Chapter 13
Reversed-Phase Chromatography of Lignin Derivatives Kaj Forss, Raimo Kokkonen, and Pehr-Erik Sågfors
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
The Finnish Pulp and Paper Research Institute, P.O. Box 136, Helsinki, Finland
00101
The paper shows that lignosulfonates and kraft lignin can be fractionated according to their polarities by reversed-phase liquid chromatography. The high molar mass lignin derivatives are fractionated in such a way that those with highest molar mass are eluted last. Lignin-carbohydratecompounds can be separated from virtually carbohydrate-free lignin. In our o p i n i o n , l i g n i n i n w o o d consists of h i g h m o l a r mass g l y c o l i g n i n b o u n d to carbohydrates a n d of a group of low m o l a r mass l i g n i n s collectively referred to as h e m i l i g n i n s . T h e t e r m lignin(s) is used collectively for g l y c o l i g n i n a n d h e m i l i g n i n s . In spruce w o o d , h e m i l i g n i n s representing 15-20% of the t o t a l l i g n i n consist of m o n o m e r i c , d i m e r i c a n d oligomeric molecules. D u r i n g the a c i d bisulfite a n d kraft p u l p i n g processes, the h e m i l i g n i n s a n d g l y c o l i g n i n are rendered soluble; as g l y c o l i g n i n undergoes b o t h d e p o l y m e r i z a t i o n a n d p o l y m e r i z a t i o n d u r i n g the cook, the result is a c o m p l e x m i x t u r e of molecules of different sizes a n d characteristics (1-4). T h e c o m p l e x i t y of this m i x t u r e is i n no way reduced b y the fact t h a t s m a l l fragments peel off the g l y c o l i g n i n d u r i n g the d e l i g n i f i c a t i o n a n d t h a t some of the dissolved lignins are p r o b a b l y b o u n d to c a r b o h y d r a t e s as l i g n i n c a r b o h y d r a t e c o m p o u n d s . It is interesting to note i n the present context t h a t these l i g n i n - c a r b o h y d r a t e compounds are m u c h more p o l a r t h a n the other l i g n i n compounds. A s t u d y of dissolved l i g n i n derivatives first requires t h e i r s e p a r a t i o n f r o m each other. F o r this purpose gel p e r m e a t i o n c h r o m a t o g r a p h y ( G P C ) is w i d e l y used. I n this technique separation of l i g n i n derivatives is based largely o n the size a n d shape of the molecule, n a m e l y its h y d r o d y n a m i c volume. However, i t is possible for c o m p o u n d s w i t h the same m o l e c u l a r size t o have different c h e m i c a l structures. S u c h c o m p o u n d s m a y not be separated 0097-6156/89/0397-0177$06.00A) © 1989 American Chemical Society
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LIGNIN: PROPERTIES AND MATERIALS
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
178
b y G P C . T h e r e is thus a need i n e x p e r i m e n t a l l i g n i n research for f r a c t i o n a t i o n techniques t h a t separate molecules o n the basis of properties other t h a n size. O n e such f r a c t i o n a t i o n m e t h o d , w h i c h is based o n the p o l a r i t y of the components, is reversed-phase l i q u i d c h r o m a t o g r a p h y ( R P C ) . T h e purpose of t h i s paper is to describe the f r a c t i o n a t i o n of l i g n i n derivatives b y means of t h i s m e t h o d . T h e h y d r o p h o b i c s t a t i o n a r y phase used i n reversed-phase c h r o m a t o g r a p h y is a s i l i c a gel or p o l y m e r i c m a t r i x to w h i c h h y d r o c a r b o n chains have been a t t a c h e d b y s i l y l a t i o n . T h e most c o m m o n l y used are C i s , C g , C e a n d C 2 chains. E l u t i o n i n reversed-phase c h r o m a t o g r a p h y is often c a r r i e d out u s i n g a g r a d i e n t , p r o d u c e d f r o m water a n d some w a t e r - m i s c i b l e organic solvent. T h e solute components are t h u s d i s t r i b u t e d between the s t a t i o n a r y a n d m o b i l e phases m a i n l y o n the basis of their p o l a r i t i e s . I n reversed-phase c h r o m a t o g r a p h y h y d r o p h i l i c compounds elute before h y d r o p h o b i c ones.
Fractionation of Lignosulfonates In order to s t u d y b i r c h lignosulfonates, spent sulfite l i q u o r , f r o m w h i c h monosaccharides h a d been removed by i o n exclusion c h r o m a t o g r a p h y , was f r a c t i o n a t e d o n the basis o f m o l e c u l a r size b y p r e p a r a t i v e G P C ( F i g . 1). It can be seen f r o m the figure t h a t almost h a l f of the b i r c h l i g n o s u l fonates have a m o l a r mass greater t h a n 1000 g / m o l . T h e fractions i n the region 700-1230 m L i n F i g u r e 1 were c o m b i n e d i n order to s t u d y the s t r u c t u r e of the p o l y m e r i c p o r t i o n of the b i r c h l i g n o sulfonates. T h e c o m b i n e d s o l u t i o n was then refractionated b y p r e p a r a t i v e R P C i n t o five fractions ( F i g . 2). F i g u r e 2 shows t h a t the lignosulfonates are f r a c t i o n a t e d i n t o two p o r tions. T h e lignosulfonates eluted i n the retention t i m e range 0-15 m i n u t e s are s t r o n g l y p o l a r , whereas those eluted i n the range 15-40 minutes behave as less p o l a r c o m p o u n d s w i t h p o l a r i t y decreasing w i t h increasing r e t e n t i o n time. It must be n o t e d t h a t lignosulfonates are s t r o n g polyelectrolytes a n d thus p o l a r components. However, p a r t of the h i g h m o l a r mass molecule is n o n - p o l a r i n character, a n d t h i s part of the molecule causes h i g h m o l a r mass lignosulfonates t o elute as n o n - p o l a r c o m p o u n d s . T h e reason w h y lignosulfonates elute i n the r e t e n t i o n t i m e range 3-9 minutes c o u l d be because they are, i n fact, s t r o n g l y p o l a r l i g n i n c a r b o h y d r a t e c o m p o u n d s . T o investigate t h i s p o s s i b i l i t y , fractions I - V were subjected to a c i d h y d r o l y s i s a n d the monosaccharide content a n d c o m p o s i t i o n of the r e s u l t i n g m i x t u r e d e t e r m i n e d b y l i q u i d c h r o m a t o g r a p h y . T h e c a r b o h y d r a t e a n d lignosulfonate contents are s h o w n i n T a b l e I. T a b l e I shows t h a t carbohydrates account for about o n e - t h i r d o f the solids i n f r a c t i o n I. F r a c t i o n s I I I - V c o n t a i n e d considerably less c a r b o h y drates. A f t e r h y d r o l y s i s , f r a c t i o n I contained xylose a n d arabinose i n the r a t i o 10:1. H y d r o l y s i s of fractions I I I - V y i e l d e d very s m a l l a m o u n t s of x y l o s e . T h e other monosaccharides present i n fractions I I I - V were arabinose a n d
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
13.
FORSS ET AL.
W
179
Reversed-Phase Chromatography
/ { f f { f f / { f f t^f / f f / f f f f /
7 5 0
1
/nnn ° 0 0 . , , , 7000 3000 2000 4 0
0 0
U
Lé
j
la
LA
ι
1250
1500 1750 , RETENTION VOLUME, ml 1000 MOLAR MASS
F i g u r e 1. F r a c t i o n a t i o n o f b i r c h lignosulfonates b y p r e p a r a t i v e gel p e r m e ation chromatography.
RETENTION TIME, min F i g u r e 2. F r a c t i o n a t i o n o f h i g h m o l a r mass b i r c h lignosulfonates (fraction A i n F i g u r e 1) b y p r e p a r a t i v e reversed-phase c h r o m a t o g r a p h y .
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
LIGNIN: PROPERTIES AND MATERIALS
180
T a b l e I. C a r b o h y d r a t e a n d Lignosulfonate C o n t e n t s of the H y d r o l y z e d Fractions I - V Fraction Compounds
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
Monosaccharides, % ( w / w ) Lignosulfonates, % ( w / w )
I 30 70
II
III
IV
V
5 95
2 98
6 94
r h a m n o s e . These results suggest t h a t f r a c t i o n I contains lignosulfonatex y l a n compounds. F i g u r e 2 shows t h a t f r a c t i o n I elutes over a very n a r r o w r e t e n t i o n t i m e range, whereas fractions I I - V are spread over a w i d e range. T o deter m i n e the reason for t h i s , fractions I - V were f r a c t i o n a t e d b y a n a l y t i c a l G P C ( F i g . 3). It can be seen f r o m F i g u r e s 2 a n d 3 t h a t the v i r t u a l l y c a r b o h y d r a t e free fractions I I I - V are eluted b y R P C i n order of increasing m o l a r mass a n d t h a t f r a c t i o n V contains the highest m o l a r mass lignosulfonates. A large p a r t of f r a c t i o n I is eluted b y G P C i n the same region as f r a c t i o n V . T h i s s u p p o r t s the s u p p o s i t i o n t h a t the lignosulfonates of f r a c t i o n I are b o u n d to c a r b o h y d r a t e s . O t h e r w i s e they w o u l d have been eluted b y R P C in fraction V . It s h o u l d be noted t h a t the b r o a d m o l a r mass d i s t r i b u t i o n o f f r a c t i o n I i n F i g u r e 3 reflects the m o l a r mass d i s t r i b u t i o n of the l i g n i n - c a r b o h y d r a t e c o m p o u n d s a n d not t h a t of the l i g n i n p o r t i o n of the l i g n i n - c a r b o h y d r a t e compounds. It was s h o w n t h a t h i g h m o l a r mass lignosulfonate c o m p o u n d s can be f r a c t i o n a t e d by R P C i n t o h y d r o p h i l i c a n d h y d r o p h o b i c c o m p o u n d s . It c a n be seen f r o m F i g u r e s 4 a n d 5 t h a t the b i r c h lignosulfonates w i t h low m o l a r mass (fractions Β a n d C i n F i g u r e 1) were also f r a c t i o n a t e d into h y d r o p h i l i c a n d h y d r o p h o b i c p o r t i o n s w i t h no clearly resolved peaks. O n the other h a n d , fractions D a n d E , w h i c h elute later i n p r e p a r a t i v e G P C ( F i g . 1), show clearly separated peaks i n b o t h the h y d r o p h o b i c a n d h y d r o p h i l i c zones w h e n f r a c t i o n a t e d b y R P C ( F i g s . 6 a n d 7). It can be seen f r o m F i g u r e 3 t h a t the m o l a r mass d i s t r i b u t i o n of the h y d r o p h i l i c c o m p o u n d s (fraction I) is b r o a d a l t h o u g h they are eluted b y R P C i n a n a r r o w zone ( F i g . 2). T h e i r reversed-phase c h r o m a t o g r a p h i c f r a c t i o n a t i o n is t h u s based almost exclusively o n t h e i r p o l a r i t y , m o l e c u l a r size h a v i n g no effect o n the process. T h e results show t h a t R P C w i l l also separate low m o l a r mass l i g n o sulfonates i n t o h y d r o p h i l i c a n d h y d r o p h o b i c fractions as well as i n t o a far greater n u m b e r of i n d i v i d u a l c o m p o n e n t s t h a n o b t a i n e d b y f r a c t i o n a t i o n with G P C .
Fractionation of Kraft Lignin In the same way as w i t h b i r c h lignosulfonates, p r e p a r a t i v e R P C can be used
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
13.
FORSS ET AL.
Reversed-Phase Chromatography
CU 10000
5000
3000
181
0.6 0.8 1.0 RELATIVE RETENTION VOLUME 1500 1000 MOLAR MASS
F i g u r e 3. M o l a r mass d i s t r i b u t i o n o f h i g h m o l a r mass b i r c h (fractions I - V i n F i g u r e 2).
lignosulfonates
F i g u r e 4. F r a c t i o n a t i o n o f low m o l a r mass b i r c h lignosulfonates i n F i g u r e 1) b y reversed-phase c h r o m a t o g r a p h y .
(fraction Β
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
182
LIGNIN: PROPERTIES AND MATERIALS
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
MeOH,%
~i 20
1 Γ 30 40 RETENTION TIME
F i g u r e 5. F r a c t i o n a t i o n of low m o l a r mass b i r c h lignosulfonates ( f r a c t i o n C i n F i g u r e 1) b y reversed-phase c h r o m a t o g r a p h y .
MeOH,% *280nm
π 20
1 Γ 30 L0 RETENTION TIME
F i g u r e 6. F r a c t i o n a t i o n of low m o l a r mass b i r c h lignosulfonates (fraction D i n F i g u r e 1) b y reversed-phase c h r o m a t o g r a p h y .
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
13.
FORSS ET AL.
Reversed-Phase Chromatography
183
to fractionate kraft l i g n i n i n t o h y d r o p h i l i c a n d less h y d r o p h i l i c c o m p o u n d s ( F i g . 8). T h e figure shows t h a t h y d r o p h i l i c l i g n i n derivatives ( f r a c t i o n I) elute i n the r e t e n t i o n t i m e range 30-80 m i n u t e s , c o m p a r e d w i t h 90-140 m i n u t e s for the h y d r o p h o b i c c o m p o u n d s (fractions I I - I V ) . R e f r a c t i o n a t i o n b y a n a l y t i c a l G P C of fractions I - I V ( F i g . 9) shows t h a t these fractions encompass w i d e m o l a r mass ranges. F r a c t i o n I, w h i c h is less h y d r o p h o b i c t h a n fractions III a n d V ( F i g . 8), contains lower m o l a r mass c o m p o u n d s t h a n f r a c t i o n I I I , w h i c h i n t u r n c o n t a i n s lower m o l a r mass c o m p o u n d s t h a n the most h y d r o p h o b i c f r a c t i o n (fraction I V ) . F r a c t i o n I, w h i c h consists m a i n l y o f low m o l a r mass c o m p o u n d s , also contains a s m a l l a m o u n t of h i g h m o l a r mass l i g n i n derivatives e l u t i n g w i t h relative r e t e n t i o n volumes of 0-0.1. These derivatives are p o l a r a n d some m a y be b o u n d to c a r b o h y d r a t e s , or otherwise they w o u l d have been e l u t e d b y R P C a l o n g w i t h the h y d r o p h o b i c fractions I I - I V . T h e a n a l y t i c a l reversed-phase c h r o m a t o g r a m s i n F i g u r e 10 show t h a t h i g h m o l a r mass h y d r o p h o b i c kraft l i g n i n i n kraft black l i q u o r elutes i n the r e t e n t i o n t i m e range 60-90 m i n u t e s . T h e c o r r e s p o n d i n g lignosulfonates elute sooner i n the r e t e n t i o n t i m e range 30-60 m i n u t e s because of their sulfonate groups a n d consequently their more h i g h l y h y d r o p h i l i c n a t u r e . It can also be seen f r o m F i g u r e 10 t h a t the h y d r o p h i l i c sulfonated h e m i l i g n i n s i n the spent sulfite l i q u o r elute i n the r e t e n t i o n t i m e range 0-15 m i n u t e s . F i g u r e 11 shows t h a t the e l u t i o n of m o n o m e r i c benzene derivatives i n R P C is closely connected w i t h the s t r u c t u r e of their f u n c t i o n a l groups a n d t h u s w i t h their p o l a r properties. T h e figure shows t h a t the s t r o n g l y h y d r o p h i l i c sulfonate is the first of the m o d e l c o m p o u n d s to be e l u t e d . It is also seen t h a t i n R P C m o n o m e r i c acids elute before the c o r r e s p o n d i n g alcohols, w h i c h elute before the aldehydes. G u a i a c y l c o m p o u n d s elute before the c o r r e s p o n d i n g s y r i n g y l c o m p o u n d s , w h i c h i n t u r n elute before the veratryl compounds. Conclusions It has been s h o w n t h a t R P C can be used to f r a c t i o n a t e b o t h l i g n o s u l fonates a n d kraft l i g n i n o n the basis of p o l a r i t y . S t r o n g l y h y d r o p h i l i c l i g n i n c a r b o h y d r a t e c o m p o u n d s can be separated f r o m v i r t u a l l y carbohydrate-free l i g n i n . H i g h m o l a r mass lignosulfonates a n d kraft l i g n i n are f r a c t i o n a t e d o n the basis of m o l a r mass, w i t h the highest m o l a r mass c o m p o u n d s e l u t e d last. P r e p a r a t i v e a n d a n a l y t i c a l reversed-phase c h r o m a t o g r a p h y c o m b i n e d w i t h G P C is a useful t o o l i n e x p e r i m e n t a l l i g n i n research. Experimental Lignosulfonates. Samples of b i r c h a n d spruce w o o d m e a l e x t r a c t e d w i t h e t h a n o l - c y c l o h e x a n e (1:3) were heated f r o m 20°C to 135°C d u r i n g 1 h a n d then cooked for 6 h at 135°C i n 150 m L reactors w i t h s o d i u m bisulfite l i q u o r
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
184
LIGNIN: PROPERTIES AND MATERIALS
RETENTION TIME F i g u r e 7. F r a c t i o n a t i o n o f low m o l a r mass b i r c h lignosulfonates ( f r a c t i o n Ε i n F i g u r e 1) b y reversed-phase c h r o m a t o g r a p h y .
RETENTION TIME, min F i g u r e 8. F r a c t i o n a t i o n of p i n e kraft l i g n i n b y p r e p a r a t i v e reversed-phase liquid chromatography.
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
13.
FORSS ET AL.
Reversed-Phase Chromatography
185
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
A280 nm
I 10000
I I 5000 3000
RELATIVE RETENTION VOLUME I I 15001000 MOLAR MASS
F i g u r e 9. M o l a r mass d i s t r i b u t i o n o f pine kraft l i g n i n (fractions I - I V i n Figure 8).
RETENTION TIME, min F i g u r e 10. F r a c t i o n a t i o n o f spruce spent sulfite l i q u o r a n d pine kraft b l a c k liquor.
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
186
LIGNIN: PROPERTIES AND MATERIALS
F i g u r e 11. Influence of f u n c t i o n a l groups on retention t i m e .
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
13.
FORSS ET AL.
187
Reversed-Phase Chromatography
c o n t a i n i n g 7% S O 2 a n d 1% N a 0 . T h e spent a n d w a s h i n g l i q u o r s f r o m the p u l p were c o m b i n e d a n d evaporated. Sulfite a n d sulfate ions were p r e c i p i t a t e d f r o m the spent b i r c h l i q u o r ( F i g . 1) w i t h b a r i u m h y d r o x i d e . M o n o s a c c h a r i d e s a n d other low m o l a r mass non-electrolytes a n d weak electrolytes were separated q u a n t i t a t i v e l y f r o m the lignosulfonates b y means of i o n exclusion c h r o m a t o g r a p h y (5). 2
Kraft Lignin. T h e i n d u s t r i a l pine black l i q u o r was d i l u t e d w i t h water (1:10) before a n a l y t i c a l R P C .
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
RPC
System and
Conditions.
Reversed-phase
columns:
Analytical:
F i g u r e s 4,5,6,7 F i g u r e s 10,11
Preparative:
Figure 2 Figure
8
Spherisorb C 6 , 5 / / m , 140/6.4 m m (Phase S e p a r a t i o n , U K ) Spherisorb O D S 2, 5 / / m , 1 4 0 / 4 m m (Phase S e p a r a t i o n , U K ) L i C h r o p r e p C s , 40-60 μπι, 2 5 0 / 1 0 m m (E. Merck, F R G ) S e p r a l y t e C i , 40 / i m , 3 0 0 / 2 5 m m (Analytichem, U S A ) 8
Solvent delivery s y s t e m : M o d e l L C - 5 0 6 0 ( V a r i a n , U S A ) M o b i l e phase:
F i g u r e s 2,4,5,
Figure Gradient:
F l o w rate:
+ B) A) B)
K O H 1.15 m M / L MeOH H 0 MeOH 2
F i g u r e s 2,4,5, 6,7
T i m e (min) v / v , % (A) v / v , % (B)
96 4
0
10 96 4
30 50 50
F i g u r e s 10,11
T i m e (min) v / v , % (A) v / v , % (B)
0 100 0
60 50 50
90 0 100
Figure
T i m e (min) v / v , % (A) v / v , % (B)
0 100 0
30 100 0
90 50 50
8
F i g u r e s 2,8
2.0 m L / m i n
F i g u r e s 4,5,6,7
1.5 m L / m i n
F i g u r e s 10,11
1.0 m L / m i n
D e t e c t i o n of A280nm · Injection:
6,7,10,11 8
A ) KH2PO4 50 m M / L
S p e c t r o p h o t o m e t r i c Detector M o d e l L C - 7 5 (Perkin-Elmer, U S A )
S y r i n g e L o a d i n g S a m p l e Injector M o d e l 7125 (Rheodyne, U S A ) w i t h a n a l y t i c a l 20 μL loop a n d p r e p a r a t i v e 2 m L loop.
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
120 0 100
LIGNIN: PROPERTIES AND MATERIALS
188 GPC
System and
G e l permeation
Conditions.
columns:
Analytical:
F i g u r e s 3,9
Sephadex G - 5 0 , fine, 1500/10 m m ( P h a r m a c i a , Sweden)
Preparative:
Figure 1
Sephadex G - 5 0 , fine, 1400/40 m m ( P h a r m a c i a , Sweden)
Downloaded by UNIV OF CINCINNATI on May 31, 2016 | http://pubs.acs.org Publication Date: July 31, 1989 | doi: 10.1021/bk-1989-0397.ch013
Solvent delivery system:
S T A - m u l t i p u r p o s e p e r i s t a l t i c p u m p 13 19 0 0 , (Desaga, F R G )
M o b i l e phase:
F i g u r e s 3,9 Figure 1
H2O 0.5 M N a O H
F l o w rate:
F i g u r e s 3,9 Figure 1
90 m L / h 20 m L / h
D e t e c t i o n o f A280nm : Analytical:
F i g u r e s 3,9
U V - d e t e c t o r U V I C O R D S M o d e l 2138 ( L K B , Sweden)
Preparative:
Figure 1
C o l l e c t e d fractions measured w i t h a spectrophotometer M o d e l P M Q 2 ( C . Zeiss, F R G )
Injection:
Syringe i n j e c t i o n , a n a l y t i c a l volume 0.5 m L a n d preparative volume 100 m L .
Literature C i t e d 1. Forss, K.; Fremer, K . - E . Tappi 1964, 47, 485-93. 2. Forss, K.; Fremer, K . - E . Pap. Puu 1965, 47, 443-54. 3. Forss, K.; Fremer, K . - E . ; Stenlund, B. Pap. Puu 1966, 48, 565-74, 66976. 4. Forss, K.; Fremer, K . - E . Appl. Polym. Symp. 1983, 37, 531-47. 5. Jensen, W.; Fremer, K . - E . ; Forss, K . Tappi 1962, 45, 122-7. RECEIVED March 17,1989
Glasser and Sarkanen; Lignin ACS Symposium Series; American Chemical Society: Washington, DC, 1989.