13 Fates and Levels of Ambient Halocarbons
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
1
2
DANIEL LILLIAN , HANWANT BIR SINGH , ALAN APPLEBY, LEON LOBBAN, ROBERT ARNTS, RALPH GUMPERT, ROBERT HAGUE, JOHN TOOMEY, JOHN KAZAZIS, MARK ANTELL, DAVID HANSEN, and BARRY SCOTT Department of Environmental Science, Rutgers University, New Brunswick, N. J. 08903
There is much recent concern over the behavior and effects of halocarbons in the environment. Ambient CCl F and CCl F2 (1,2) and, by analogy, other tropospherically stable compounds are suspect as precursors of stratospheric ozone-destroying chlorine atoms. Vinyl chloride has been linked to industrial angiosarcoma and is possibly mutagenic (3). Chloroethylenes will react to form significant quantities of highly toxic phosgene and acetyl chlorides under simulated tropospheric conditions (4,5). Chloroform and CCl in Mississippi drinking water have been associated with an elevated cancer risk (6,7). Concurrent to these findings, the research effort i n ambient halocarbon measurement has justifiably increased significantly (8-16). The many industrial and domestic uses of halogenated hydrocarbons and t h e i r rather large production figures (12 billion pounds i n 1974 for the U.S. alone) (17) suggest that this accelerated research effort will lead to a continual increase in the number of halocarbons routinely measured in the environment. Indeed, mass spectrometric analysis conducted on cryogenically concentrated air samples several years ago indicated the presence of a wide variety of halogenated compounds (18). Because of the large number of atmospheric halogenated hydrocarbons of potential interest, a selective study of a carefully chosen group representing a wide spectrum of chemical reactivities and emission patterns was clearly desirable. This approach would not only provide information of immediate relevance but also contribute to a data base for future reference as the number of halocarbons of environmental interest proliferates. A comprehensive study of the atmospheric chemistry and 3
2
4
(1) Currently with the U.S. Army Industrial Hygiene Agency, Edgewood Arsenal, Maryland. (2) Currently with the Stanford Research Institute, Menlo Park, California. 152 Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
13.
Ambient
LILLIAN E T A L .
153
Halocarbons
ambient c o n c e n t r a t i o n s o f h a l o g e n a t e d h y d r o c a r b o n s has been u n d e r w a y i n o u r l a b o r a t o r y s i n c e J u l y 1972. Presented i n t h i s f i r s t o f a s e r i e s o f r e p o r t s a r e ambient d a t a o b t a i n e d a t s e v e r a l l o c a t i o n s f o r C C I F , C H J , C C l ^ , C C l , C H C C 1 a n d C H C 1 . To a d d r e s s t h e p o s s i b l e f a t e o f t h e s e compounds r e p r e s e n t a t i v e c o n c e n t r a t i o n - t i m e p r o f i l e s i l l u s t r a t i n g t h e i r behavior under experimentally simulated tropospheric conditions are presented. 3
2
l t
3
3
?
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
Experimental A m b i e n t h a l o c a r b o n s were m e a s u r e d o n s i t e u s i n g a m o b i l e l a b o r a t o r y , e q u i p p e d w i t h a F i s h e r - V i c t o r e e n gas c h r o m a t o g r a p h and a s p e c i a l c o u l o m e t r i c gas c h r o m a t o g r a p h . The a n a l y t i c a l p r o c e d u r e s h a v e b e e n d i s c u s s e d i n d e t a i l ( 6 ) . The minimum d e t e c t a b l e c o n c e n t r a t i o n s f o r C C 1 F , C H I , C C l ^ , C C l , C H C C 1 and C H C 1 b a s e d on a 5 ml i n j e c t i o n were r e s p e c t i v e l y .002, .002, .01, .04, .02 a n d .006 ppb. The "smog chamber" e x p e r i m e n t s were c o n d u c t e d u s i n g p l a s t i c f i l m b a g s o r a 72 l i t e r P y r e x g l a s s r e a c t o r . S i m u l a t e d t r o p o s p h e r i c s u n l i g h t f o r b a g i r r a d i a t i o n s was p r o v i d e d b y a bank o f m i x e d s u n , b l a c k l i g h t and b l a c k l i g h t - b l u e lamps ( k = 0 . 4 m i n - ) . The 72 l i t e r r e a c t o r was i r r a d i a t e d i n an a i r c o n d i t i o n e d chamber f i t t e d w i t h s l i m - l i n e b l a c k l i g h t s (42T6) ( k ^ O . 3 m i n " ) . A n o n l e a d e d f u e l ( 6 0 % p a r a f f i n , 1 3 % o l e f i n , 2 7 % a r o m a t i c ) was u s e d t o s i m u l a t e t r o p o s p h e r i c h y d r o c a r b o n r e a c t i v i t y ( 1 9 ) . Ozone a n d o x i d e s o f n i t r o g e n were m e a s u r e d b y g a s - p h a s e c h e m i l u m i n e s c e n c e . S t r a t o s p h e r i c s i m u l a t i o n s were c o n d u c t e d u s i n g a n A c e G l a s s 1 l i t e r p h o t o c h e m i c a l r e a c t o r e q u i p p e d w i t h a H a n o v i a 450 w a t t q u a r t z lamp (λ>2200Α). Gas b l e n d i n g p r o c e d u r e s and o t h e r e x p e r i mental t e c h n i q u e s have been d i s c u s s e d (19,20). During extended i r r a d i a t i o n s o f s t a b l e h a l o c a r b o n s N 0 was r e p l e n i s h e d e v e r y 24 hours. 3
3
2
l f
3
3
3
1
î
1
2
Results F i g u r e 1 shows t h e r e s p e c t i v e a v e r a g e a m b i e n t c o n c e n t r a t i o n s o f C C 1 F , CH I , C C l ^ , C C l , C H C C 1 and C H C 1 m e a s u r e d a t t h e l o c a t i o n s a n d t i m e s i n d i c a t e d . A l s o shown a r e t h e c o n c e n t r a t i o n r a n g e s f o r e a c h s u b s t a n c e e x p r e s s e d a s maximum a n d minimum l e v e l s detected. F i g u r e 2 shows t h e c o n c e n t r a t i o n - t i m e p r o f i l e s f o r C C 1 F , C C l ^ and C H C C 1 o b t a i n e d when t h e i n d i c a t e d h a l o c a r b o n was i r r a d i a t e d w i t h s i m u l a t e d t r o p o s p h e r i c s u n l i g h t i n t h e p r e s ence o f a r e a c t i v e h y d r o c a r b o n m i x t u r e and n i t r o g e n d i o x i d e . F i g u r e 3 shows t h e d e c a y o f C C l ^ and C C 1 F when i r r a d i a t e d w i t h U.V. F i g u r e 4 i l l u s t r a t e s t h e e f f e c t o f s i m u l a t e d t r o p o s p h e r i c s u n l i g h t on C C l i n t h e p r e s e n c e o f N 0 and r e a c t i v e h y d r o c a r b o n . The p h o t o c h e m i c a l d e c a y o f C H I i n a i r u s i n g t h e same i l l u m i n a t i o n i s shown i n F i g u r e 5. 3
?
3
3
l t
3
3
3
3
3
2
l f
2
3
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
«
h-
.001 I
.005 h
.01
.05 μ
.10
3
CCJ2 F
Figure
4
Φ " ?i
.50h
ΙΟ.Ογ
1.
3
I
f
Halocarbon
C H
SEAGIRT, N.J. NEW YORK CITY SANDY HOOK,N.J. WILMINGTON, DEL. BALTIMORE, M D. WILMINGTON, OHIO WHITEFACE ΜΤ.,Ν.Υ.
C o C i
> Ο til Π Ο
*1
Ο
F
Ο
S3 W
οι
13.
LILLIAN E TAL.
Ambient
155
Halocarbons
-ωV
-CH CCi 3
%
3
χ
χ
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
"*
C
*
\ ^CCJ?
5Γ-
x
^
4
^-CCfl*F
50
J
I
I
I
I
100
I
I
I
I
1
150
I
I
I
I
I
200
I
L
250
IRRADIATION TIME - HRS
Figure
2.
CH CCl?„ CCl, ,or CCl F irradiated in ultra zero air in Mylar bags ing 1 ppm hydrocarbon, 0.5 ppm N0 > and 50% relative humidity 3
f
3
2
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
contain
156
REMOVAL O F TRACE CONTAMINANTS F R O M
T H E AIR
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
1.00
5
10
IRRADIATION TIME - HRS
Figure 4. C Cl irradiated in ultra zero air in a Mylar bag containing 1 ppm hydrocarbon, 0.5 ppm N0 , and 50% relative humidity 2
!t
2
I2r-
12
Figure
5.
CH I 3
irradiated
16 20 IRRADIATION TIME - HRS
24
in ultra zero air in a Mylar relative humidity
j
L
32
bag containing
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
36
50%
LILLIAN ET
13.
Ambient
AL.
157
Halocarbons
Discussion F i g u r e 1 c l e a r l y shows t h a t t h e h a l o c a r b o n s m e a s u r e d a r e extremely v a r i a b l e i n c o n c e n t r a t i o n at a l l the l o c a t i o n s s t u d i e d , and f r o m one l o c a t i o n t o a n o t h e r . Some g e n e r a l o b s e r v a t i o n s can however be made. The h i g h e s t v a l u e s o f a l l compounds were obs e r v e d a t New Y o r k C i t y , e x c e p t f o r C H I where t h e New Y o r k C i t y v a l u e was t h e s e c o n d h i g h e s t . W h i t e f a c e M o u n t a i n had b e e n expected to e x h i b i t the lowest halocarbon l e v e l s because of i t s remoteness from h i g h l y i n d u s t r i a l i z e d o r populated areas. Howe v e r a v e r a g e C C 1 F and C C l i * c o n c e n t r a t i o n s were o b s e r v e d t o be lower i n other areas. C C l ^ was a l w a y s m e a s u r a b l e , and e x h i b i t e d the l e a s t v a r i a b i l i t y . The minimum v a l u e o b s e r v e d by us a g r e e s w e l l w i t h t h a t r e p o r t e d as b a c k g r o u n d c o n c e n t r a t i o n by L o v e l o c k e t a l . and W i l k n e s s e t a l . ( a b o u t 0.07 ppb) ( 1 0 , 1 3 ) . C C 1 F was s i m i l a r l y a l w a y s m e a s u r a b l e and o u r minimum c o n c e n t r a t i o n s were r e a s o n a b l y c l o s e t o r e p o r t e d b a c k g r o u n d v a l u e s (9^10^13) o f a b o u t 0.05 t o 0.09 ppb. C C l ^ and C H C C 1 a r e , l i k e C C 1 F t r o p o s p h e r i c a l l y i n e r t , as i s shown i n F i g u r e 2. A c c o r d i n g l y , t h e s e compounds w o u l d s e r v e as s o u r c e s o f s t r a t o s p h e r i c c h l o r i n e atoms, s i m i l a r t o C C 1 F and C C 1 F and as F i g u r e 1 shows, i n r o u g h l y e q u i v a l e n t q u a n t i t i e s . F i g u r e 3 d e m o n s t r a t e s t h e s t r a t o s p h e r i c r e a c t i v i t y o f C C 1 F and ecu. P e r c h l o r o e t h y l e n e , used p r i m a r i l y i n d r y - c l e a n i n g o p e r a t i o n s , i s probably not a s i g n i f i c a n t d i r e c t source o f s t r a t o s p h e r i c c h l o r i n e atoms b e c a u s e o f i t s t r o p o s p h e r i c r e a c t i v i t y ( F i g . 4 ) . I t s environmental s i g n i f i c a n c e l i e s i n i t s p o s s i b l e tropospheric c o n v e r s i o n t o phosgene. B e a r i n g i n mind t h e need f o r c a u t i o n i n e x t r a p o l a t i n g smog chamber d a t a t o t h e e n v i r o n m e n t , i t i s n o t e w o r t h y t h a t r e c e n t l a b o r a t o r y e x p e r i m e n t s (4^_5>2J/) h a v e demons t r a t e d as much as 84% b y w e i g h t c o n v e r s i o n o f C C l to h i g h l y t o x i c phosgene. (1974 p r o p o s e d TLV i s 50 ppb, n o t t o be exceeded) . There i s e v i d e n c e a l s o t h a t a n o t h e r t r o p o s p h e r i c degradation product o f C C l i s C C l ^ (4) w h i c h may a c c o u n t f o r a s i g n i f i c a n t p o r t i o n o f the C C l ^ t r o p o s p h e r i c budget. C H I was n o t a l w a y s m e a s u r a b l e and, i n common w i t h a l l t h e compounds r e p o r t e d h e r e , u n d e t e c t a b l e c o n c e n t r a t i o n s w e r e n o t i n c l u d e d i n t h e a v e r a g e s . The d e t e c t i o n f r e q u e n c y f o r C H I and o t h e r compounds a r e d i s c u s s e d e l s e w h e r e ( 2 2 ) ; i t i s n o t e w o r t h y h e r e h o w e v e r t h a t C H I was g e n e r a l l y most f r e q u e n t l y m e a s u r a b l e i n c l o s e p r o x i m i t y to the ocean, c o n s i s t e n t w i t h the suggestion o f L o v e l o c k e t a l . (10) t h a t i t s o r i g i n s a r e i n t h e o c e a n and are b i o l o g i c a l . The v a l u e s we o b t a i n a r e a l s o n o t i n c o n s i s t e n t w i t h t h e i r mean a e r i a l c o n c e n t r a t i o n o f 0.0012±0.01 ppb. The h i g h e s t a v e r a g e o f C H I c o n c e n t r a t i o n was a t Sandy Hook, on t h e New J e r s e y s h o r e . The l o w e r v a l u e a t n e a r b y S e a g i r t i s p r o b a b l y due t o a p r e v a i l i n g o f f s h o r e b r e e z e d u r i n g t h e s a m p l i n g p e r i o d . C H I i s v e r y r e a c t i v e , and i s e x p e c t e d t o u n d e r g o r a p i d d e c a y i n the troposphere ( F i g . 5). I t s decreasing frequency of
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
3
3
3
3
3
3
3
2
2
3
2
2
l +
l f
3
3
3
3
3
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.
158
R E M O V A L O F T R A C E C O N T A M I N A N T S F R O M T H E AIR
o b s e r v a t i o n away f r o m t h e o c e a n s and t h e s p o r a d i c n a t u r e o f i t s d e t e c t a b i l i t y i s presumably a m a n i f e s t a t i o n o f t h i s r e a c t i v i t y .
Literature Cited
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 28, 2018 | https://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/bk-1975-0017.ch013
1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19.
20. 21. 22.
M o l i n a , M.J., and Rowland, F.S., Nature, (1974), 249, 810. C i c e r o n e , R.J., Stolarski, R.S., and W a l t e r s , S . , S c i e n c e , (1974), 185, 1165. Chemical and Engineering News, (1974), 52, 6. S i n g h , H.B., Lillian, D . , Appleby, Α . , and Lobban, L.A., Environmental L e t t e r s , submitted March 1975. Lillian, D . , S i n g h , H.B., Appleby, Α . , and Lobban, L.A., J. Air Poll. C o n t r o l A s s o c . , accepted f o r p u b l i c a t i o n , February 1975. Chemical and Engineering News, (1974), 52, 5. Chemical and Engineering News, (1974), 52, 44. L o v e l o c k , J.E., Nature, (1971), 230, 379. H e s t e r , N.E., Stephens, E.P., and T a y l o r , O . C . , J. Air Poll. C o n t r o l A s s o c . , (1974), 24, 591. L o v e l o c k , J.E., Maggs, R.J., and Wade, R.J., Nature, (1973), 241, 194. Lillian, D . , and S i n g h , H.B., A n a l . Chem., (1974), 46, 1060. L o v e l o c k , J.E., Atm. E n v . , (1972), 6, 917. W i l k n e s s , P.E., Lamontagne, R.A., Larson, R.E., and Swinnerton, J . W . , Nature Phys. Sci., (1973), 245, 45. Murray, A.J., and Riley, J.P., Nature, (1973), 242, 37. Chih-Wu-Su, and Goldberg, E . D . , Nature, (1973), 2245, 27. Simmonds, P.G., Kerrin, S.L., Lovelock, J.E., and S h a i r , F . H . , Atmos. E n v . , (1974), 8, 209. United S t a t e s I n t e r n a t i o n a l Trade Commission P r e l i m i n a r y Report, February 5, 1975. Weaver, E . R . , Hughes, E.E., Gunther, S . M . , Schuhmann, S . , Redfearn, N . T . , Gorden, R . , J. Res. Nat. Bur. S t a n d . , (1957), 59, 383. Lillian, D . , and Hansen, D . , "Aerosol formation from the p h o t o - o x i d a t i o n o f non-leaded fuels," 164th N a t i o n a l A . C . S . meeting, D i v i s i o n o f Water and Water Chemistry, N . Y . August 27 - September 1 (1972). R i p p e r t o n , L.A., and Lillian D . , J. Air Poll. C o n t r o l A s s o c . , (1971), 21, 679. S i n g h , H.B., Lillian, D . , and Appleby, Α., A n a l . Chem., accepted for p u b l i c a t i o n , January 1975. Lillian, D . , S i n g h , H.B., Appleby, Α . , Lobban, L.A., Amts, R . , Gumpert, R . , Hague, R . , Toomey, J., K a z a z i s , J., Antell, Μ., Hansen, D . , and S c o t t , B . , Env. Sci. and T e c h . , sub m i t t e d November 1974.
Deitz; Removal of Trace Contaminants from the Air ACS Symposium Series; American Chemical Society: Washington, DC, 1975.