m o l e c u l e sticks loosely to some sites, d i f f u s i o n a l o n g the surface w i l l b e f a v o r e d ( F i g u r e 3 ) so that the c a t c h at some other k e y sites w i l l be s i g n i f i c a n t l y i m p r o v e d , a consequence advantage
for synaptic membrane
of c o n s i d e r a b l e e v o l u t i o n a r y
surfaces
a n d t h e i r receptors
since
shorter r e a c t i o n times a n d e c o n o m i c use of l o w t r a n s m i t t e r concentrations are e n s u r e d . B u c h e r (60)
has p o i n t e d out that surface d i f f u s i o n m a y w e l l
c o n t r i b u t e to the h i g h t u r n o v e r n u m b e r s of m e m b r a n e - b o u n d e n z y m e s , a n d the c o n c e p t w a s i n d e e d a p p l i e d e v e n e a r l i e r b y T r u r n i t (70) system A C h E - A C h .
to the
It is a p p a r e n t t h e n that a n e t w o r k c o m p r i s i n g s e v e r a l
a n i o n i c sites o n the p r o t o r e c e p t o r c h a i n of A C h E m a y c o n t r i b u t e enor m o u s l y to the h i g h rate of c a t c h at a n y one site, p r o v i d e d that the c a t i o n i c m o l e c u l e s d o not i n t e r a c t too s t r o n g l y w i t h c e r t a i n a n i o n i c sites as t h e y o c c u r o n the r e s t i n g state of the receptor surface.
F o r this to h a p p e n , a
l o w e r degree of c o m p l e m e n t a r i t y of the n a t u r a l effector or substrate w i t h c e r t a i n sites m a y be necessary;
o t h e r w i s e surface d i s p l a c e m e n t s
might
b e c o m e too s l u g g i s h . It m a y be c o n v e n i e n t t h e n to speak of s e q u e n t i a l c o n t r o l sites as a n a t u r a l means of h a n d l i n g the p r o b l e m of t i m i n g a n d efficiency i n the p r o d u c t i v e c a t c h of nucleators o n the surface ( F i g u r e 3 ).
Θ 3-Dimensional
Diffusion
2-Dimensional Diffusion
a
a
Figure 3. Schematic of the efficiency of effector ( + ) capture by a surface carrying multiple anionic sites. Transfer from one site to the other involves two-dimensional translocations, thus leading to a much improved efficiency and timing of catch at any given site.
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
158
DRUG DISCOVERY
W e l l - d e v e l o p e d s e q u e n t i a l c o n t r o l sites, w h e r e c o n f o r m a t i o n a l changes can
be i n d u c e d , s h o u l d b e e s p e c i a l l y p r e v a l e n t a m o n g r e c e p t o r
surfaces
for neurotransmitters i n v i e w of the r a p i d i t y w i t h w h i c h i n t e r n e u r o n a l c o m m u n i c a t i o n s m u s t b e e s t a b l i s h e d i n the C N S as a n e x a m p l e . In
p r i n c i p l e , f o r effective n u c l e a t i o n a n d o p t i m u m s t a b i l i z a t i o n of
the s p u r r e d state of the receptors, o n l y one strategic a n i o n i c site m a y n e e d interact w i t h the n u c l e a t o r , b u t i t seems m u c h m o r e p r o b a b l e that
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
w e a k e r interactions w i t h some c o n t r o l sites m a y c o n t r i b u t e i n a c o o p e r a tive m a n n e r to the s t a b i l i t y of the s p u r r e d state. T h e i m m e d i a t e e n v i r o n m e n t of the a n i o n i c sites w i l l o b v i o u s l y differ f r o m one site to another, and their respective c h e m i c a l reactivity w i l l be altered b y conformational changes, thus p r o v i d i n g a n e x p l a n a t i o n f o r the recent observations ( s u m m a r i z e d a b o v e ) w i t h E E D Q ( 5 8 ) , c u r a r i z i n g agents (42), α-blockers of the a l k y l a t i n g v a r i e t y (33).
and adrenergic
In addition, and most impor
t a n t l y , the s e q u e n t i a l c o n t r o l site m o d e l a l l o w s the p r e d i c t i o n t h a t h i g h concentrations of nucleators m a y saturate some u n o c c u p i e d sites as t h e y o c c u r i n the s p u r r e d state of the r e c e p t o r .
T h i s w o u l d cause the latter
to suffer c o n f o r m a t i o n a l b l o c k a d e or f r e e z i n g ( F i g u r e 4 ) , as w o u l d b e reflected, f o r instance, i n the p h e n o m e n a of d e s e n s i t i z a t i o n , t a c h y p h y l a x i s , etc.
I n d e e d , a n excess of A C h w i l l i n d u c e " c u r a r i z a t i o n " of the e n d p l a t e
m e m b r a n e , as w o u l d b e e x p e c t e d i f a d d i t i o n a l A C h m o l e c u l e s saturate the c o n t r o l sites of the r e c e p t o r w h e n i n the s p u r r e d or a c t i v a t e d state.
ΘΘΘ,
Resting
State
Active
State
Locked Active State
Figure 4. Schematic of a formal conformational equilibrium between the resting and active state of the excitable membrane receptor of the motor end plate. In the latter state two strategic sites are occupied, and two control sites are free; when saturation of the latter is enforced by an excess of effector mole cules, the active state is changed to a more stable "frozen" conformation, leading to prolonged depolarization of the membrane. Topographical Symmetry vs. Molecular Quasi-Symmetry.
The mi
c r o s c o p i c e n v i r o n m e n t of e a c h s e q u e n t i a l c o n t r o l site w i l l o b v i o u s l y h a v e its o w n characteristics, a n d i n v i e w of the p o s t u l a t e d l o w e r c o m p l e m e n t a r i t y of the n e u r o t r a n s m i t t e r f o r these s e q u e n t i a l c o n t r o l sites, t h e struc t u r a l r e q u i r e m e n t s f o r antagonist b i n d i n g m a y b e m u c h less r i g o r o u s t h a n at strategic sites, a n d s t r o n g b i n d i n g s h o u l d b e f a v o r e d w h e n t h e d r u g
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLE AU
Receptor
159
Mechanisms
structure is s t e r e o e l e c t r o n i c a l l y c o m p a t i b l e w i t h t h e m i c r o e n v i r o n m e n t o f a n y o n e of t h e c o n t r o l sites. H e n c e , m a n y structures b e a r i n g o n l y a m o d est
analogy
( i f a n y at a l l ) t o t h e n e u r o t r a n s m i t t e r s
m a y preferably
interact s t r o n g l y w i t h t h e c o n t r o l sites r a t h e r t h a n t h e strategic ones w h e r e the n e u r o t r a n s m i t t e r
achieves
a "lock-and-key
fit."
Consequently, the
antagonists w i l l p e r t u r b t h e r e c e p t o r c o n f o r m a t i o n , a n d i f c o o p e r a t i v i t y is also
achieved,
v e r y h i g h potencies
m a y occasionally
be
observed.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
A s s u m i n g that a d r u g c a n interact w i t h m o r e t h a n o n e c o n t r o l area at a time, the receptor
conformation
m a y be changed
or stabilized
more
effectively since a greater d e g r e e of o v e r - a l l c o m p l e m e n t a r i t y w o u l d b e achieved.
O f t h e m u l t i t u d e of orientations
w h i c h a n effector s u c h as
A C h c a n assume at a n y t w o v i c i n a l s e q u e n t i a l sites, t h e r e exist t w o w h e r e the m o l e c u l e s w i l l b e a r r a n g e d i n t a i l - t o - t a i l f a s h i o n ( F i g u r e 5 ) . T h i s is w h a t w o u l d o b t a i n , f o r instance, i f d i s p l a c e m e n t f r o m o n e site t o a n o t h e r n e i g h b o r i n g site is a c c o m p l i s h e d t h r o u g h a 1 8 0 ° r o t a t i o n a l m o t i o n . F o r this to h a p p e n , t h e t w o adjacent c o n t r o l areas w h e r e t h e m o l e c u l e s a r e interacting might be topographically enantiomeric physical chiralities.
o r possess o p p o s i n g
A c c o r d i n g l y , effector m o l e c u l e s possessing
suitable
Figure 5. Schematic of sequential control sites on the surfaces of the motor end plate receptor and the protoreceptor chain of acetylcholinesterase. Each circle encompasses an area sufficiently large to accommodate one molecule of acetylcholine. The arrows represent the shortest possible paths of surface displacements from one site to the other. In two positions of the effector, a tail-to-tail arrangement is possible when two molecules are bound on two vicinal binding areas. This raises the possibility that the two adjacent areas might possess suitable elements of topographical symmetry or dissymmetry (the planes being represented by dotted lines). The prediction may then be allowed that symmetrical, doubly charged effectors (such as succinyldicholine) might display complementarity with two areas at a time. Hence, each half of the effector molecule could hear a mirror image relationship to the other (meso configurations) for optimal interaction with two adjacent areas at a time (see text and Figure 6).
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
160
DRUG DISCOVERY
elements of s y m m e t r y m i g h t a l l o w f o r s i m u l t a n e o u s
quasi-complemental
interactions w i t h t w o c o n t r o l areas. T h i s m a y e n c o u r a g e tighter a n d m o r e selective b i n d i n g , as w e l l as i n c r e a s e d p o t e n c y i f the c o n t r o l sites c o o p e r a t i v e l y i n the s t a b i l i z a t i o n of a g i v e n r e c e p t o r c o n f o r m a t i o n . f o l l o w i n g observations theory.
offer s u b s t a n t i a l s u p p o r t f o r this
act The
topographical
Succinyldicholine, a symmetrical molecule resulting from
the
t a i l - t o - t a i l f u s i o n of t w o A C h m o l e c u l e s , is one of the most p o t e n t a n d
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
best k n o w n d e p o l a r i z e r s of the m o t o r e n d p l a t e m e m b r a n e as w e l l as the most effective c o n f o r m a t i o n m o d i f i e r of the a n i o n i c p r o t o r e c e p t o r c h a i n of A C h E .
T h e postulated topographically enantiomeric relation between
the adjacent c o n t r o l areas ( F i g u r e 6 )
i n v o l v e d i n the b i n d i n g of this
Figure 6. Interaction of βηοοίηι^Ι-β,β'-άΐηιβ^ΙαιοΗοΙίηβ with two neighboring anionic areas. If the latter display a topographical plane of symmetry or dis symmetry (dotted line), the meso isomer should interact optimally, but not the or Ό,Ό-enantiomers. This model agrees with experiment (see text). effector is s u p p o r t e d b y the f a c t that, whereas the D,D- a n d L , L - s u c c i n y l β,β'-dimethyldocholine
are essentially i n a c t i v e i n b o t h systems, the meso
i s o m e r is f a i r l y a c t i v e ( a b o u t o n e - t h i r d the a c t i v i t y of s u c c i n y l d i c h o l i n e ) b o t h at the r e c e p t o r a n d e n z y m e levels ( u n p u b l i s h e d results ) ( F i g u r e 6 ). M o r e o v e r , a n i m p r e s s i v e n u m b e r of potent c u r a r i z i n g agents are
either
s y m m e t r i c a l or q u a s i - s y m m e t r i c a l m o l e c u l e s ( s u c h as the toxiferins, t u b o c u r a r i n , etc).
H o w e v e r , as n o t e d above, some of the c o n f o r m a t i o n a l ^
sensitive c o n t r o l sites m a y be less d e m a n d i n g t h a n t h e strategic from
the
actions
stereoelectronic
standpoint,
site(s)
a n d , accordingly, i o n - i o n inter
[ w h i c h s u p p l y m o s t of the b i n d i n g energy ( 7 ) ]
w i t h molecules
d i s p l a y i n g l o w e r degrees of s y m m e t r y w i l l also be a l l o w e d , w h i c h ex p l a i n s w h y s u c h a vast n u m b e r of b i s q u a t e r n a r y ions are k n o w n to possess c u r a r i z i n g a c t i v i t y to some degree.
A c o r o l l a r y of c o n s i d e r a b l e i m p o r
tance is that a n y r e c e p t o r system w h i c h , l i k e the m o t o r e n d p l a t e r e c e p t o r
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLEAU
Receptor
161
Mechanisms
or the p r o t o r e c e p t o r c h a i n of A C h E , is c a p a b l e of i n t e r a c t i n g w i t h s i m i l a r l y d i v e r s e d r u g structures m a y also possess s e q u e n t i a l c o n t r o l b i n d i n g sites w h e r e c o n f o r m a t i o n a l p e r t u r b a t i o n s of one k i n d or another m a y b e induced.
A c c o r d i n g l y , at least t w o other r e c e p t o r
systems
would
also
i n c l u d e s u c h sites : the a d r e n e r g i c α-receptor, f o r w h i c h c o n c r e t e e v i d e n c e was a l r e a d y g i v e n f o r the presence o f accessory sites o n its surface, a n d the analgesic r e c e p t o r , w h i c h is k n o w n to r e s p o n d to as w i d e a v a r i e t y
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
of s t r u c t u r a l types as the c u r a r e receptor. F o r the n e u r o t r a n s m i t t e r
norepinephrine, symmetry
considerations
s i m i l a r to those a p p l i e d a bove to the s u c c i n y l d i c h o l i n e b i n d i n g sites a l l o w the p r e d i c t i o n that q u a s i - s y m m e t r i c a l l y d i s p o s e d b i n d i n g areas f o r aro m a t i c rings m a y b e present o n t h e receptor surface
(Figure 7), and if
the c o n f o r m a t i o n a l a n d e l e c t r o n i c p r o p e r t i e s of the d r u g are c o m p a t i b l e w i t h the d e t a i l e d t o p o g r a p h y , u n p r o d u c t i v e p h y s i c a l states m a y b e r e a d i l y i n d u c e d i n the receptor.
T h e s e q u e n t i a l c o n t r o l areas b e i n g q u a s i - s y m
m e t r i c a l l y d i s p o s e d , the basis of a n e x p l a n a t i o n f o r the w e l l - e s t a b l i s h e d
Figure 7. Schematic of the receptor sur face for norepinephrine (NE). Site II is selective for phenethylamine patterns (in cluding histamine and serotonin), and Site I for catecholamines. Hence, the vicinal control areas include aromatic binding sites, possibly separated by a plane of topographical dissymmetry. Interactions at Site II cause a conformational change ichich enhances the EEDQ reaction at Site I (see Figure 2). The spatial arrange ment of the aromatic ring binding areas could well fit the structural pattern of the quasi-symmetrical "diphenylmethane" se ries of drugs (dotted lines).
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
162
DRUG DISCOVERY
Figure 8. General structure-type, based on the "magic" diphenylmethane pattern of symmetrical skeleton as found in many drugs affecting cholinergic, adrenergic, and histaminergic receptors r e c u r r e n c e of the " m a g i c " d i p h e n y l m e t h a n e p a t t e r n i n a w i d e v a r i e t y o f d r u g s m a y b e at h a n d ( F i g u r e 8 ) . A m o n g d r u g s c u r r e n t l y i n use w h i c h are b a s e d
on the diphenylmethane pattern, one
antihistamines,
neuroleptics,
finds
stimulants, sympatholytics,
antidepressants, parasympatho-
l y t i c s , analgesics, etc. B e c a u s e of the less specific n a t u r e of some of t h e c o n t r o l sites, m a n y of these d r u g s are n o t receptor specific.
Specificity
m a y b e a c h i e v e d o n l y b y c a p i t a l i z i n g o n t h e subtle c o n f o r m a t i o n a l a n d t o p o g r a p h i c a l differences f r o m the other. elsewhere.
w h i c h must distinguish one receptor
surface
C o n c r e t e m o d e l e v i d e n c e f o r this v i e w w i l l b e p u b l i s h e d
Suffice i t to say that this is w h a t is m o s t p r o b a b l y
accom-
p l i s h e d w h e n the m e d i c i n a l c h e m i s t i n t r o d u c e s c o n f o r m a t i o n a l
restric-
tions ( s u c h as b r i d g i n g ) i n t h e d i p h e n y l m e t h a n e s k e l e t o n o r w h e n h e s l i g h t l y alters s y m m e t r y b y i n c o r p o r a t i n g r i n g substituents
(Figure 7).
O n e area of r e s e a r c h w h i c h appears n o t to h a v e b e e n e x p l o r e d w o u l d b e the d e s i g n i n g of n o v e l s y m m e t r i c a l o r q u a s i - s y m m e t r i c a l m o l e c u l e s b a s e d o n t h e f u s i o n of c a t e c h o l a m i n e - h k e
r i n g s i n v a r i o u s t a i l - t o - t a i l patterns
i n the m a n n e r s u c c e ssf u lly a p p l i e d to c u r a r i z i n g agents. I n d e e d , w e h a v e a l r e a d y a p p l i e d the p r i n c i p l e suc c e ssf u lly i n t h e case of t h e p o t e n t s y m metrical bisalkylating adrenergic blocker ( I ) (59) described above. F i n a l l y , o n e of the most perverse concatenations of r e c e p t o r p r o p e r ties is f o u n d i n the area of n a r c o t i c analgesics a n d t h e i r antagonists. N o t h e o r y of s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p s has s u r v i v e d v e r y l o n g i n this field,
a l t h o u g h r e c e n t l y some i n t e r e s t i n g studies of t h e subtle c o n f i g u r a -
t i o n a l s p e c i f i c i t y o f t h e r e c e p t o r h a v e b e e n i n i t i a t e d b y Portoghese
(71).
T h e o n l y p o i n t w h i c h m a y b e w o r t h e m p h a s i z i n g at this t i m e is t h a t t h e extreme c o n f o r m a t i o n a l d i v e r s i t y of d r u g s a c t i n g at this l e v e l is s t r o n g l y r e m i n i s c e n t of the b r o a d a d a p t a b i l i t y of the m o t o r e n d p l a t e
receptor.
T h i s p a r a l l e l i s m suggests that t h e analgesic r e c e p t o r m a y s i m i l a r l y i n c l u d e several s e q u e n t i a l c o n t r o l sites o n its surface w h e r e t h e p r i n c i p l e of t o p o -
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6.
BELLE AU
Receptor
163
Mechanisms
graphical quasi-symmetry m a y be operative ( i n d e e d , several strong analgesics b e l o n g to the d i p h e n y l m e t h a n e p a t t e r n of s y m m e t r i c a l s k e l e t o n ) . S o m e p r a c t i c a l i m p l i c a t i o n s of this c o n c e p t i n the d e s i g n of n o v e l classes of p o t e n t i a l analgesics are rather o b v i o u s . W i t h r e g a r d to t h e m o l e c u l a r basis of n a r c o t i c - a n a l g e s i c a n d n a r c o t i c - a n t a g o n i s t actions, the p o s s i b i l i t y of a n a n a l o g y w i t h d e p o l a r i z e r a n d n o n - d e p o l a r i z e r actions o n the m o t o r e n d p l a t e r e c e p t o r m a y deserve c o n s i d e r a t i o n . A t the m o m e n t , it m a y b e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
w o r t h w h i l e c o n s i d e r i n g the h y p o t h e s i s that n a r c o t i c analgesics
might
p r o d u c e a p r o l o n g e d , p e r h a p s c o o p e r a t i v e p e r t u r b a t i o n or d i s t o r t i o n of the s p u r r e d p h y s i c a l state of receptors i n the m a n n e r w h i c h c h a r a c t e r i z e s d e p o l a r i z e r s of the e n d p l a t e m e m b r a n e w h e r e a s n a r c o t i c
antagonists
m a y s t a b i l i z e the r e s t i n g p h y s i c a l state of the r e c e p t o r , b y a n a l o g y w i t h t u b o c u r a r i n e - l i k e agents w h i c h b l o c k t h e i r r e c e p t o r w i t h o u t m e m b r a n e depolarization.
T h i s c o u l d a c c o u n t f o r the f a c t t h a t c e r t a i n
narcotic
antagonists c a n also d i s p l a y analgesic a c t i v i t y since the r e c e p t o r w o u l d also b e b l o c k e d , a l b e i t b y a d i f f e r e n t m o l e c u l a r m e c h a n i s m c o n d u c i v e to a different m e m b r a n e c o n f i g u r a t i o n . If this w e r e true, p h y s i c a l d e p e n d ence o n m o r p h i n o i d s m i g h t b e l i n k e d to m e m b r a n e c o l l a p s e b y w a y of a p r o l o n g e d " d e p o l a r i z a t i o n " t y p e of r e c e p t o r c o n f o r m a t i o n a l c h a n g e .
In
a n y event, the s e q u e n t i a l c o n t r o l site t h e o r y f o r n e u r o t r a n s m i t t e r s r e a d i l y accounts f o r the o c c u r r e n c e of m o r p h i n e - l i k e a c t i v i t y i n s e v e r a l types of loosely r e l a t e d classes of structures.
Finally, it may be w o r t h w h i l e con-
s i d e r i n g the p o s s i b i l i t y that c e r t a i n m e n t a l deficiencies or
aberrations
m a y be l i n k e d , not necessarily to alterations i n n e u r o t r a n s m i t t e r a v a i l a b i l i t y , b u t to i n b o r n or a c q u i r e d defects i n the s e q u e n t i a l c o n t r o l sites. T h i s w o u l d o b v i o u s l y b e reflected i n a less effective rate of c a t c h b y the sensitive
membranes
and
decreased
effectiveness
of
interneuronal
communications.
Acknowledgments T h e research of the past f e w years o n w h i c h this p r e s e n t a t i o n is i n p a r t b a s e d was g e n e r o u s l y s u p p o r t e d b y the N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , the D e f e n c e R e s e a r c h B o a r d of C a n a d a , a n d B r i s t o l L a b o r a tories. Y-H
T h e s k i l l f u l c o l l a b o r a t i o n of V . D i T u l l i o , J - L . L a v o i e , H . T a n i ,
T s a i , E . W ù l f e r t , I. M a c d o n a l d , B . L i p p e r t , a n d D . G o d i n ,
and
M . D i T u l l i o , m a d e this r e s e a r c h p o s s i b l e .
Literature Cited (1) Belleau, B., Can. J. Biochem. (1958) 36, 731. (2) Belleau, B., in "Adrenergic Mechanisms," CIBA Foundation Symposium, J. R. Vane, G. E. W. Wolstenholme and M. O'Connor, Eds., p. 223, Churchill, London, 1960.
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
164
DRUG
DISCOVERY
(3) Kauzmann, W., Advan. Protein Chem. (1959) 14, 1. (4) Baker, B. R., "Design of Active-Site-Directed Irreversible Enzyme Inhib itors," Wiley, New York, 1967. (5) Belleau, B.,Lacasse,G., J. Med. Chem. (1964) 7, 768. (6) Hansch, C., Accounts Chem. Res. (1969) 2, 232. (7) Belleau, B., Lavoie, J.-L., Can. J. Biochem. (1968) 46, 1397. (8) Lumry, R., Rajender, S., Biopolymers (1970) 9, 1125. (9) Belleau, B., J. Med. Chem. (1964) 7, 776. (10) Belleau, B., Ann. N.Y. Acad. Sci. (1967) 144, 705. (11) Belleau, B., DiTullio, V., J. Amer. Chem. Soc. (1970) 92, 6320. (12) Ariëns, Ε. J., in "Molecular Pharmacology," E. J. Ariëns, Ed., Vol. I, Aca demic, New York, 1964. (13) Higman, H. B., Podleski, T. R., Bartels, E., Biochim. Biophys. Acta (1963) 75, 187. (14) Koshland, D. E., Jr., Nemethy, G., Filmer, D., Biochemistry (1966) 5, 365. (15) Monod, J., Wyman, J., Changeux, J.-P., J. Mol. Biol. (1965) 12, 88. (16) Changeux, J.-P., Thiéry, J., Tung, Y., Kittel, C., Proc. Nat. Acad. Sci. U.S. (1967) 57, 335. (17) Strässler, S., Kittel, C., Phys. Rev. (1965) 139, A758. (18) Conway, Α., Koshland, D. E., Biochemistry (1968) 7, 4011. (19) Hamilton, C. L., McConnell, Η. M., in "Structural Chemistry and Molec ular Biology," A. Rich and N. Davidson, Eds., p. 115, Freeman, San Francisco, 1968. (20) Hill, T. L., Yid-der Chen, Proc. Nat. Acad. Sci. U.S. (1970) 66, 189. (21) Giacommetti, G., in "Structural Chemistry and Molecular Biology," A. Rich and N. Davidson, Eds., p. 67, Freeman, San Francisco, 1968. (22) Bartels, E., Biochem. Pharmacol. (1968) 17, 945. (23) Nomura, M., Proc. Nat. Acad. Sci. U.S. (1964) 52, 1514. (24) Karlin, Α., J. Gen. Physiol. (1969) 54, 245. (25) Moran, J. F., Triggle, D. J., in "Fundamental Concepts in Drug-Receptor Interactions," J. F. Danielli, J. F. Moran, and D. J. Triggle, Eds., p. 113, Academic, New York, 1970. (26) O'Brien, R. D., Gilmour, L. P., Proc. Nat. Acad. Sci. U.S. (1969) 63, 496. (27) Belleau, B., in "Fundamental Concepts in Drug-Receptor Interactions," J. F. Danielli, J. F. Moran, and D. J. Triggle, Eds., p. 121, Academic, New York, 1970. (28) Karlin, Α., Winnik, M., Proc. Nat. Acad. Sci. U.S. (1969) 60, 668. (29) Karlin, Α., Proc. Internat. Symp. Cholinergic Mechanisms CNS, Skokloster, Sweden, Feb. 1970. (30) Csillik, B., Savay, G., Nature (1963) 198, 399. (31) Nakamura, T., Namba, T., Grob, D., J. Histochem. Cytochem. (1967) 15, 276. (32) Tazieff-Depierre, F., Lièvremont, M. M., Gzajka, M., Compt. rend. Acad. Sci. (Paris) (1968) 267, 2383. (33) Moran, J. F., Triggle, D. J., Life Sciences (1970). (34) Belleau, B., in "Physico-Chemical Aspects of Drug Action," E. J. Ariëns, Ed., p. 207, Pergamon, Oxford, 1968. (35) Belleau, B., Tani, H., Lie, F., J. Amer. Chem. Soc. (1965) 87, 2283. (36) Belleau, B., DiTullio, V., Can. J. Biochem., in press. (37) Belleau, B., Tani, H., Mol. Pharmacol. (1966) 2, 411. (38) Purdie, J. E., Biochim. Biophys. Acta (1969) 185, 122. (39) Purdie, J. E., McIvor, R. Α., Biochim. Biophys. Acta (1966) 128, 590. (40) Kitz, R., Wilson, I. B., J. Biol. Chem. (1963) 238, 745. (41) Belleau, B., in "Advances in Drug Research," N. J. Harper and A. B. Simmonds, Eds., Vol. 2, p. 89, Academic, London, 1965. (42) Belleau, B., DiTullio, V., Tsai, Y.-H., Mol. Pharmacol. (1970) 6, 41.
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0108.ch006
6.
BELLEAU
Receptor
Mechanisms
165
(43) Leuzinger, W., in "Cholinergic Ligand Interactions," D. J. Triggle, E. A. Barnard, and J. F. Moran, Eds., Academic, New York, in press. (44) Leuzinger, W., Goldberg, M., Cauvin, E., J.Mol.Biol.(1969) 40, 217. (45) Rang, H. P., Ritter, J. M.,Mol.Pharmacol.(1969) 5, 394. (46) DiTullio, V., Belleau, B., in preparation. (47) Karlin, Α., Biochim. Biophys. Acta (1967) 139, 358. (48) Beckett, A. H., Ann. Ν.Y. Acad. Sci. (1967) 144, 675. (49) Archer,S.,Wylie, D.W.,Harris, L. S., Lewis, T. R., Schulenberg, J. W., Bell, M. R., Hallnig, R. K., Arnold, Α., J. Amer. Chem. Soc. (1962) 84, 1306. (50) Bloom, Β. M., Goldman, J. M., in "Advances in Drug, Research," N. J. Harper and A. B. Simmonds, Eds., Vol. 3, p. 121, Academic, London, 1966. (51) Hillarp, N.Å.,Högberg, B., Nilson, B., Nature (1955) 176, 1032. (52) Nagata, N., Rasmussen, H., Proc. Nat. Acad. Sci. U.S. (1970) 65, 368. (53) Belleau, B., Martel, R., Lacasse,G.,Ménard, M., Weinberg, N. L., Perron, Y.G.,J. Amer. Chem. Soc. (1968) 90, 823. (54) Belleau, B., DiTullio, V., Godin, D., Biochim. Pharmacol. (1969) 18, 1039. (55) Martel, R., Berman, R., Belleau, B., Can. J. Physiol. Pharmacol. (1969) 47, 909. (56) Belleau, Β., Ann. Ν.Y. Acad. Sci. (1967) 139, 580. (57) Tuttle, R. R., Moran, N.C.,J. Pharmac. Exptl. Therap. (1969) 169, 255. (58) Kalsner, S., Life Sciences (1970). (59) Belleau, B., Tani, H., Can. J. Pharm. Sci. (1969) 4, 14. (60) Bär, H. P., Hechter, O., Proc. Nat. Acad. Sci. U.S. (1969) 63, 350. (61) Sutherland, E. W., Robison,G.Α., Pharmacol. Rev. (1966) 18, 145. (62) Robison,G.Α., Butcher, R. W., Sutherland, E. W., Ann.Ν.Y.Acad. Sci. (1967) 139, 703. (63) Macdonald, I. Α., Ph.D. Thesis, University of Ottawa (1971). (64) Belleau, B.,Pharmacol.Rev. (1966) 18 (I), 131. (65) Paul, M. I., Ditzin, B. R., Janowski, D. S., Lancet (Jan. 10, 1970) 88. (66) Abdulla, Y. H., Hamada, K., Lancet (Feb. 21, 1970) 378. (67) Kuo, J. F., Greengard, P., Proc. Nat. Acad. Sci. U.S. (1969) 64, 1349. (68) Adam,G.,Delbrück,M., in "Structural Chemistry andMolecularBiology," A. Rich and N. Davidson, Eds., p. 198, Freeman, San Francisco, 1968. (69) Bücher, T., Advan. Enzymol. (1953) 14, 1. (70) Trurnit, H. J., Fortschr. Chem. organ. Naturst. (1945) 4, 347. (71) Portoghese, P.S.,J. Med. Chem. (1965) 8, 609. RECEIVED
November 5, 1970.
In Drug Discovery; Bloom, Barry, et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.