Regulation of Starch Synthesis - ACS Symposium Series (ACS

Jul 23, 2009 - 4 Current address: Public Affairs Department, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. Biocatalysis in Agricultural...
1 downloads 0 Views 755KB Size
Chapter 6

Regulation of Starch Synthesis Biochemical and Genetic Studies 1

1

1

1,3

Jack Preiss , Douglas Cress , Jan Hutny , Matthew Morell , Mark Bloom , Thomas Okita , and Joseph Anderson Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

1,4

2

2

1

Department of Biochemistry, Michigan State University, East Lansing, MI 48824 Institute of Biological Chemistry, Washington State University, Pullman, WA 99164

2

A key site in the regulation of starch synthesis is the enzymatic step where ADPglucose (ADPGlc) is synthesized. 3-P-Glycerate activates and orthophosphate (P ) inhibits ADPGlc synthetase (EC 2.7.7.27) activity. Spinach leaf ADPGlc synthetase is composed of two subunits, of 51 and 54 kilodaltons (kd) mass. Their N-terminal amino acid sequences and tryptic peptide maps are different and they are antigenically dissimilar. Pyridoxal-P (PLP), an activator analog, when reduced onto ADPGlc synthetase causes the enzyme to be more active in the absence of activator. The covalently modified enzyme is very resistant to P inhibition suggesting that PLP binds at or close to the activator site. The activator binding site sequence is close to the carboxyl terminus of the enzyme. Starchless mutants of Arabidopsis thaliana have been isolated that lack or contain low ADPGlc synthetase activity. Genetic analysis showed that the deficiency of both starch and ADPGlc synthetase activity in the mutants were attributable to a single, nuclear, recessive gene demonstrating that in vivo leaf starch synthesis is entirely dependent on a pathway involving ADPGlc synthesis. Recent results show that the photo affinity substrate analogue, 8-azidoADPglucose (8-N ADPGlc) inactivates the spinach leaf enzyme when irradiated with UV light. ADPGlc can protect the enzyme from inactivation. When labeled 8-N ADPGlc is used, incorporation is seen mainly if not solely in the 54 i

i

3

3

3

Current address: Plant Environmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra, A.C.T. 2601, Australia Current address: Public Affairs Department, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724

4

0

0097-6156/89/0389-0084$06.00/0 1989 American Chemical Society

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

6.

PREISS E T Al„

Regulation of Starch Synthesis

85

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

kd subunit. A p a r t i a l deduced amino a c i d sequence of the spinach l e a f ADPGlc synthetase 51 kd subunit has been obtained from two cDNA clones and compared with the known deduced amino a c i d sequence of the E s c h e r i c h i a c o l i and r i c e endosperm ADPGlc synthetases.

ADPGlc synthetase (EC 2.7.7.27) i s a key enzyme involved i n the synthesis of starch (1_). Maize endosperm mutants, shrunken-2 and b r i t t l e - 2 a r e d e f i c i e n t i n ADPGlc synthetase a c t i v i t y . The enzyme a c t i v i t y i s less than 10? of wild type and the mutants accumulate 25% of the s t a r c h observed i n the normal endosperm (2,3). Recent r e s u l t s from our l a b o r a t o r y have d e s c r i b e d the i s o l a t i o n o f a mutant, TL25, of A r a b i d o p s i s t h a l i a n a l a c k i n g ADPGlc synthetase a c t i v i t y ( l e s s than 2% of normal a c t i v i t y ) and c o n t a i n i n g no d e t e c t a b l e l e v e l s of starch . Thus at least i n Arabidopsis the ADPGlc pathway accounts f o r 98Ï or more of the s t a r c h s y n t h e s i s o c c u r r i n g both i n l e a f and root cap. These r e s u l t s also strongly indicate that both UDPglucose synthetase and s t a r c h phosphorylase play a n e g l i g i b l e , i f any, r o l e i n s t a r c h synthesis. The mutant a l s o was not able to grow w e l l i n a 12 hour l i g h t / 1 2 hour dark photoperiod c y c l e but could grow at r a t e s s i m i l a r to the normal plant under continuous l i g h t (^0. T h i s suggested that s t a r c h may be n e c e s s a r y f o r o p t i m a l growth under normal p h y s i o l o g i c a l conditions. I t i s quite possible that under growth c o n d i t i o n s i n the absence o f l i g h t that the presence o f c h l o r o p l a s t starch i s required for i t s metabolism to provide energy and carbon f o r export to other parts of the plant. Regulation o f s t a r c h synthesis occurs at the ADPGlc synthetic s t e p (1_). A c t i v a t i o n o f ADPGlc s y n t h e s i s i s a f f e c t e d by 3-P-glycerate (3-PGA) and i n h i b i t i o n i s caused by orthophosphate (P^). These effector metabolites i n t e r a c t i n that P^ can reverse the a c t i v a t i o n of ADPGlc synthesis caused by 3-PGA and increasing concentrations of 3-PGA can overcome P^ i n h i b i t i o n . Because of the importance of ADPGlc s y n t h e t a s e f o r p l a n t s t a r c h synthesis, e f f o r t s have been made to determine the structure of the enzyme and to r e l a t e c a t a l y t i c and a l l o s t e r i c f u n c t i o n t o structure. The spinach leaf enzyme i s composed of two subunits of 51 and kd mass (5,6). The molecular mass of the n a t i v e enzyme i s 206,000 and presumably i s a tetramer composed of two of each subunit. The subunits are a n t i g e n i c a l l y d i s s i m i l a r , e x h i b i t d i f f e r e n t peptide patterns on HPLC a f t e r t r y p s i n d i g e s t i o n and their N-terminal amino acid sequences are d i f f e r e n t ( 7 ) . Thus i t i s l i k e l y that the peptide subunits are products of d i f f e r e n t genes. Pyridoxal-5-phosphate (PLP) has been shown to be an activator analogue of 3-PGA (7,8). I t activates ADPGlc synthetic r a t e s about 5- to 6-fold and can overcome P^ i n h i b i t i o n as does the activator 3-PGA (7,8). Reductive phosphopyridoxylation of the spinach l e a f enzyme with l a b e l e d PLP g i v e s incorporation into both subunits i n equimolar amounts (7,9). The PLP modified enzyme i s less dependent on t h e presence o f a c t i v a t o r (3-PGA) and i s more r e s i s t a n t t o i n h i b i t i o n by the a l l o s t e r i c i n h i b i t o r , P i (7^9). The a c t i v a t o r ,

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

86

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

3-PGA, when p r e s e n t d u r i n g t h e r e d u c t i v e phosphopyridoxylation i n h i b i t s t h e i n c o r p o r a t i o n o f PLP (7,9). T h e s e d a t a s u g g e s t t h a t PLP i s b i n d i n g a t t h e a l l o s t e r i c site. T h u s t h e a l l o s t e r i c b i n d i n g s i t e may b e o n b o t h t h e 51 a n d 54 k d subunits. F o r t h e 51 k d s u b u n i t , t h e a m i n o a c i d s e q u e n c e o f t h e r e g i o n w h e r e PLP b i n d s t o an e p s i l o n a m i n o r e s i d u e o f l y s i n e has been determined ( 7 , 9 ) . Of i n t e r e s t i s t h a t t h i s s e q u e n c e i s v e r y s i m i l a r t o a d e d u c e d a m i n o a c i d s e q u e n c e o b t a i n e d from the n u c l e o t i d e s e q u e n c e o f a cDNA c l o n e o f t h e r i c e endosperm ADPGlc synthetase gene (7,9) . The a c t i v a t o r b i n d i n g s i t e i s s i t u a t e d c l o s e t o t h e c a r b o x y l t e r m i n u s o f t h e 51 k d s u b u n i t (£) . I n t h e c a s e of the b a c t e r i a l ADPGlc s y n t h e t a s e s the a c t i v a t o r b i n d i n g s i t e i s a t the amino t e r m i n a l r e g i o n of the s u b u n i t peptide (10). In o r d e r to o b t a i n f u r t h e r i n f o r m a t i o n on the s t r u c t u r e - f u n c t i o n r e l a t i o n s h i p s of the p l a n t ADPGlc synthetase w i t h r e s p e c t t o t h e s u b s t r a t e s i t e we e m p l o y e d t h e u s e o f a p h o t o a f f i n i t y s u b s t r a t e a n a l o g u e , 8 - a z i d o - A D P G l c (1J_). Our preliminary r e s u l t s are reported here. We h a v e a l s o r e c e n t l y b e e n a b l e t o i s o l a t e two cDNA c l o n e s o f t h e s p i n a c h l e a f A D P G l c s y n t h e t a s e 51 kd gene and t h e s e r e s u l t s a r e a l s o r e p o r t e d . RESULTS Studies with 8-azido Nucleotide Substrates. F i g u r e 1 shows t h a t 8-azido-ATP (8-N3ATP) i s a s u b s t r a t e f o r the spinach leaf ADPGlc synthetase. The product f o r m e d was d e t e r m i n e d t o be 8 - N 3 A D P G I C by p r o c e d u r e s u s e d p r e v i o u s l y ( 1 J _ ) . The isolated 8 - N 3 A D P G I C s h o w e d a t y p i c a l s p e c t r u m o f an 8 - a z i d o a d e n i n e n u c l e o t i d e w i t h an a b s o r p t i o n maximum a t 281 nm w h i c h was l o s t u p o n p h o t o l y s i s (V2). The K v a l u e f o r 8 - N 3 A T P was 0.81 ± 0.05 mM, about 7 - f o l d higher than t h e K v a l u e o f 0.12 mM f o r t h e n a t u r a l s u b s t r a t e ATP. I n t h e a b s e n c e o f a c t i v a t o r , 3-PGA, t h e K for 8 - N 3 A T P was i n c r e a s e d t o a b o u t 3 mM. Moreover, the V of the spinach l e a f e n z y m e was o n l y 0.48 y m o l - m i n " '-mg~ o f product formed, only about 1 % of that o b s e r v e d w i t h ATP (50 umol-min"^-mg~^). This r e l a t i v e a c t i v i t y seen w i t h the azido a n a l o g u e i s s i m i l a r t o w h a t was o b s e r v e d f o r t h e E s c h e r i c h i a c o l i e n z y m e (1J_) w h e r e t h e m a x i m a l v e l o c i t y r a t e s o b s e r v e d w i t h 8-N3ATP and 8 - N 3 A D P G l c w e r e o n l y 0 . 3 and 0.9% of those observed w i t h the natural substrates, respectively. For t h e s p i n a c h l e a f enzyme h o w e v e r , 8-N3ADPGIC has a K o f 80 μΜ c o m p a r e d t o t h e K f o r ADPGlc o f 2 2 5 μΜ. The m a x i m a l v e l o c i t y f o r 8-N3ADPGIC, h o w e v e r , i s o n l y 0.25 μ Γ η ο 1 - Γ η ΐ η " " - π ^ - , 0.6% of t h a t observed w i t h ADPGlc. m

m

m

m

a

x

1

m

1

m

1

Figure 2 shows t h a t i r r a d i a t i o n of the s p i n a c h l e a f ADPGlc synthetase i n t h e p r e s e n c e o f 8 - N 3 A D P G l c , 3-PGA a n d M g resulted i n l o s s of enzyme a c t i v i t y . No o r s l i g h t i n a c t i v a t i o n o f the e n z y m e , h o w e v e r , w a s o b s e r v e d w h e n t h e e n z y m e w a s e x p o s e d t o UV l i g h t w i t h o u t 8 - N 3 A D P G I C o r when t h e enzyme was i n c u b a t e d w i t h the a n a l o g i n the dark. T h i s may be due t o a s l i g h t i n s t a b i l i t y o f t h e enzyme a c t i v i t y d u r i n g t h e i n c u b a t i o n p e r i o d . Almost 70% i n a c t i v a t i o n w a s o b s e r v e d i n t h e p r e s e n c e o f 1.5 mM 8 - N 3 A D P G I C . E f f e c t i v e p r o t e c t i o n w a s o b s e r v e d w i t h 10 mM A D P G l c . Neither U D P g l u c o s e ( U D P G l c ) n o r A DP w e r e a s e f f e c t i v e a s A D P G l c . F i g u r e 2A 2 +

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Regulation of Starch Synthesis

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

PREISS E T AL.

c

ε

[8-N ATP],mM 3

Figure 1. 8-azido-ATP s a t u r a t i o n curves of ADPGlc-synthetase i n t h e p r e s e n c e (·) o r a b s e n c e ( o ) o f 1 mM 3-PGA. Enzyme was i n c u b a t e d 10 m i n a t 37° a t i n d i c a t e d c o n c e n t r a t i o n s o f 8 - N 3 A T P i n 100 mM H e p e s ( p H 7 . 5 ) , 5 mM M g C l , 1 mM [ C ] G l c 1-P, B S A ( 5 0 u g / r e a c t i o n ) , and p y r o p h o s p h a t a s e (0.1 pL/reaction) i n a v o l u m e o f 200 y L a s p r e v i o u s l y d e s c r i b e d ( i n r e f . 5 ) . U

2

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

5

10 [ADPGIc],mM

15

CONTROL ~~ ~ - - -

5 Time of irradiation, min

10

F i g u r e 2. P h o t o i n a c t i v a t i o n o f A D P G l c - s y n t h e t a s e a t 1.5 mM 8-N3ADPGIC. The m i x t u r e c o n t a i n i n g 1 μΜ ( s u b u n i t s ) e n z y m e , 10 mM HEPES (pH 7 . 5 ) , 1 mM 3 - P G A , 5 mM M g C l , 1.5 mM 8 - N 3 A D P G I C and i n d i c a t e d n u c l e o t i d e , was i r r a d i a t e d i n t h e w e l l s o f C o o r s p l a t e w i t h U V S - 5 4 l a m p , a t a d i s t a n c e o f 5 cm as p r e v i o u s l y d e s c r i b e d (1J_). The t i m e o f i r r a d i a t i o n i n e x p e r i m e n t A was 3 min and i n Β i t was v a r i e d as i n d i c a t e d . A - E f f e c t of the v a r i e d c o n c e n t r a t i o n s of ADPGlc on photoinactivation. Β - E f f e c t o f 10 mM ADPGlc ( A ) , ADP (o) and UDPGlc ( • ) on t h e r a t e o f p h o t o i n a c t i v a t i o n . (x) i s c o n t r o l sample, i r r a d i a t e d without 8-N3ADPGlc. (•) i s sample p h o t o i n a c t i v a t e d w i t h o u t p r o t e c t i n g n u c l e o t i d e . 2

1

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

6.

PREISS E T A L .

89

Regulation of Starch Synthesis

shows t h a t t h e p r o t e c t i o n by A D P G l c i s c o n c e n t r a t i o n dependent r e a c h i n g maximum p r o t e c t i o n between 10 t o 15 mM. T h u s , t h e a z i d o nucleotides are substrates a n d t h e s u b s t r a t e A D P G l c i s most e f f e c t i v e i n p r o t e c t i n g from p h o t o i n a c t i v a t i o n . T h i s would s t r o n g l y s u g g e s t t h a t 8-N^ADPGlc i s b i n d i n g at the substrate b i n d i n g s i t e and p h o t o i n a c t i v a t i o n i s o c c u r r i n g a t or c l o s e t o t h a t site. L a b e l e d 8 - N 3 A D P G I C was p r e p a r e d w i t h u n i f o r m l y l a b e l e d [ C ] glucose-1-P as p r e v i o u s l y described (1_J_) a n d u s e d to p h o t o i n a c t i v a t e the s p i n a c h l e a f ADPGlc s y n t h e t a s e . About 1.33 nmol o f a n a l o g u e was i n c o r p o r a t e d p e r n a n o m o l e o f t h e native h e t e r o t e t r a m e r enzyme. The enzyme was t h e n s u b j e c t e d to sodium dodecyl sulfate gel electrophoresis. As s e e n i n F i g u r e 3 t h e i n c o r p o r a t i o n o f r a d i o a c t i v i t y i s m a i n l y i f not s o l e l y i n the 54 kd subunit (lane 3). Lane 2 shows t h a t ADPGlc p a r t i a l l y i n h i b i t s t h e i n c o r p o r a t i o n as the a u t o r a d i o g r a p h i c spot i s l e s s i n t e n s e . The i n c o r p o r a t i o n was 67% l e s s i n the p r e s e n c e o f A D P G l c a s i n d i c a t e d by t h e amount o f l a b e l p r e c i p i t a t e d w i t h 10% t r i c h l o r o a c e t i c a c i d . T h i s would suggest t h a t the s u b s t r a t e b i n d i n g s i t e i s on t h e 54 kd subunit. There is s t i l l a p o s s i b i l i t y , however, that the c a t a l y t i c / s u b s t r a t e s i t e i s shared between the 2 s u b u n i t s b u t t h a t the r e a c t i v e n i t r e n e r a d i c a l r e a c t s w i t h a r e a c t i v e nucleophile r e s i d u e on the l a r g e r s u b u n i t c a u s i n g most o f t h e l a b e l t o r e s i d e on t h a t s u b u n i t . N e v e r t h e l e s s , the d a t a do s u g g e s t a f u n c t i o n f o r the 54 kd s u b u n i t .

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

1 l |

cDNA C l o n e s o f t h e S p i n a c h L e a f A D P G l c S y n t h e t a s e G e n e . Using a n t i b o d i e s p r e p a r e d w i t h t h e s u b u n i t s o f t h e s p i n a c h l e a f ADPGlc s y n t h e t a s e and w i t h t h e n a t i v e e n z y m e , two cDNA c l o n e s , SL1 and S L 5 , were i s o l a t e d from a Xgt11 s p i n a c h l e a f l i b r a r y p r e p a r e d by C l o n e t e c h L a b o r a t o r i e s , I n c . , Palo A l t o , CA. B o t h c l o n e s gave e x p r e s s i o n o f p r o t e i n s t h a t r e a c t e d w i t h a n t i b o d y made w i t h t h e 51 kd s u b u n i t and were sequenced v i a the dideoxy n u c l e o t i d e t e c h n i q u e (13). SL1 , found t o be 382 base p a i r s i n s i z e , and S L 5 , a b o u t 1176 b a s e p a i r s i n s i z e , were s e q u e n c e d . U n f o r t u n a t e l y , t h e r e i s no o v e r l a p w i t h t h e s e cDNA c l o n e s . P r e s e n t l y , a b o u t 18 n u c l e o t i d e b a s e p a i r s o f SL5 have not been sequenced a t the Hind I I I r e g i o n as fragments o f the DNA were p r e p a r e d from SL5 f o r s e q u e n c i n g a t t h a t region. F i g u r e 4 shows t h e d e d u c e d amino a c i d sequence from the n u c l e o t i d e s e q u e n c e o f t h e two c l o n e s and c o m p a r e s i t w i t h t h e c o m p l e t e r i c e s e e d enzyme d e d u c e d amino a c i d sequence ( 9 ) . There i s a l a r g e amount o f i d e n t i t y b e t w e e n t h e a m i n o a c i d s e q u e n c e s , c o r r e s p o n d i n g t o a b o u t 76%. Most n o t a b l e i s the sequence between r e s i d u e s 424-434 i n s p i n a c h l e a f where i t h a s b e e n shown t h a t L y s 431 i s t h e s i t e o f c h e m i c a l m o d i f i c a t i o n by PLP ( 7 , 9 ) . There i s complete agreement o f t h i s sequence i n the same a r e a w i t h t h e r i c e s e e d enzyme sequence 462-472. M o r e o v e r , t h e r e i s complete i d e n t i t y of the deduced amino a c i d sequences o f amino a c i d s 4 0 8 - 4 3 4 i n t h e s p i n a c h l e a f enzyme 51 kd s u b u n i t w i t h amino a c i d s 446-472 o f the r i c e endosperm enzyme s u b u n i t . P r e s e n t s t u d i e s a r e now i n v o l v e d i n d e t e r m i n i n g the s i t e o f l a b e l i n g o f the 54 kd s u b u n i t by 8 - N 3 A D P G I C and i s o l a t i o n o f t h e 54 kd s u b u n i t cDNA c l o n e s .

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

90

BIOCATALYSIS IN AGRICULTURAL

BIOTECHNOLOGY

Figure 3. SDS-Ε1ectrophoresis of ADPGlc-synthetase photoinactivated with [ C] 8-N3ADPGIC. 1.8 μΜ (subunits) e n z y m e i n 20 mM HEPES, 1 mM 3~PGA, 5 mM M g C l a n d 1.5 mM [ C ] 8 - N 3 A D P G I C ( s p e c i f i c a c t i v i t y , 1.8 χ 10? cpm p e r p m o l e ) , w a s i r r a d i a t e d 1 0 m i n w i t h U V S - 5 4 l a m p f r o m a d i s t a n c e o f 5 cm. Lane 1 - u n i r r a d i a t e d c o n t r o l ; Lane 2 enzyme p h o t o i n a c t i v a t e d i n t h e p r e s e n c e o f 1 0 mM A D P G l c ; L a n e 3 photoinactivated enzyme. A-Coomassie stained g e l ; B - a u t o r a d i o g r a p h o f t h e same g e l . 1 l |

1 l |

2

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Regulation of Starch Synthesis

PREISS E T AL.

Rice Seed ADPGlc Synthetase vs. Spinach Leaf ADPGlc Synthetase Spinach Rice Spinach Rice

2U

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

Spinach

Arg Leu Tyr Pro Leu Thr Lys Lys Arg Ala Lys Pro Ala Val Pro Leu Arg Leu Tyr Pro Leu Thr Lys Lys Arg Ala Lys Pro Ala Val Pro Leu

6 1

«"arg Leu He Asp He Pro Val Ser Asn Cys Leu Asn Ser Asn Ile Ser Arg Leu He Asp He Pro Val Ser Asn Cys Leu Asn Ser Asn Ile Ser

Ile Tyr Val Ile Tyr Val

61

Ala Ser Asn Gly Asn Asn

8 1

»Leu Thr Gin Phe Asn Ser Ala Ser Leu Asn Arg His Leu Ser Arg Ala Leu Thr Gin Phe Asn Ser Ala Ser Pro Asn Arg His Leu Ser Arg Ala

1 0 1

8 121

feu]Gly Gly Tyr Lys Asn Glu Gly Phe Val Glu Val Leu Ala Ala Gin |lle|Gly Gly Tyr Leu Asn Glu Gly Phe Val Glu Val Leu Ala Ala Gin

1

°*Asn Pro AsplTrp Phe Gin Gly Thr Ala Asp Ala Val Arg Gin Tyr Leu JTrp Phe Gin Gly .._ .,.

1 111 .

Spinach Rice Spinach Rice Spinach Rice Spinach Rice

lai 1 Thr la|Glyj Thr

Arg Ser Val Leu Gly Ile Ile Leu Gly Gly Leu Asp Arg Ser Val Asp Glu Ser Val Leu Gly Ile Ile Leu Gly Gly

4 1

Spinach Rice

Spinach Rice

Thr Cys Leu Asp Pro Glu Ala Ser Gin Ser Lys Arg Glu Lys Ala Thr He Asp Asp Ala Lys Asn Ser Ser

11

Spinach Rice

cys cm

Met Asn Val Leu Ala Ser Lys Ile Phe Pro Ser Arg Ser Asn Val Ala

3 2 1

Spinach Rice

Spinach Rice

START OF SLI

1

r

'ENDOFSLI

124 l6l

1

START OF S L 5

Glu His Asn Val ??? ??? ??? ??? ??? ??? ??? ??? Asp His Leu Tyr Arg Met ??? Ile Asn Tyr Glu His Asn Val Net Glu Phe Leu Ile Leu Ala Gly Asn His Leu Tyr Arg Het

"«et Lys Ile Ile Gin Ala His Arg Glu Thr Asp Ala Asp Ile Thr Val Ala Ala Leu Pro 1GlujLys Phe Ile Gin Ala His Arg Glu Thr Asp|ser|Asp Ile Thr Val Ala Ala Leu Pro

l8

l6

3 n e t Asp Glu Lys Arg Ala Thr Ala Phe Gly Leu Het Lys Ile Asp Glu Glu Gly Arg Ile

201

l8 22

Met Asp Glu Lys Arg Ala Thr Ala Phe Gly Leu Het Lys He Asp Glu Glu Gly Arg Ile

îïë]Glu Phe Ala Glu Lys Pro Lys Gly Glu Gin LeulGlnlAla Het [Lys] Val Asp Thr Thr yal|Glu Phe Ala Glu Lys Pro Lys Gly Glu Gin LeuJLyslAla Het het | Val Asp Thr Thr

Spinach Rice

2

Spinach Rice

22

Spinach Rice

2

Spinach Rice

263?? 777 777 ? 7

Spinach Rice

28

Spinach Rice

303-rhr Gin Pro ArgiTyrlLeu Pro Pro Ser LysfHetlLeu Asp Ala AsplIlelThr Asp Ser Val 3 Thr Gin Pro ARg |Hla|Leu Pro Pro Ser Lys|Val|Leu Asp Ala Asp|Val|Thr Asp Ser Val

Spinach Rice

323ii ciy Glu Gly Cys Val Ile Lys Asn Cys Lys Ile His His Ser VallllelGly Leu Arg 3^1 île ser Val|val|Gly Leu Arg

Spinach Rice

3"3ser|Ser|Ile Ser Glu Gly Ala Ile Ile Glu Asp [Thr] Leu Leu Het Gly Ala Asp Tyr Tyr 3 SerIcyslIle Ser Glu Gly Ala Ile Ile Glu Asp|Ser|Leu Leu Het Gly Ala Asp Tyr Tyr

Spinach Rice

Leu Leu Ala Ala Lys Gly Ser Val Ser Ile Gly Ile Gly Leu Leu Gly Glu Lys Gly Gly He Pro Ile Gly Ile Gly

°3lie Leu Gly Leu Asp AspIcTûlArg Ala Lys Glu Het Pro Tyr Ile Ala Ser Het Gly Ile Ile Leu Gly Leu Asp Asp|Val |Arg Ala Lys Glu Het Pro Tyr Ile Ala Ser Het Gly Ile

21,1

3Tyr Val Ile Ser Lys Thr Val Ile Ser Lys

Leu Leu Arg Asp LysIPhe Pro Gly Ala Asn Leu Leu Arg Glu GlujPhe Pro Gly Ala Asn

Val Het Leu Val Het Leu

261

JS^R^fW^ŒP

*3 p Phe Gly Ser Glu Val Ile Pro Gly Ala Thr] Sert Leu GlylLculArg Asp Phe Gly Ser Glu Val Ile Pro Gly Ala Thrj Asn|Ile Gly|Het|Arg Val Gin Ala Tyr As

7

?

301Leu

T y r

A a p

G l y

T y r

T y P

T r p

T

r

p

C l u

C

l

u

A s p

A

s

p

I l e

I l e

C l y

C l y

γ η ρ

T n r

I l e

I l e

G l u

G

l

u

A l a

A

l

a

ρη

ph

e

β T y r

Tyr Asn Ala Asn Leu A e n

A l a

A s n

3ciy Ile Thr Lys Lys Pro Val Pro Asp Phe Ser Phe Tyr Asp Arg Ser 3 Gly Ile Thr Lys Lys Pro Val Pro Asp Phe Ser Phe Tyr Asp Arg Ser 21

L # u

Pro II· Tyr Pro Ile Tyr

141

e

C l y

G l u

C l y

C y s

V â l

I l e

L y s

A s n

C y 8

L y s

I l e

H l s

H l s

81

8

Spinach Rice

3 3hin|Asn|ser|Hls IlelLyslArg Ala Ile Ile Asp Lys Asn Ala Arg Ile Gly Asp Asnllle %yslAsn|Cys|Hls Ile|Arg|Arg Ala Ile Ile Asp Lys Asn Ala Ara Ile Gly Asp Aan|val|

Spinach Rice

"t^Lys Ile Ile AsnISerjAsp Asn Val Gin Glu Ala Ala Arg Glu Thr Asp Gly Tyr Phe Ile Lys Ile Ile Asn|Val|Asp Asn Val Gin Glu Ala Ala Arg Glu Thr Asp Gly Tyr Phe Ile

Spinach Rice

" 3 ys Ser Gly Ile Val Thr Val Ile Lys Asp Ala Leu Ile Pro Ser Gly Thr Val Ile End Lys Ser Gly Ile Val Thr Val Ile Lys Asp Ala Leu Leu Leu Ala Glu Gin Glu Tyr Glu

42

141,1

2

L

4 6 1

'al Ala Ala BHD

Figure 4. Comparison of the primary sequence of the spinach leaf ADPGlc synthetase with the r i c e endosperm enzyme deduced amino a c i d s e q u e n c e . The n o n - i d e n t i t i e s of amino a c i d s between the two enzymes are enclosed i n boxes. The s t a r t and beginning of the SL1 and SL5 clones are indicated with respect to open r e a d i n g frame as w e l l as the Hind I I I r e s t r i c t i o n nuclease r e g i o n where the n u c l e o t i d e sequence has not been determined.

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

92

BIOCATALYSIS IN AGRICULTURAL BIOTECHNOLOGY

Acknowledgment T h i s r e s e a r c h was s u p p o r t e d i n p a r t by NSF r e s e a r c h g r a n t DMB 86-10319. Literature Cited

Downloaded by CHINESE UNIV OF HONG KONG on March 4, 2016 | http://pubs.acs.org Publication Date: January 1, 1989 | doi: 10.1021/bk-1989-0389.ch006

1. 2. 3.

Preiss, J. In The Biochemistry of Plants; Preiss, J., Ed.; Academic Press, New York, 1988; Vol. 14, pp 182-254. Tsai, C.Y.; Nelson, O.E. Science 1966, 151, 341-43. Dickinson, D.B.; Preiss, J. Plant Physiol. 1969, 44,

4.

Lin, T.-P.; Caspar, T.; Somerville, C.; Preiss, J. Plant

1058-62.

Physiol. 1988, 86, 1131-35.

5. Copeland, L.; Preiss, J. Plant Physiol. 1981, 68, 996-1001. 6. Morell, M.; Bloom, M.; Knowles, V.; Preiss, J. Plant Physiol. 1987, 85,

7.

182-7.

Morell, M.K.; Bloom,M.;Preiss, J. J. Biol. Chem. 1988, 263, 633-7.

8.

9.

Preiss, J.; Morell, M.K.; Bloom, M.; Knowles, V.L.; Lin, T.-P. Proceedings of the VII International Congress on Photosynthesis Vol. III, 1987, Biggins, J., Ed.; Martinus Nijhoff, Dorchecht, The Netherlands, pp 693-700. Morell, M.K.; Bloom, M.; Larsen, R.; Okita, T.W.; Preiss, J. In Plant Gene Systems and their Biology. UCLA Symposia on Molecular and Cellular Biology, New Series Vol. 62. Key, J.L.; McIntosh, L., Eds.; A.R. Liss, Inc. New York 1987; pp 227-242.

10. 11.

Parsons, T.F.; Preiss, J. J. Biol. Chem. 1978, 253, 7638-45. Lee, Y.M.; Mukherjee, S.; Preiss, J. Arch. Biochem. Biophys.

12.

Muneyama, K.; Baur, R.F.; Shuman, D.A.; Robbins, R.D.; Simon,

13.

Sanger, F.; Nicklen, S.; Coulson, A.R. Proc. Natl. Acad. Sci.

1986, 244,

L.N.

585-95.

Biochemistry 1971, 10, 2390-5.

USA 1977, 74, RECEIVED

5463-67.

October 26, 1988

Whitaker and Sonnet; Biocatalysis in Agricultural Biotechnology ACS Symposium Series; American Chemical Society: Washington, DC, 1989.