Resonant Quasi-periodic and Periodic Orbits - American Chemical

s i c a l l y quantized RPOs a t f i x e d values of the bending angle were com-. 0097-6156/ ... method is based upon minimization of an "aperiodicity...
0 downloads 0 Views 1MB Size
23 Resonant Quasi-periodic and Periodic Orbits

Resonances Downloaded from pubs.acs.org by UNIV OF TEXAS AT EL PASO on 11/02/18. For personal use only.

For the Three-Dimensional Reaction of Fluorine Atoms with Hydrogen Molecules C. 1

C.

MARSTON

1

and

ROBERT

E.

WYATT

2

Departments of Physics and Chemistry and Institute for Theoretical Chemistry, University of Texas, Austin, TX 78712

2

Department

of Chemistry and Institute for Theoretical Chemistry, University of Texas, Austin,

TX 78712

Numerical methods are described for locating resonant quasiperiodic and periodic orbits in the 3D F+H reac­ tion with J=0. A number of plots of both types of resonant orbit are presented. This is the first time that resonant orbits have been found for a non-collinear reaction. These orbits are then used in the arbi­ trary trajectory semiclassical quantization scheme of DeLeon and Heller. The lowest resonance energy pre­ dicted using this procedure is in good agreement with all available quantal and adiabatic semiclassical re­ sults. 2

Over t h e p a s t few y e a r s , resonances i n c h e m i c a l r e a c t i o n s have been the f o c u s o f numerous t h e o r e t i c a l (_1) and e x p e r i m e n t a l s t u d i e s (_2). On t h e t h e o r e t i c a l s i d e , b o t h q u a n t a l and s e m i c l a s s i c a l methods have been used t o c a l c u l a t e resonance e n e r g i e s and w i d t h s , p r i n c i p a l l y f o r c o l l i n e a r r e a c t i o n s , a l t h o u g h t h e r e a r e a few s t u d i e s o f 3D r e a c t i o n s . I n q u a n t a l s t u d i e s o f 3D r e a c t i o n s , some c l o s e - c o u p l i n g c a l c u l a t i o n s on H+H^ have been r e p o r t e d ( I f ) , ( l i ) , b u t t h e l a r g e number o f chann e l s has n e c e s s i t a t e d approaches based upon t h e J - c o n s e r v i n g ( 3 ) , IOS ( 4 ) , BCRLM ( 5 ) , o r DWBA (6) a p p r o x i m a t i o n s . I n a d d i t i o n t o these q u a n t a l s t u d i e s , s e v e r a l s e m i c l a s s i c a l approaches have been a p p l i e d t o c o l l i n e a r (7) and 3D r e a c t i o n s ( 7 b ) , ( 8 ) . I n t h e P o l l a k - C h i l d theory, the energies of p e r i o d i c o r b i t s i n the c o l l i n e a r c o l l i s i o n complex a r e a d j u s t e d t o s a t i s f y i n t e g e r a c t i o n q u a n t i z a t i o n c o n d i t i o n s ( 7 c ) . These r e s o n a n t p e r i o d i c o r b i t s (RPO's) were f i r s t ment i o n e d i n an e a r l i e r study o f t r a j e c t o r i e s trapped i n e n t r a n c e o r e x i t r e g i o n s ( p e r i o d i c o r b i t d i v i d i n g s u r f a c e s - PODS) o r i n t h e c o l l i s i o n complex (9) o f c o l l i n e a r r e a c t i o n s . I n an e x t e n s i o n t o p r e d i c t resonance e n e r g i e s i n t h e 3D H+H and F+H r e a c t i o n s , P o l l a k and 2

2

Wyatt (8) developed an a d i a b a t i c r e d u c t i o n scheme i n w h i c h s e m i c l a s s i c a l l y q u a n t i z e d RPOs a t f i x e d v a l u e s o f t h e b e n d i n g a n g l e were com0097-6156/ 84/ 0263-0441 $06.00/ 0 © 1984 American Chemical Society

442

RESONANCES

puted i n t h e f i r s t s t e p . I n t h e second step of t h e r e d u c t i o n scheme, t h e s e e n e r g i e s then s e r v e d as an e f f e c t i v e p o t e n t i a l f o r t h e s l o w e r bending m o t i o n . S e m i c l a s s i c a l q u a n t i z a t i o n o f t h e p e r i o d i c bending o r b i t s l e d t o time-averaged e f f e c t i v e moments of i n e r t i a f o r t h e slow o v e r a l l t u m b l i n g motion. These and o t h e r s t u d i e s based upon PODS (10) o r RPOs have been e x t e n s i v e l y r e v i e w e d by P o l l a k (11). I n r e l a t e d s t u d i e s , D u c h o v i c , Swamy, and Hase found q u a s i p e r i o d i c o r b i t s above t h e d i s s o c i a t i o n t h r e s h o l d f o r t h e H-C-C-*H+C=C f r a g m e n t a t i o n (12). They used an i t e r a t i v e method t o s e m i c l a s s i c a l l y q u a n t i z e t h e e n e r g i e s o f some of t h e s e o r b i t s . The p r e s e n t study i s concerned w i t h t h e a p p l i c a t i o n of n u m e r i c a l methods t o l o c a t e o r b i t s f o r c h e m i c a l r e a c t i o n s t h a t a r e n o t r e s t r i c t e d t o c o l l i n e a r geometry. I n c o n t r a s t t o t h e P o l l a k - W y a t t a d i a b a t i c r e d u c t i o n scheme ( 8 ) , t h e p r e s e n t treatment does n o t r e q u i r e an a d i a b a t i c s e p a r a t i o n o f m o t i o n s . A t a g i v e n energy E, t h e t r a j e c t o r y must be s t a r t e d a t a p o i n t such t h a t , a f t e r a time i n t e r v a l , i t n e a r l y ( q u a s i p e r i o d i c c a s e ) o r e x a c t l y ( p e r i o d i c case) r e t u r n s t o i t s s t a r t i n g p o i n t . The problem then i s t o s y s t e m a t i c a l l y l o c a t e t h e s e s t a r t i n g p o i n t s . I n p r a c t i c e , i t i s found t h a t t r a j e c t o r i e s i n i t i a t e d c l o s e t o t h e r e s o n a n t o r b i t q u i c k l y e v o l v e i n t o the a s y m p t o t i c r e a c t a n t o r p r o d u c t r e g i o n s ; t h e i n i t i a l c o n d i t i o n s must be a d j u s t e d t o m i n i m i z e t h e e s c a p i n g tendency o f t h e t r a j e c t o r y from the c o l l i s i o n complex i n t o b o t h t h e r e a c t a n t and p r o d u c t c h a n n e l s . Here, t h e e s c a p i n g tendency i s measured by t h e atom-molecule r e l a t i v e momentum a t a t u r n i n g p o i n t i n t h e m o t i o n ; t h i s momentum i s denoted z ° z ' * p r o d u c t s , r e s p e c t i v e l y . To l o c a t e RPOs f o r c o l l i n e a r r e a c t i o n s , P o l l a k and C h i l d (7c) d i s c u s s e d t h e t u r n i n g p o i n t (TP) and r e a c t a n t - p r o d u c t (RP) boundary methods. I n t h e TP method, t h e t r a j e c t o r y i s f o l l o w e d t o t h e f i r s t t u r n i n g p o i n t , where the s i g n o f t h e momentum component p e r p e n d i c u l a r t o i s examined. The s t a r t i n g p o i n t o f t h e t r a j e c t o r y i n t h e r e a c t a n t c h a n n e l i s then a d j u s t e d i n an attempt t o f o r c e t h i s momentum component t o be z e r o . On t h e o t h e r hand, t h e RP method was r e c e n t l y used by P o l l a k t o l o c a t e a q u a s i p e r i o d i c o r b i t near t h e e n t r a n c e c h a n n e l v = l v i b r a t i o n a l a d i a b a t i c b a r r i e r i n t h e 3D H+H r e a c t i o n ( 1 3 ) . U s i n g t h i s method, r

P

f

n

r

e

a

c

t

a

n

t

s

o

r

2

the t r a j e c t o r y i s i n t e g r a t e d from t h e r e g i o n o f t h e c o l l i s i o n complex l o n g enough t o see whether i t moves toward r e a c t a n t s o r p r o d u c t s . The i n i t i a l c o n d i t i o n i s then a d j u s t e d t o l o c a t e t h e boundary between o r b i t s d e c a y i n g i n t o r e a c t a n t s o r i n t o p r o d u c t s . A t t h e RP boundary, the o r b i t c o u l d be e i t h e r p e r i o d i c o r q u a s i p e r i o d i c . The method t h a t we d e s c r i b e i n t h e n e x t s e c t i o n i s a g e n e r a l i z a t i o n t o n o n c o l l i n e a r g e o m e t r i e s o f t h e TP method. I n t h e second p a r t o f t h e same s e c t i o n , we w i l l d e s c r i b e a method f o r l o c a t i n g RPOs f o r 3D r e a c t i o n s . The method i s based upon m i n i m i z a t i o n of an " a p e r i o d i c i t y i n d e x , " A, by again a d j u s t i n g the i n i t i a l c o n d i t i o n s . The H a m i l t o n i a n i s t h a t o f an atom-diatomic m o l e c u l e c o l l i s i o n a t t o t a l a n g u l a r momentum J=0, H =

i R [ P

+

P

+

P

r 7 '

]

+

V

(

R

r

' ^>»

where R and r a r e t h e s c a l e d (14) r e a c t a n t atom-molecule and molecul a r v i b r a t i o n a l c o o r d i n a t e s , r e s p e c t i v e l y , and where y i s t h e bending a n g l e between R and r ( I n t h e n e x t s e c t i o n , we w i l l a l s o use t h e no-

23.

MARSTON AND

WYATT

Resonant Quasi-periodic & Periodic Orbits

443

t a t i o n z and p f o r R and r , r e s p e c t i v e l y . ) I n a d d i t i o n , u i s the e f f e c t i v e reduced mass of the t h r e e atom system. The Muckerman V pot e n t i a l (15) was used f o r V ( R , r , y ) . Having computed q u a s i p e r i o d i c or p e r i o d i c r e s o n a n t o r b i t s , we t h e n use them i n a s e m i c l a s s i c a l q u a n t i z a t i o n scheme i n o r d e r t o p r e d i c t resonance e n e r g i e s . S i n c e t h e s e t r a p p e d t r a j e c t o r i e s a r e bound s t a t e s embedded i n the continuum of the c o l l i s i o n complex, one of the s e m i c l a s s i c a l q u a n t i z a t i o n schemes d e v i s e d f o r ( t r u l y ) bound systems may be used ( 1 6 ) . A l t h o u g h the s e m i c l a s s i c a l p r e d i c t i o n of resonance e n e r g i e s has been c o n s i d e r e d p r e v i o u s l y f o r the c o l l i n e a r H+H r e a c t i o n (7a) and f o r a model atom-diatom i n e l a s t i c c o l l i s i o n ( 1 7 ) , where ( u s i n g q u a s i p e r i o d i c t r a j e c t o r i e s ) the i t e r a t i v e s u r f a c e - o f - s e c t i o n method (18) was s u c c e s s f u l l y employed, we found the n o n i t e r a t i v e a r b i t r a r y - t r a j e c t o r y method of DeLeon and H e l l e r (19) t o a d m i r a b l y s u i t our needs. An i m p o r t a n t advantage of t h i s method i s t h a t " a r b i t r a r y t r a j e c t o r i e s ( r e l a t i v e l y c l o s e t o the quantum energy b e i n g sought) may be u s e d , thus e l i m i n a t i n g the need f o r d i f f i c u l t r o o t s e a r c h e s t o f i n d the " r i g h t " t r a j e c t o r i e s which s a t i s f y quantum c o n d i t i o n s on the action integrals. L a t e r , s e v e r a l F+H2 r e s o n a n t q u a s i p e r i o d i c o r 2

1 1

b i t s w i l l be i l l u s t r a t e d . Then, the s e m i c l a s s i c a l l y q u a n t i z e d r e s o nance energy, computed from two RPOs, i s compared t o r e s u l t s from a l l a v a i l a b l e q u a n t a l and s e m i c l a s s i c a l s t u d i e s . N u m e r i c a l Methods f o r L o c a t i n g Q u a s i p e r i o d i c

and P e r i o d i c O r b i t s

B e f o r e d e s c r i b i n g the n u m e r i c a l methods used t o l o c a t e q u a s i p e r i o d i c or p e r i o d i c r e s o n a n t o r b i t s , we w i l l d e f i n e s e v e r a l s e t s of c o o r d i n a t e s t h a t are u s e f u l i n s p e c i f y i n g the s i z e and shape of the t h r e e atom t r i a n g l e . L e t S be the ^ s c a l e d ) v e c t o r from the c e n t e r - o f - m a s s of H t o the F atom, and l e t r be the ( s c a l e d ) H s e p a r a t i o n v e c t o r 2

2

( 1 4 ) . I n a d d i t i o n , l e t y be the a n g l e between R and r , such t h a t y=0 or 7T denote c o l l i n e a r c o n f i g u r a t i o n s , w h i l e y=ir/2 or 3ir/2 denote p e r p e n d i c u l a r c o n f i g u r a t i o n s . I n o r d e r to o r i e n t the m o l e c u l a r v e c t o r r r e l a t i v e t o S, we may a l s o use C a r t e s i a n c o o r d i n a t e s , x=rcosy and y = r s i n y , so t h a t y measures the d e v i a t i o n from c o l l i n e a r i t y (y=0 thus d e f i n e s c o l l i n e a r g e o m e t r i e s , y=0 or IT). Thus, the t h r e e C a r t e s i a n c o o r d i n a t e s ( R , x , y ) , where R i s the l e n g t h of v e c t o r or the c y l i n d r i c a l c o o r d i n a t e s (R,p,y), where p(=r) i s the l e n g t h of v e c t o r r , may be used t o s p e c i f y the s i z e and shape of the F H three-atom t r i angle. C o n t i n u i t y of c l a s s i c a l dynamics w i t h r e s p e c t t o i n i t i a l c o n d i t i o n s s u g g e s t s t h a t the s e a r c h f o r q u a s i p e r i o d i c t r a j e c t o r i e s i n 3D should b e g i n by s e l e c t i n g i n i t i a l c o n d i t i o n s c l o s e t o the known c o l l i n e a r RPOs, but r o t a t e d s l i g h t l y out of the c o l l i n e a r p l a n e . To a f i r s t a p p r o x i m a t i o n , the c y l i n d r i c a l c o o r d i n a t e s R and p a r e s e t 2

q

equal to R and

q

Q

and X , r e s p e c t i v e l y , of the known c o l l i n e a r RPO q

(

v

= o

0)

the o r i e n t a t i o n of the r v e c t o r i s d e t e r m i n e d by the v a l u e of y J

o ( i n i t i a l l y 1.0°); t h a t i s t o say, y ^ p ^ c o s y ^ T h i s a p p r o x i m a t i o n t o the i n i t i a l p o s i t i o n v e c t o r must t h e n be a d j u s t e d w i t h i n the y ^ p l a n e a l o n g the component of VV l y i n g i n t h a t p l a n e t o w i t h i n 10 of the d e s i r e d energy. N u m e r i c a l i n t e g r a t i o n of the e q u a t i o n s of

eV

444

RESONANCES

m o t i o n i s a l l o w e d t o proceed through the f i r s t two extremes i n the p motions, or t u r n i n g p o i n t s (the t r a j e c t o r y i s again^near i t s s t a r t i n g p o i n t ) and t h e v a l u e of the d i s s o c i a t i v e momentum |P | i s compared z

w i t h t h a t of the p r e v i o u s t r a j e c t o r y so t h a t subsequent d i s p l a c e m e n t s ( A R , w i t h y f i x e d ) w i l l be i n the d i r e c t i o n of d e c r e a s i n g f i n a l q

Q

d i s s o c i a t i v e momentum. T h i s p r o c e d u r e o f advancing the i n i t i a l p o s i t i o n v e c t o r i n the d i r e c t i o n of d e c r e a s i n g f i n a l d i s s o c i a t i v e momentum i s c o n t i n u e d u n t i l the v a l u e o b t a i n e d i s no l o n g e r l e s s t h a n t h a t of the p r e v i o u s d i s p l a c e m e n t , a t w h i c h p o i n t the d i s p l a c e m e n t d i r e c t i o n ( A R ) i s r e v e r s e d and t h e s e a r c h i s c o n t i n u e d i n a convergent sequence. The i n t e g r a t o r i s then a l l o w e d t o proceed t o the n e x t t u r n i n g p o i n t i n the p m o t i o n and the m i n i m i z a t i o n p r o c e d u r e ( t h e adj u s t m e n t of A R ) i s r e p e a t e d as b e f o r e , but w i t h an a p p r o p r i a t e d e f i n i t i o n of the d i s s o c i a t i v e momentum d i r e c t i o n , depending upon whether the t r a j e c t o r y i s t e m p o r a r i l y t e r m i n a t e d i n the e n t r a n c e o r e x i t c h a n n e l of the p o t e n t i a l energy s u r f a c e . The procedure of m i n i m i z i n g the d i s s o c i a t i v e momentum a f t e r an i n c r e a s i n g number o f t u r n i n g p o i n t s i n the p m o t i o n and w i t h e v e r - i n c r e a s i n g p r e c i s i o n i s c o n t i n ued u n t i l the a c c u r a c y o f t h e n u m e r i c a l i n t e g r a t o r i s exhausted ( t y p i c a l l y a f t e r 14 t u r n i n g p o i n t s ) . I n t h i s way, t h e e s c a p i n g tendency of the t r a j e c t o r y (toward F+H r e a c t a n t s o r FH+H p r o d u c t s ) i s m i n i m i z e d , a t a g r a d u a l l y i n c r e a s i n g number of t u r n i n g p o i n t s . Having thus l o c a t e d the s t a r t i n g c o n d i t i o n R f o r q u a s i p e r i o d i c Q

Q

2

q

dynamics i n i t i a t e d a t a p a r t i c u l a r v a l u e of Y > q

the i n i t i a l

position

v e c t o r may be r o t a t e d t o a h i g h e r i n i t i a l a n g l e and the s u c c e s s i v e m i n i m i z a t i o n p r o c e d u r e r e p e a t e d a t t h i s new v a l u e of y . P r o c e e d i n g o through 2° r o t a t i o n a l i n c r e m e n t s , i t was p o s s i b l e t o f i n d q u a s i p e r i o d i c o r b i t s a t a n g l e s below Y , w i t h o u t e n c o u n t e r i n g the b a r r i e r t o 'max h i g h a n g l e bending expected on t h e FR^ p o t e n t i a l energy s u r f a c e . In o r d e r t o l o c a t e 3D p e r i o d i c o r b i t s , a s l i g h t l y d i f f e r e n t p r o cedure was used. For q u a s i p e r i o d i c o r b i t s a t E=0.4 eV, a comparison of y v s . p p l o t s (as i n F i g u r e 3B) f o r d i f f e r e n t s t a r t i n g c o n d i t i o n s ( R , Y ) r e v e a l e d t h a t the t u r n i n g p o i n t s of the t r a j e c t o r y i n i t i a t e d a t 24.8° appeared t o s e p a r a t e i n t o f o u r d i s t i n c t s e t s i n the t r a j e c t o r y i n i t i a t e d a t Y =24.0°. The q u a i s p e r i o d i c t r a j e c t o r y i n i t i a t e d a t 21.1° was l o c a t e d and i t s Y v s . p p l o t was found t o be c o n s i s t e n t w i t h t h i s t r e n d i n t h a t the g r o u p i n g e f f e c t was even more d i s t i n c t than t h a t observed a t h i g h e r a n g l e s . These o r b i t s a r e thus becoming i n c r e a s i n g l y p e r i o d i c . T h i s p r o g r e s s i o n toward an e x a c t s u p e r p o s i t i o n of t u r n i n g p o i n t s i n t o f o u r c l u s t e r s was q u a n t i f i e d by d i v i d i n g the d i f f e r e n c e of the y v a l u e s a t t u r n i n g p o i n t s 8 and 10 (see F i g u r e 3B) by the i n i t i a l v a l u e of Y t o o b t a i n an " a p e r i o d i c i t y i n d e x , " A, f o r w h i c h a v a l u e of z e r o would i m p l y e x a c t p e r i o d i c i t y . By p l o t t i n g A as a f u n c t i o n of Y » i t was p o s s i b l e t o e x t r a p o l a t e t o A=0 to obt a i n s u c c e s s i v e l y b e t t e r e s t i m a t e s o f the v a l u e of Y l e a d i n g t o exa c t p e r i o d i c i t y . At Y 1 7 . 7 ° , the v a l u e was c o n s i d e r e d a c c e p t a b l y &

Q

O

o

Q

q

=

o

s m a l l to assume e s s e n t i a l l y e x a c t p e r i o d i c i t y of the dynamics. The same method was used t o f i n d r e s o n a n t p e r i o d i c o r b i t s a t o t h e r s t a r t i n g a n g l e s and e n e r g i e s . An example w i l l be p r o v i d e d l a t e r .

23.

MARSTON AND WYATT

Resonant Quasi-periodic

Semiclassical Quantization

& Periodic Orbits

445

Using A r b i t r a r y T r a j e c t o r i e s

The s e m i c l a s s i c a l q u a n t i z a t i o n p r o c e d u r e o f DeLeon and H e l l e r (19) was used t o o b t a i n q u a n t i z e d resonance e n e r g i e s because o f i t s capab i l i t y o f y i e l d i n g a c c u r a t e r e s u l t s from " a r b i t r a r y ' t r a j e c t o r i e s ( i . e . , root searches f o r the " r i g h t " q u a n t i z i n g t r a j e c t o r i e s are not r e q u i r e d a t a l l ) . The method r e c o g n i z e s t h a t i n t e g r a b i l i t y o f t h e dynamics p e r m i t s t h e energy t o be e x p r e s s e d a s a f u n c t i o n o f o n l y the N a c t i o n v a r i a b l e s o b t a i n a b l e from a system o f N degrees o f freedom. A f i r s t o r d e r e x p a n s i o n o f t h e energy from one s e t o f a c t i o n v a r i a b l e s t o a n o t h e r i s then p o s s i b l e u s i n g t h e e x p r e s s i o n : 1

E = E

o il. J +

6

( 1 )

aj I n o r d e r t o o b t a i n an approximate energy e i g e n v a l u e , 6 J must be s e l e c t e d t o be a p p r o p r i a t e f o r a n e x p a n s i o n t o a s e t o f a c t i o n v a r i a b l e s c o n s i s t e n t w i t h t h e q u a n t i z a t i o n c o n d i t i o n s . I f we now l e t where J =vti denotes t h e s e t o f q u a n t i z e d

action integrals

(V i s a s e t o f quantum numbers), and where J^°^ denotes t h e a c t i o n s o f the s t a r t i n g t r a j e c t o r y , and u s i n g 8E/93=uJ from H a m i l t o n - J a c o b i theor y , t h e energy q u a n t i z a t i o n e x p r e s s i o n becomes (o)

E(V)-E(3°)-hS.tf-3 )ti Thus, i f J^°^ and u> can be o b t a i n e d

(2)

from t r a j e c t o r i e s a t energy E°=

E ( J ^ ) , then t h e approximate q u a n t i z e d resonance energy, E ( V ) , l a b e l e d by t h e s e t o f quantum numbers ^, can be p r e d i c t e d . The a c t i o n s may be o b t a i n e d from a c o n s i d e r a t i o n o f t h e average phase o f t h e t r a j e c t o r i e s . For one t r a j e c t o r y , 1 +

-> 1

+

+ 1

T

a

)

i + ->

where i i n d e x e s t h e t o p o l o g i c a l l y d i s t i n c t p a t h s on t h e t o r u s manif o l d , and n_^ i s t h e number o f w i n d i n g s o f t h e i - t h t o p o l o g i c a l l y d i s t i n c t p a t h b e f o r e (exact o r n e a r l y e x a c t ) c l o s u r e . The a c t u a l t r a j e c t o r y i s assumed t o wind back on i t s e l f ( e x a c t l y o r a p p r o x i m a t e l y ) i n a time T. A l s o , i n conforming t o t h e n o t a t i o n o f DeLeon and H e l l e r , we i n t r o d u c e d a denominator o f 2ir i n t o the d e f i n i t i o n o f t h e a c t i o n i n t e g r a l . I n t r o d u c i n g t h e i n d e x (k) t o s p e c i f y a p a r t i c u l a r t r a j e c t o r y w i t h i n a s e t , a l l a t energy E(J^°^), t h i s becomes,

^ ) (k).-j(k) k

4

Assuming t h a t the v a l u e s o f

( 4 )

f o r the d i f f e r e n t t r a j e c t o r i e s are

446

RESONANCES

e s s e n t i a l l y equal ( f o r a f i x e d value of energy), the s e t of vectors may be r e p l a c e d by t h e s i n g l e v e c t o r 3^°^ t o o b t a i n t h e a p p r o x i mation ^(k) (k). (o) 4

5

( 5 )

The s e t o f e q u a t i o n s i m p l i e d by t h e above n o t a t i o n may be e x p r e s s e d i n the s i n g l e matrix equation

$

and

=

2

J

(

O

)

(6)

t h e a c t i o n v a r i a b l e s a r e then o b t a i n e d

matrix:J^°^=5

by i n v e r t i n g t h e frequency

I n E q u a t i o n 6, Q..

the j - t h frequency f o r

t r a j e c t o r y i , so t h a t t h e f r e q u e n c i e s f o r a g i v e n t r a j e c t o r y r u n a c r o s s a row. For t h i s r e a c t i o n , t h e two a c t i o n s w i l l be denoted J f o r t h e &

h i g h - f r e q u e n c y t r a n s l a t i o n - v i b r a t i o n (asymmetric) m o t i o n and the l o w - f r e q u e n c y bending m o t i o n . a r e used f o r b o t h a c t i o n s , (v

V

Integer q u a n t i z a t i o n

n

+1

for

conditions

1)

(7)

V a' b>=( a 'V

For J , a n i n t e g e r q u a n t i z a t i o n c o n d i t i o n i s used by analogy t o t h e a

c o l l i n e a r RPO s t u d i e s o f P o l l a k and C h i l d ( 7 c ) ; they found t h a t v = &

4, 6, 8, ... l e d t o s e m i c l a s s i c a l resonance e n e r g i e s w h i c h were c l o s e to the exact quantal values. F o r J ^ , i n t e g e r q u a n t i z a t i o n i s used because we a r e t r y i n g t o o b t a i n t h e ground s t a t e energy o f a doubly degenerate bending degree o f freedom. To p r e d i c t t h e l o w e s t r e s o nance energy o f 3D F+H^, we w i l l thus use v =4 and v ^ - l . Higher e n ergy resonances c o u l d be p r e d i c t e d w i t h v = 4 , v^=2, v = 6 , v ^ = l , e t c . For t h e c u r r e n t problem, E q u a t i o n 2 becomes &

a

( o )

E , J^°\ and a), , J^°\ I n order t o a a b b s i m p l i f y t h e F o u r i e r a n a l y s i s , t r a j e c t o r y number one w i l l be t h e c o l l i n e a r RPO, and t r a j e c t o r y number two w i l l be t h e n o n c o l l i n e a r RPO. I n E q u a t i o n 8, t h e two f r e q u e n c i e s and t h e two a c t i o n s w i l l b o t h r e f e r t o t r a j e c t o r y number two. R e c e n t l y , M i l l e r has shown how j u s t one t r a j e c t o r y may be used t o p r e d i c t an e i g e n v a l u e i n t h e a r b i t r a r y t r a j e c t o r y method ( 2 0 ) . the f r e q u e n c i e s

and a c t i o n s :

23.

MARSTON AND WYATT

Resonant Quasi-periodic

& Periodic Orbits

447

Quasiperiodic Resonant Orbits In t h i s Section, we w i l l i l l u s t r a t e several quasiperiodic resonant o r b i t s for F+H « Using the numerical methods discussed e a r l i e r , the 2

quasiperiodic o r b i t at E=0.9 eV and Y =17° was computed. o

The t o t a l

energy, E, i s measured from the f l o o r of the entrance v a l l e y on the FH^ p o t e n t i a l surface. In Figure 1, t h i s o r b i t i s i l l u s t r a t e d i n (R,x,y) Cartesian i n t e r n a l coordinate space. In addition, projections are shown of the o r b i t upon the three coordinate planes (R»x), (R,y), and (x,y). R e c a l l that (R,x) i s the c o l l i n e a r plane. In part A of the f i g u r e , the orbit has been integrated through 9 turning points, while i n part B the integration time was extended to 18 turning points. The projection of the o r b i t a l motion i n the c o l l i n e a r (R,x) plane i s a "blurred" or thickened version of the c o l l i n e a r resonant periodic o r b i t s i l l u s t r a t e d by Pollak and C h i l d (6c). This thickening a r i s e s because the o r b i t evolves on a two-dimensional curved surface embedded i n the three-dimensional space. Figure 2 shows another quasiperiodic resonant o r b i t , t h i s time for E=0.4 eV and Y = 2 0 ° . Part A again shows the o r b i t (integrated through 14 o

turning points i n (R,x,y) space, while part B shows the o r b i t within the FI^ p o t e n t i a l space. The p o t e n t i a l surface i n Figure 2B i s the locus of points with V=0.4 eV; the reactant region on the l e f t i s connected to the product region on the right by the FHH i n t e r a c t i o n region i n the middle of the f i g u r e . In reactants or products, the c l a s s i c a l l y allowed region (V