70 Relaxation and Reactivity of Singlet
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
Oxygen S. J .
ARNOLD,
M.
KUBO,
a n d E. A. OGRYZLO
University of British C o l u m b i a , Vancouver 8, B. C., Canada
Measurements of some energy transfer, physical quenching, and chemical reaction processes of singlet oxygen are presented. The results of these measurements and those obtained previously are analyzed in an attempt to assess the fate of O ( Δg) and O ( Σg ) in oxidation systems. 1
1
2
'Two
+
2
e l e c t r o n i c a l l y excited singlet states of o x y g e n a r e l o c a t e d 22.5 a n d
37.5 k c a l . a b o v e t h e t r i p l e t g r o u n d state.
T h e o n e at 22.5 k c a l . is
c o m m o n l y d e s i g n a t e d a A a n d w i l l b e a b b r e v i a t e d A. T h e h i g h e r o n e 1
has t h e t e r m s y m b o l b X 1
X 2/ 3
1
g
a n d w i l l b e r e f e r r e d to as
+
g
T h e g r o u n d state
w i l l b e a b b r e v i a t e d S . B e c a u s e their r e l a t i v e i m p o r t a n c e i n c h e m i 3
c a l reactions has n o t y e t b e e n d e t e r m i n e d , these t w o e x c i t e d states are r e f e r r e d to as singlet oxygen. T h i s p a p e r considers t h e various p h y s i c a l a n d c h e m i c a l processes w h i c h t h e t w o species c a n u n d e r g o , a n d a n att e m p t is m a d e to assess their r e l a t i v e i m p o r t a n c e i n o x i d a t i o n processes.
Experimental A t y p i c a l flow system u s e d to p r e p a r e A molecules f o r k i n e t i c studies is s h o w n i n F i g u r e 1. O x y g e n at a pressure b e t w e e n 1 a n d 10 torr is passed t h r o u g h a m i c r o w a v e discharge. T h e atoms are r e m o v e d w i t h a m e r c u r i c oxide r i n g i m m e d i a t e l y after t h e discharge. T h e c o n c e n t r a t i o n is m e a s u r e d at o n e p o i n t i n t h e t u b e b y t h e heat l i b e r a t e d w h e n t h e m o l e c u l e s a r e d e a c t i v a t e d o n a c o b a l t w i r e . R e l a t i v e concentrations o f e x c i t e d molecules a l o n g t h e o b s e r v a t i o n t u b e c a n b e m e a s u r e d w i t h a m o v a b l e interference filter a n d p h o t o m u l t i p l i e r . T h e details o f these m e t h o d s h a v e b e e n d e s c r i b e d (1,3,4). T a n k o x y g e n is n o r m a l l y selected for l o w n i t r o g e n content a n d u s e d w i t h o u t f u r t h e r p u r i f i c a t i o n . Q u e n c h i n g gases w e r e treated o n l y t o r e m o v e h i g h e r b o i l i n g i m p u r i t i e s , e s p e c i a l l y water. 1
133 In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
134
OXIDATION
OF
ORGANIC
COMPOUNDS
III
Radiative Relaxation I n the absence of a n y external p e r t u r b a t i o n b o t h A a n d *2 o x y g e n a
d o not emit a n y m e a s u r a b l e electric d i p o l e r a d i a t i o n . H o w e v e r , w i t h a l i f e t i m e of 7 s e c , *2 c a n g i v e rise to m a g n e t i c d i p o l e r a d i a t i o n at 7619 A . , a n d * A c a n g i v e rise to m a g n e t i c d i p o l e r a d i a t i o n at 12,683 A . w i t h a l i f e t i m e of 45 m i n u t e s .
I n a c o l l i s i o n w i t h another m o l e c u l e
electric
d i p o l e transitions b e t w e e n these states are m a d e m o r e p r o b a b l e , a n d the Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
r a d i a t i v e l i f e t i m e c a n be shortened. T h e exact r a d i a t i v e l i f e t i m e of singlet o x y g e n i n a c o l l i s i o n c o m p l e x is d i f f i c u l t to estimate because the d u r a t i o n of a c o l l i s i o n is u n c e r t a i n . H o w e v e r , w i t h a reasonable estimate of a b o u t 10
1 3
sec. for this c o l l i s i o n t i m e , the f o l l o w i n g r a d i a t i v e lifetimes for a
n u m b e r of c o l l i s i o n complexes can be c a l c u l a t e d f r o m the i n t e g r a t e d ab s o r p t i o n coefficients.
r = 4 sec.
(1)
12,700 A . and 15,800 A* W A
t—
1.5 sec.
(2)
6,340 A . and 7,030 A . r = 15 sec. 7,620AT T
3
(3)
2 S 3
= 0.3 sec.
(4)
3,808 A . and 3,612 A . T
= 1.7 sec.
(5)
4,773 A
W h e n the c o l l i s i o n c o m p l e x is m a d e u p of t w o excited molecules, a n o v e l energy p o o l i n g process occurs i n w h i c h the energy of t w o molecules appears i n a single p h o t o n . T h e above list shows that the p r o b a b i l i t y of s u c h a c o o p e r a t i v e event c a n b e c o m p a r a b l e w i t h that for a one-electron transition. H o w e v e r , because the f r a c t i o n of molecules i n a state of c o l l i s i o n is s m a l l , r a d i a t i v e r e l a x a t i o n is not responsible for the d e c a y of a significant n u m b e r of e x c i t e d molecules u n d e r the u s u a l e x p e r i m e n t a l c o n d i t i o n s . F o r example, the strongest i n d u c e d r a d i a t i o n for A occurs at 6340 a n d 7030 A . If this w e r e the o n l y m o d e of decay, the o b s e r v e d l i f e t i m e at 1 a t m . w o u l d be 10 s e c , whereas the o b s e r v e d l i f e t i m e is m u c h less t h a n 1 sec. T h e 6340-A. b a n d is, h o w e v e r , a c o n v e n i e n t a n d sensitive emission for m o n i t o r i n g the singlet d e l t a c o n c e n t r a t i o n since the e m i s s i o n intensity is p r o p o r t i o n a l to the square of its c o n c e n t r a t i o n . X
3
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
70.
ARNOLD E T A L .
Figure 1.
Relaxation
and
Reactivity
135
Core of flow system used for quenching studies
Energy Transfer F o r efficient transfer of electronic excitation to another m o l e c u l e , t h e acceptor must possess a n e x c i t e d electronic state at or n o t too f a r b e l o w that of t h e d o n o r . N o t m a n y m o l e c u l e s c a n meet this r e q u i r e m e n t w h e n the d o n o r is singlet oxygen. W e h a v e o b s e r v e d energy transfer to t h e f o l l o w i n g species, ( a ) another A m o l e c u l e , ( b ) v i o l a n t h r o n e ( d i b e n z a n A
t h r o n e ) , ( c ) n i t r o g e n d i o x i d e , a n d ( d ) i o d i n e atoms.
T h e mechanism
of energy transfer to ( b ) is n o t w e l l u n d e r s t o o d a n d w i l l b e d e s c r i b e d elsewhere ( 7 ) . S i n c e ( c ) a n d ( d ) are n o t d i r e c t l y r e l a t e d to the subject of h y d r o c a r b o n o x i d a t i o n , they w i l l n o t b e discussed i n a n y d e t a i l . T h e transfer to i o d i n e atoms is u n d o u b t e d l y the most efficient process w h i c h w e h a v e o b s e r v e d ( 2 ) , a n d this c a n b e a t t r i b u t e d to the fact that t h e 2
? i / 2 state of i o d i n e lies 22 k c a l . a b o v e the -P3/2 g r o u n d s t a t e — i n almost
perfect resonance w i t h A o x y g e n . T h e transfer to n i t r o g e n d i o x i d e is 1
m u c h less efficient a n d appears to i n v o l v e energy transfer f r o m X a n d A l
]
to raise the acceptor to a r a d i a t i n g state w h i c h lies about 60 k c a l . above the g r o u n d state ( 2 ) . 5
A—^A Transfer.
Since the ^
state lies 15 k c a l . above the * A , t h e
latter c a n act as a n acceptor as w e l l as a d o n o r i n an energy d i s p r o p o r t i o n a t e process: 1
Two
A + iA-> £ + 1
3
2
(6)
laboratories h a v e r e p o r t e d rate constants f o r this r e a c t i o n . A
v a l u e of 1.8 X 1 0 liters/mole/sec. w a s r e p o r t e d b y Y o u n g a n d B l a c k ( 8 ) , 7
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
136
OXIDATION
OF
ORGANIC COMPOUNDS
III
a n d a v a l u e of 1.3 X 1 0 liters/mole/sec. w a s m o r e r e c e n t l y r e p o r t e d b y 3
Arnold and Ogryzlo (3).
B e c a u s e of the large d i s c r e p a n c y b e t w e e n these
t w o values w e h a v e a t t e m p t e d a t h i r d d e t e r m i n a t i o n b y m e a s u r i n g the rate of * A r e m o v a l d i r e c t l y . T h e results of these measurements are s h o w n i n F i g u r e 2. T h e A c o n c e n t r a t i o n w a s v a r i e d b y c h a n g i n g the p o w e r f e d X
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
i n t o the discharge.
A s s u m i n g that i n a d d i t i o n to R e a c t i o n 6, w h i c h is
['AgJ Figure 2.
x lO Moles/1 6
Rate of singlet delta decay (R = d [ A ] /dt) divided by singlet delta concentration as a function of the singlet delta concentration J
second o r d e r i n A , w e c a n h a v e w a l l a n d gas-phase q u e n c h i n g that is X
first order i n A , the rate e q u a t i o n b e c o m e s : X
R
=
^
A / [
^
=
1
* Q [
A ] = *
Q
1
+
A ]
+
* D [
* D [
1
1
A ] »
A J
T h e slopes of the lines i n F i g u r e 2 are t h e n e q u a l to fci>. T h e average v a l u e w e o b t a i n is 3 X 1.3 X (3)
10
3
10
4
liters/mole/sec.
This value can be compared w i t h
liters/mole/sec., p r e v i o u s l y r e p o r t e d b y A r n o l d a n d O g r y z l o
f o r R e a c t i o n 6.
T h e t e c h n i q u e u s e d i n the earlier measurement
is
q u i t e difficult, a n d p o s s i b l y the v a l u e is s o m e w h a t l o w . H o w e v e r , it is also c o n c e i v a b l e that the process w e h a v e m e a s u r e d is not the slower,
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
70.
ARNOLD
Relaxation
ETA L .
and
137
Reactivity
s p i n - f o r b i d d e n R e a c t i o n 6, b u t t h e m o r e r a p i d s p i n - a l l o w e d process, R e a c t i o n 7. -» 2 + 2
*A + *A
3
(7)
3
A d e c i s i o n b e t w e e n these possibilities m u s t a w a i t f u r t h e r measurements. W e c a n o n l y c o n c l u d e that t h e v a l u e of k
lies b e t w e e n 1.3 X 1 0 a n d 3
Ct
3 X 1 0 liters/mole/sec. 4
A n i m p o r t a n t consequence of the o c c u r r e n c e of R e a c t i o n 6 is that *S is c o n s t a n t l y b e i n g f o r m e d i n a n y system w h i c h contains A. Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
1
W e shall
see later that t h e reverse is p r o b a b l y also true.
Radiationless Non-Resonance Relaxation W h e n a n external p e r t u r b a t i o n s u c h as that c a u s e d b y a c o l l i d i n g m o l e c u l e is sufficiently great, t h e electronic e x c i t a t i o n m a y b e d e g r a d e d into nuclear motion w i t h i n the collision complex.
H o w e v e r , very little
i n f o r m a t i o n is a v a i l a b l e a b o u t t h e efficiency of s u c h processes, a n d conse q u e n t l y n o c o m p l e t e t h e o r e t i c a l m o d e l exists w h i c h w e c o u l d use to p r e d i c t q u e n c h i n g rates. T h e e x p e r i m e n t a l d e t e r m i n a t i o n of A q u e n c h i n g is difficult because X
of its great s t a b i l i t y . I n most flow systems t h e d e c a y is l a r g e l y o n t h e w a l l s of t h e vessel w h e r e i t c a n suffer a b o u t 2 X 10
r>
collisions before
d e a c t i v a t i o n . C o l l i s i o n s w i t h most other m o l e c u l e s are e v e n less effective. A t t h e m o m e n t i t c a n o n l y b e s a i d that m o r e t h a n 1 0
8
collision w i t h
0 ( 2 ) are necessary to deactivate * A . O t h e r , n o n r e a c t i v e gases cannot 2
3
be tested s i m p l y because so m u c h m u s t b e a d d e d that i t r a d i c a l l y affects the
flow
system a n d discharge, m a k i n g t h e measurements
difficult t o
interpret. T h e q u e n c h i n g of S o x y g e n is s o m e w h a t easier to s t u d y because i t J
is m o r e easily d e a c t i v a t e d . I n t h e absence of a n y q u e n c h i n g gas, a steadystate c o n c e n t r a t i o n of S is m a i n t a i n e d i n t h e flow system b y t h e f o l l o w i n g X
reactions. *A + *A - »
(8)
*2 + S 3
(9) hence, D
PA]
(10)
2
a n d t h e emission i n t e n s i t y f r o m S is g i v e n b y X
I =
* [
1
S ] = * ^ [
1
A ]
2
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
138
OXIDATION
O F ORGANIC
COMPOUNDS
III
I n the presence of a q u e n c h i n g gas ( Q ) w e m u s t a d d R e a c t i o n 1 1 :
2
S + Q
(11)
products
a n d therefore the steady state c o n c e n t r a t i o n is g i v e n b y ri
S l
-
k
°
W
(12)
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
a n d t h e emission intensity i n t h e presence of Q :
_ kkD [ * A ]
(13) *w + * [ Q ] T h e ratio of t h e e m i s s i o n w i t h a n d w i t h o u t t h e q u e n c h e r is therefore 2
Q
given b y : (14) A p l o t o f I /I 0
fc /fc . Q
w
Q
against Q s h o u l d y i e l d a straight l i n e w i t h a slope of
S u c h a p l o t is g i v e n i n F i g u r e 3 f o r 15 different gases.
[q]
Figure
3.
Stern-Volmer
x I O
6
M o l e s / 1
plot of 7619-A. emission intensity quenching gases
for a series of
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
70.
ARNOLD
Relaxation
ET AL.
Table I.
and
139
Reactivity
kq/kv, f r o m I / / Q vs. Q 0
k x
k /k Q
w
He N , Ar, C O CH HBr
0.01 0.02 0.11 0.21
CHCI3
0.31 0.39 0.56 0.78 2.3 3.7 5.0 6.8 8.5
2
4
co H S DME NH Methanol Heptane D 0 H 0
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
2
2
3
2
2
T h e values of fc /fc Q
i n T a b l e I.
w
io«
X
1
X
S a n d * A concentrations i n the absence
-
are l i s t e d i n T a b l e II together w i t h values of =
D
3
3 X
10
4
c a l c u l a t e d earlier w e o b t a i n fc
w
o n a c l e a n b o r o s i l i c a t e glass surface.
of Zc w i t h the values of fc /fc w
Q
w
the values of k
Q
w
=
C o m b i n i n g this v a l u e
i n T a b l e I, w e o b t a i n e d the values of
l i s t e d i n the s e c o n d c o l u m n of the same table. k
0.07 0.15 0.8 1.5 8.8 2.8 4.0 10 16 26 36 49 60
v
F r o m the v a l u e of k 10
k
F r o m E q u a t i o n 10,
V a l u e s of [ A ] a n d f ^ ] ^= 1.3 X
*/ ^ =
w e r e q u i r e /
w
1,300
7
1.5 3 16 30 45 56 81 110 330 530 720 980 1200
measurements of the steady-state
fci)/fc .
=
w
10~
o b t a i n e d f r o m the slopes of these lines are g i v e n
To obtain k ,
of a n y q u e n c h e r .
if k
X
0
k
Q
T h e t h i r d c o l u m n gives
c a l c u l a t e d w i t h the p r e v i o u s l y d e t e r m i n e d ( 3 )
v a l u e of
65. T a b l e II. [O/'VJ]
P, tort
X
Values of ^ A ] a n d 10\
Moles/Liter
2.4 3.1 3.8 5.1
[0 ('A )] X Moles/Liter 2
g
PS] 10\ Liters/Mole
20.5 21.5 20.8 20.3
9.0 11.0 14.2 17.5
1.75 2.54 4.20 6.24
I n this process % m a y b e r e l a x e d into either the A or 2 state. x
1
3
the t r a n s i t i o n to the 2 state r e q u i r e s the c o n v e r s i o n of m o r e 3
energy i n t o n u c l e a r m o t i o n a n d also r e q u i r e s a " s p i n expect the t r a n s i t i o n to the
1
flip,"
Since
electronic we
A state to be m u c h m o r e p r o b a b l e .
would T h i s is
c o n f i r m e d b y the o b s e r v a t i o n that the q u e n c h i n g b y p a r a m a g n e t i c 0
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
2
is,
140
OXIDATION
OF
ORGANIC
COMPOUNDS
III
if a n y t h i n g , less effective t h a n species l i k e A r a n d N . N o n e of
the
2
molecules i n c l u d e d i n this s t u d y d i s p l a y a n y s p e c i a l resonance effect. T h e r e is, h o w e v e r , a r o u g h c o r r e l a t i o n b e t w e e n q u e n c h i n g efficiency a n d b o i l i n g p o i n t . T h i s is a reasonable c o r r e l a t i o n since one m i g h t expect t h e p r o b a b i l i t y of s u c h a n i n d u c e d t r a n s i t i o n to b e r e l a t e d to the m a g n i t u d e a n d d u r a t i o n of the p e r t u r b a t i o n . W e w i l l not a t t e m p t a d e t a i l e d analysis of this c o r r e l a t i o n here a n d w i l l s i m p l y observe that b o i l i n g p o i n t s reflect b o t h these quantities i n a s o m e w h a t i n d i r e c t m a n n e r a n d c a n
therefore
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
b e u s e d to estimate q u e n c h i n g rates.
Physical Quenching
"Processes
F r o m E q u a t i o n 16 i t f o l l o w s that i n the presence of a q u e n c h i n g species Q the r a t i o of 2 to A concentrations is g i v e n b y x
1
Ps] PA]
_ -
ftp l > ] *g[Q]
W h e n Q is w a t e r or a h y d r o c a r b o n w i t h a s i m i l a r b o i l i n g p o i n t , the equation becomes: PS] _ o P A ] 2
y
l
X
1
Q
-
B
°
P A ] [Q]
I n most c h e m i c a l a n d p h o t o c h e m i c a l o x i d a t i o n systems the r a t i o of to [ Q ]
is extremely s m a l l , a n d therefore the
smaller t h a n 10" . 6
1
[ A] 1
2 / A ratio is v e r y m u c h 1
T h e o n l y s u c h system i n w h i c h this ratio m i g h t be
a p p r o a c h e d is the CI2-H2O2 r e a c t i o n w h e r e the p a r t i a l pressure of * A p r o b a b l y exceeds 70 torr
(6).
H o w e v e r , w e m u s t also consider
the
q u e n c h i n g of * A . T h e relevant processes are t h e n the f o l l o w i n g i n the presence of quenchers s u c h as w a t e r : k ^
10
9
[Q]
k~
I k=1.3
X 10
3
X
10 -
10 ^
1
2
A
(
3
2
[Q]
( S i n c e w e are most interested i n the p o s s i b i l i t y that S contributes to the X
r e a c t i v i t y of singlet o x y g e n , w e h a v e u s e d the l o w e r q u e n c h i n g constants for X c a l c u l a t e d f r o m A r n o l d a n d O g r y z l o ' s v a l u e of k X
(3).)
w
one c o l l i s i o n i n 100 ( ~ 1 0 ~
9
sec. i n s o l u t i o n )
X
S is r e l a x e d to
I n about X
A by Q.
O n l y if A is «^ 0 . 1 % of Q is S efficiently r e f o r m e d f r o m A . O t h e r w i s e , 1
1
X
it is r e l a x e d to 2 i n a b o u t one c o l l i s i o n i n 1 0 - 1 0 3
9
(1-10 msec, i n s o l u
1 0
t i o n ) w i t h Q . U n d e r these c o n d i t i o n s w e o b t a i n a A / 2 ratio of about 1
10 . 8
1
C o n s e q u e n t l y , i n s u c h systems w h e n a steady state is established,
the rate constant f o r r e a c t i o n w i t h X w o u l d h a v e to b e about 1 0 X
t h a n that f o r A to b e c o m p e t i t i v e . J
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
8
faster
70.
ARNOLD
ET
Relaxation
AL.
and
141
Reactivity
Chemical Reactions N o t e c h n i q u e f o r m e a s u r i n g the absolute values of rate constants f o r singlet o x y g e n reactions i n s o l u t i o n has yet b e e n r e p o r t e d . H o w e v e r , s u c h a m e a s u r e m e n t is possible i n the gas phase w i t h the t e c h n i q u e d e s c r i b e d here, p r o v i d e d the species is v o l a t i l e a n d h i g h l y reactive. W e h a v e s t u d i e d the r e a c t i o n of singlet o x y g e n w i t h t e t r a m e t h y l e t h y l e n e ( T M E ) , w h o s e r e a c t i o n w i t h singlet o x y g e n i n the gas phase w a s first d e s c r i b e d b y B a y e s Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
and W i n e r (5).
T h e r e a c t i o n w a s f o l l o w e d b y m o n i t o r i n g the * A a n d *2
concentrations u n d e r v a r i o u s c o n d i t i o n s . W e h a v e f o u n d , h o w e v e r , that k i n e t i c a l l y the process is not as s i m p l e as the p r e l i m i n a r y studies sug gested.
It is possible that this m a y b e a characteristic of
exothermic
association processes i n l o w d e n s i t y systems w h e r e there are a n insuffi cient n u m b e r of collisions w h i c h u n r e a c t i v e m o l e c u l e s to p r e v e n t c h a i n reactions f r o m d e v e l o p i n g . I n contrast to the s i t u a t i o n i n c o n d e n s e d m e d i a , i t is h i g h l y p r o b a b l e that the e n e r g y - r i c h p r o d u c t of the i n i t i a l r e a c t i o n w i l l c o l l i d e w i t h another energetic m o l e c u l e rather t h a n w i t h a n inert species w h i c h c o u l d relax it to a stable p r o d u c t . W e are a t t e m p t i n g to s t u d y the r e a c t i o n u n d e r c o n d i t i o n s w h i c h are m o r e c o m p a r a b l e w i t h those i n the s o l u t i o n r e a c t i o n , w i t h the h o p e that the k i n e t i c s w i l l b e c o m e s o m e w h a t s i m p l e r . I g n o r i n g the c o m p l e x i t y of the system w e c a n m a k e a preliminary
estimate
(TME- A) We
of
10
8
liters/mole/sec.
for
this
rate
constant
f r o m the i n i t i a l slope of the d e c a y c u r v e .
1
h a v e n o e v i d e n c e for a d i r e c t r e a c t i o n b e t w e e n T M E a n d
T h e effect of T M E o n the steady-state % c o n c e n t r a t i o n is consistent w i t h x
its b o i l i n g point—i.e., it quenches ( o r reacts w i t h ) it w i t h a rate constant s o m e w h a t smaller t h a n 10° liters/mole/sec.
I n the last section w e c o n
c l u d e d that i n o r d e r to m a k e a significant c o n t r i b u t i o n to the reactions of singlet o x y g e n i n systems w h e r e steady-state concentrations of *S a n d A are established, the rate constant f o r the S r e a c t i o n w o u l d h a v e to b e X
1
b e t w e e n 1 0 a n d 1 0 times faster t h a n that f o r A . T h i s c l e a r l y cannot b e 5
8
X
the case f o r the T M E since c o l l i s i o n f r e q u e n c y w o u l d be exceeded.
How
ever, i n "non-steady-state" systems w h e r e the i n i t i a l c o n c e n t r a t i o n of *S is c o m p a r a b l e w i t h A, the d i r e c t i m p o r t a n c e of the f o r m e r species d e p e n d s 1
o n the r a t i o of q u e n c h i n g species to reactive species.
However, 2 1
is
p r o b a b l y r e l a x e d to A , a n d e v e n if it does not react d i r e c t l y c a n i n d i r e c t l y X
l e a d to o x i d a t i o n .
Acknowledgment T h e research for this p a p e r w a s s u p p o r t e d b y the D e f e n c e R e s e a r c h B o a r d of C a n a d a , G r a n t n u m b e r 9530-31 a n d p a r t l y b y the U n i t e d States A i r F o r c e A F O S R , G r a n t n u m b e r 158-65.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
142
OXIDATION OF ORGANIC COMPOUNDS III
Downloaded by UNIV MASSACHUSETTS AMHERST on September 7, 2012 | http://pubs.acs.org Publication Date: January 1, 1968 | doi: 10.1021/ba-1968-0077.ch070
Literature Cited
(1) Arnold, S. J., Browne, R. J., Ogryzlo, E. A., Photochem. Photobiol. 4, 963 (1965). (2) Arnold, S. T., Finlayson, N., Ogryzlo, E. A , J. Chem. Phys. 44, 2529 (1966). (3) Arnold, S. T., Ogryzlo, E. A., Can. J. Phys. 45, 2053 (1967). (4) Bader, L. W., Ogryzlo, E. A., Discussions Faraday Soc. 37, 46 (1964). (5) Bayes, K. D., Winer, A. M., J. Phys. Chem. 70, 302 (1966). (6) Browne, R. J., Ogryzlo, E. A., Can. J. Chem. 43, 2915 (1965). (7) Ogryzlo, E. A., Pearson, A. E., J. Phys. Chem. 72, 2913 (1968). (8) Young, R. A., Black, G., J. Chem. Phys. 42, 3740 (1965). RECEIVED
October 9,
1967.
In Oxidation of Organic Compounds; Mayo, F.; Advances in Chemistry; American Chemical Society: Washington, DC, 1968.